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Viral-associated exacerbations of asthma and COPD
Suzanne L Traves and David Proud
Exacerbations of asthma and chronic obstructive pulmonary

disease are major burdens on the healthcare system, and

contribute significantly to the mortality and morbidity

associated with these diseases. Upper respiratory viral

infections are associated with the majority of such disease

exacerbations. The past few years have seen advances in the

mechanisms by which viral infections induce pro-inflammatory

chemokine production, and in our understanding of host

antiviral and anti-inflammatory defence pathways that might

regulate responses to infection. A more comprehensive

understanding of the molecular basis of these processes could

elucidate new therapeutic approaches to reduce the

devastating impact that these exacerbations have on quality of

life and healthcare costs.
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Introduction
Exacerbations of asthma and chronic obstructive pulmon-

ary disease (COPD) can be defined as ‘a worsening of the

patient’s condition, beyond the day-to-day variability

associated with the disease, that is sufficient enough to

require a change in management, or to seek emergency

medical intervention’ [1,2]. Exacerbations of both asthma

and COPD represent a major financial burden on the

healthcare system as a result of costs associated with

hospitalizations, increased medication usage, and days

lost from work and school. In the case of asthma, exacer-

bations are responsible for 50% of the total healthcare

costs, and for the deaths of 5000 Americans each year [3].

Similarly in the case of COPD, exacerbations account for

70% of healthcare costs, as well as being a substantial

cause of hospitalizations [3]. More importantly, recurrent

exacerbations of COPD result in a loss of lung function,

thus hastening the progression of a currently fatal disease

[4].
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In the current article, we discuss the evidence that common

respiratory viruses are a major trigger factor for exacer-

bations of asthma and COPD. We also review the current

state of our knowledge on the mechanisms by which

viruses might trigger such disease exacerbations, as well

as the factors that could regulate susceptibility to viral

exacerbations. Finally, we consider the status of current

therapies in the treatment of viral exacerbations of asthma

and COPD, and discuss potential novel approaches to

treatment.

Evidence for viral infections and
exacerbations of asthma
The association between upper respiratory viral infections

(URIs) and exacerbations of asthma has been recognized

for decades, but it was not until the development of

RT–PCR methods for improved detection of viruses that

the extent of this association became clear [5,6]. Indeed,

URIs are the principal risk factor associated with asthma

exacerbations [3,7], and are associated with as many as

80–85% of asthma exacerbations in children and adoles-

cents [5,8–10], and approximately 40–60% of exacerbations

in adults [3,5]. There is a clear temporal relationship

between URIs and asthma exacerbations in children.

The peak of hospitalizations occurs in September, shortly

after the return to school and at the peak time of year for

human rhinovirus (HRV) infections [10,11]. Consistent

with this, HRV is associated with approximately 60% of

viral-triggered exacerbations [6,10,12]. Other viral types

associated with asthma exacerbations include influenza,

coronaviruses, parainfluenza and respiratory syncytial

virus. Epidemiological evidence suggests that viruses

may also interact with other causal factors linked to asthma

exacerbations, such as allergens and pollution. Studies of

the interaction between experimental allergen exposure

and experimental virus infection, however, have generated

mixed results. In a murine model, influenza infection aids

allergen sensitisation and enhances airway inflammation

[13]. In humans, however, chronic low-dose allergen pro-

vocations did not alter subsequent lower airway responses

to HRV infection [14] whereas, in the upper airways, acute

allergen challenge delayed onset and shortened the

duration of common colds.

Evidence for viral infections and
exacerbations of COPD
By 2020, COPD is predicted to become the third most

common cause of death worldwide and the fifth leading

cause of disability [15]. Exacerbations of COPD occur

more commonly in patients in the advanced GOLD II or

III stages [16]. (GOLD stands for the Global Initiative for

Chronic Obstructive Lung Disease, and ranks disease in
www.sciencedirect.com
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four stages: 0 = at risk; stage I = mild COPD; stage II =

moderate COPD; stage III = severe COPD.) Recent evi-

dence has demonstrated that URIs are a major trigger [17].

In a recent study, 78% of severe exacerbations in patients

with COPD were associated with viral and/or bacterial

infections, with viral infections accounting for 48% of these

exacerbations [18]. Interestingly, viral-associated exacer-

bations of COPD are more frequent, severe and have

longer recovery times than those of non-viral origin [17].

Moreover, exacerbations associated with viral/bacterial

co-infection also result in longer hospitalisation, and worse

functional impairment for the patient [16]. In patients with

COPD exacerbations requiring mechanical ventilation, a

viral pathogen was detected in 46% of cases [19]. In

general, viral infections are responsible for approximately

50% of exacerbations of COPD, with HRV being the

dominant pathogen [3,5]. Consistent with this, exacer-

bation frequency is associated with an increased frequency

of acquiring the ‘common cold’ [20]. Moreover, exper-

imental HRV infection in patients with GOLD stage II

COPD resulted in symptoms and lung function changes

representative of acute disease exacerbations [21].

Mechanisms of viral-associated
exacerbations
The specific mechanisms by which viruses invoke exacer-

bations of asthma and COPD remain unclear. Growing

evidence, however, suggests direct infection of the lower

respiratory tract, leading to a robust host inflammatory

response, and an increase in bronchial hyperresponsive-

ness [6]. Because HRV is the major viral type associated

with exacerbations, we focus on this virus as a prototype

for the mechanisms by which viruses exert their effects.

HRV infects both the upper and lower respiratory tracts,

with the principal site of infection being the airway

epithelial cell [22]. Although it has been reported that

some strains of HRV can cause epithelial cell death in

cultures grown at low density [23], the majority of studies

found no overt cytotoxicity either in vitro or in vivo.

Epithelial cells are clearly the major site of HRV infection

and sustain prolonged replication [24,25]. Although HRV

can bind to, and enter, a variety of other cell types in vitro,

including fibroblasts, monocytes and macrophages

[25,26], the contribution of these individual cell types

to pathogenesis in vivo is still unclear.

HRV infection of cultured human airway epithelial cells

results in production of several pro-inflammatory cytokines

and chemokines, including interleukin (IL)-1, IL-6, IL-8,

interferon (IFN)-inducible protein of 10 kDa (IP-10),

regulated on activation normal T-cell expressed

(RANTES), granulocyte macrophage-colony stimulating

factor and eotaxin [24–26]. This profile of mediators could

enhance airway inflammation via the recruitment and

retention of a wide range of inflammatory cells

(Figure 1) that contribute to the pathogenesis of exacer-

bations [25]. Moreover, some of these chemokines have
www.sciencedirect.com
also been detected in airway secretions during viral infec-

tions [27]. Despite the potential for epithelial chemokines

to recruit multiple cell types to the airways, experimental

HRV infections and viral exacerbations of asthma and

COPD are dominantly associated with selective recruit-

ment of neutrophils and lymphocytes [4]. This implies that

mechanisms must exist to limit the cell types recruited, but

these mechanisms are not well understood. It has recently

been reported that increased IL-10 gene expression is

observed during viral exacerbations of asthma, suggesting

that immunoregulatory effects of IL-10 include suppres-

sion of eosinophil influx [28].

Viral infections might also contribute to disease exacer-

bations by enhancing mucus production. HRV infection of

epithelial cells has been shown to result in increased

mRNA expression for MUC2, MUC3, MUC5AC, MUC5B

and MUC6. Importantly, concentrations of MUC5AC and

total mucin were also increased in supernatants and lysates

from epithelial cells [29].

Although viral infection modulates epithelial cell func-

tion, the viral-induced signalling mechanisms involved

are just beginning to be elucidated. Induction of chemo-

kines such as IL-8 occurs early after HRV binding and

does not require viral replication, but instead depends

upon activation of both phosphatidylinositol 3-kinase and

the p38 mitogen-activated protein kinase pathway [30].

Given that intercellular adhesion molecule-1 (ICAM-1),

the receptor for the majority of HRV serotypes, has no

inherent kinase activity or recognition motifs for receptor-

associated kinases, it was unclear how viral binding

initiated this signalling cascade. However, it has recently

been shown that HRV binding to ICAM-1 leads to an

association with the spleen tyrosine kinase Syk. This

association is mediated via the cytoskeletal linker protein

ezrin, which binds both ICAM-1 and Syk. Formation of

this complex leads to activation of Syk, with subsequent

downstream activation of the p38 mitogen-activated

protein kinase pathway and increased expression of

IL-8. Thus, Syk is an important signalling component

in early virus responses [31��].

In contrast to the rapid generation of IL-8, other responses

to viral infection, such as generation of RANTES or IP-10,

do not occur until several hours after viral exposure and are

absolutely dependent upon viral replication. This has led

to intense investigation of the role of viral replication

products, particularly double-stranded RNA (dsRNA), in

cell responses. It is known that dsRNA mimics several

responses to viral infection and triggers host anti-viral

responses. Initially, dsRNA was thought to be recognized

exclusively by Toll-like receptor (TLR)3 [32], but genetic

deletion of TLR3 did not alter viral pathogenesis or

host adaptive antiviral responses to several viruses [33].

This apparent conundrum was resolved with the demon-

stration that two intracellular RNA helicases — retinoic
Current Opinion in Pharmacology 2007, 7:252–258
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Figure 1

Mechanisms of virus-associated exacerbations of asthma and COPD. Viral infection of the epithelium results in the upregulation of ICAM-1.

Pro-inflammatory mediators are also released that recruit inflammatory cells such as neutrophils and monocytes, which then differentiate into

macrophages, lymphocytes and eosinophils. These inflammatory cells also release inflammatory mediators such as chemokines, cytokines, matrix

metalloproteinases (MMPs) and reactive oxygen species (ROS), which perpetuate the inflammatory response culminating in an exacerbation.
acid inducible gene (RIG-I) [34,35��] and melanoma-

differentiation-associated gene 5 (mda-5) [35��] — can also

bind to dsRNA. The helicase domain of these proteins

binds dsRNA, while a caspase activation and recruitment

domain (CARD) permits binding of a downstream adaptor

protein. This downstream mitochondrial-associated

protein was identified independently by four groups and

is known by the names CARDIF (CARD adapter inducing

interferon-b), MAVS (mitochondrial antiviral signalling),

IPS-1 (interferon-b promoter stimulator-1) and VISA

(virus-induced signalling adapter) [36�]. CARDIF binds

to several proteins and induces both classical nuclear

factor-kB (NF-kB) pathway activation and IKKe/Tank-

binding kinase 1-mediated activation of interferon
Current Opinion in Pharmacology 2007, 7:252–258
response factors [36�]. These pathways are also activated

when dsRNA binds to TLR3 (Figure 2). Controversy now

exists regarding the relative roles of TLR3, RIG-I and

mda-5 in viral recognition. It has been suggested that

different viral types may preferentially utilize one of these

three recognition proteins. To further complicate this

picture, RIG-I also recognizes single-stranded RNA

(ssRNA) containing 50-phosphates. Indeed, it has been

reported that influenza A does not generate dsRNA but,

rather, activates RIG-I via binding of genomic viral ssRNA

bearing 50-phosphates [37�,38�]. Further studies are

needed to clarify the preferential utilization of different

intracellular recognition molecules by different viral types,

and to determine if this also varies with cell type.
www.sciencedirect.com
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Figure 2

Overview of the intracellular signalling pathway stimulated by rhinovirus. HRV binds to ICAM-1 on the surface of epithelial cells. The virus becomes

internalised and, during replication, produces dsRNA. dsRNA can then bind TLR3, which activates Toll/IL-1-containing adaptor inducing interferon b

(TRIF) and subsequently either interferon regulatory factor (IRF) or NF-kB. dsRNA can also bind either RIG-I or mda-5, resulting in the activation of IRF-

or NF-kB-mediated pathways. It is thought that activation of IRF and NF-kB stimulates the production of the anti-viral response. FADD, Fas-associated

death domain protein; IKK, inhibitor of NF-kB kinase family; IPS-1, interferon-b promoter stimulator 1; MAVS, mitochondrial antiviral signalling; RIP-1,

kinase receptor interacting protein-1; TBK, TANK-binding kinase; TRAF, tumor necrosis factor receptor-associated factor; VISA, virus-induced

signalling adaptor.
Susceptibility to exacerbation
What determines susceptibility of a given individual to

experience disease exacerbation upon viral infection is

not clear but multiple factors are probably involved.

Those subjects whose underlying disease is well con-

trolled are less likely to experience an acute viral-

mediated exacerbation. Similarly, pre-existing specific

immunity to a given pathogen will reduce the likelihood

of that pathogen triggering an exacerbation. Epithelial

contributions to host innate antiviral immunity might

also play a role. Recent reports suggest that bronchial

epithelial cells from asthmatic subjects show impaired
www.sciencedirect.com
production of both IFNb and type 3 IFNs [39��,40��],
and that this plays a role in the increased susceptibility

of asthmatic subjects to lower airway disease. Additional

studies are needed to confirm these data and to put

such defects in the context of why specific asthmatic

subjects experience exacerbations. Moreover, although

type 1 and type 3 IFNs contribute to host defence

mainly via induction of numerous IFN-stimulated

genes (ISGs) that collectively limit virus replication

and spread, there is a precedent for several viruses,

including HRV, to induce ISGs independently of IFN

induction [24,41].
Current Opinion in Pharmacology 2007, 7:252–258
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Nitric oxide (NO) also appears to be an important com-

ponent of the host antiviral response because it exerts

direct antiviral activity against several viruses associated

with exacerbations of asthma and COPD, and also inhibits

the viral-induced generation of several cytokines/chemo-

kines from epithelial cells [42]. Viral infection of epithelial

cells increases expression of inducible NO synthase

(iNOS) and, during in vivo HRV infections, epithelial

iNOS induction correlates with levels of exhaled NO.

Moreover, subjects with the highest levels of exhaled

NO cleared virus more rapidly and had fewer symptoms

than those who exhaled lower levels [43].

Treatment of exacerbations
Corticosteriods are crucial in the treatment of asthma [44]

and, when used alone or in combination with long-acting

b-agonists or leukotriene receptor antagonists, they are

known to improve asthma control and, thereby, reduce

the number of exacerbations.

Acute asthma exacerbations tend to be treated with oxy-

gen, inhaled short-acting b2-adrenoceptor agonists, and

intravenous or oral corticosteroids [44]. Although use of oral

corticosteroids early in exacerbations can reduce sub-

sequent relapse [44], there have been few studies looking

specifically at exacerbations of known viral etiology. Cor-

ticosteroids are ineffective in the treatment of HRV-

induced colds and current evidence would suggest that

they are of limited efficacy in viral-induced excerbations of

asthma. Asthmatics with prominent sputum neutrophilia,

perhaps indicative of viral etiology, are poorly responsive to

inhaled corticosteroids [45], and inhaled corticoisteroids

did not significantly reduce lower airway inflammation

induced by HRV infection of asthmatic subjects [46].

Moreover, administration of prednisolone to children

hospitalized for viral-induced episodes of wheezy

bronchiolitis did not reduce the duration of hospital stay

[47]. Combination therapies of inhaled anticholinergic

agents with short-acting b2-adrenoceptor agonists have

been reported to be more effective against exacerbations

in school children [44]; furthermore, a leukotriene recep-

tor antagonist decreased asthma exacerbations in 2- to

5-year-old patients with intermittent asthma [48]. Nedo-

cromil sodium and inhaled corticosteroids might also be

of limited benefit in asthma exacerbations in children

[49]. It must be noted, however, that most of these

studies did not discriminate between exacerbations of

viral and non-viral origin.

Although there is conflicting evidence over whether

inhaled corticosteroids reduce exacerbations of COPD,

oral corticosteroids appear to hasten recovery from certain

exacerbations [17]. Combined therapy with corticoster-

oids and long-acting b-adrenoceptor agonists has been

shown to reduce the number of exacerbations in patients

with COPD, presumably by improving baseline control

[50]. Again, however, there have been no studies specifi-
Current Opinion in Pharmacology 2007, 7:252–258
cally examining the effects of corticosteroids, alone or in

combination with long-acting b-adrenoceptor agonists,

during COPD exacerbations of known viral etiology.

Similarly, although antibiotic therapy is widely used in

exacerbations of COPD, their utility in virally triggered

exacerbations is questionable.

Antiviral approaches appear to be a logical alternative to the

treatment of viral exacerbations of asthma and COPD, and

influenza vaccine is clearly effective in preventing exacer-

bations triggered by this virus. Vaccination approaches

have not been successful for respiratory syncytial virus,

however, and are not feasible for HRV, given the large

number of viral serotypes. Antiviral agents are available for

influenza, and neuraminidase inhibitors have proven

clinical efficacy in reducing the severity of symptoms

during influenza infections. By contrast, antiviral

approaches targeting HRV are still in development and

have not yet been applied to viral exacerbations of asthma

or COPD.

If the assumption that an over-exuberant host inflamma-

tory response to viral infection plays a key role in disease

exacerbation is valid, several potential therapeutic

approaches can be suggested. The first would be to

identify specific viral signaling pathways that would be

targets for intervention. These could include, for

example, specific early signaling pathways involving

the spleen tyrosine kinase Syk, or pathways triggered

by viral interactions with the intracellular RNA helicases.

Although targeting specific chemokines or chemokine

receptors, such as CXCR3 or CXCR1/2, might also prove

an attractive target, it remains to be determined which

chemokine/chemokine-receptor systems are particularly

important in disease pathogenesis. Finally, enhancement

of endogenous host antiviral pathways, or topical admin-

istration of drugs such as nitric oxide donors, could

provide alternative approaches to reduce virally induced

inflammation.

Conclusions
There is an urgent need for additional therapeutic

approaches to combat viral exacerbations of asthma and

COPD. Although the past few years have seen a signifi-

cant increase in our understanding of how viruses cause

exacerbations, much remains to be learned. The complex

signalling pathways triggered upon viral infection are not

completely understood but, once delineated, could pro-

vide novel therapeutic targets. In addition, better under-

standing of host innate antiviral mechanisms could

provide an alternative therapeutic approach if such path-

ways can be stimulated.
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