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The treatment of hypertension and heart failure remains a major challenge to healthcare
providers. Despite therapeutic advances, heart failure affects more than 26 million
people worldwide and is increasing in prevalence due to an ageing population. Similarly,
despite an improvement in blood pressure management, largely due to pharmacological
interventions, hypertension remains a silent killer. This is in part due to its ability to
contribute to heart failure. Development of novel therapies will likely be at the forefront
of future cardiovascular studies to address these unmet needs. Calcitonin gene-related
peptide (CGRP) is a 37 amino acid potent vasodilator with positive-ionotropic and -
chronotropic effects. It has been reported to have beneficial effects in hypertensive and
heart failure patients. Interestingly, changes in plasma CGRP concentration in patients
after myocardial infarction, heart failure, and in some forms of hypertension, also support
a role for CGRP on hemodynamic functions. Rodent studies have played an important
role thus far in delineating mechanisms involved in CGRP-induced cardioprotection.
However, due to the short plasma half-life of CGRP, these well documented beneficial
effects have often proven to be acute and transient. Recent development of longer
lasting CGRP agonists may therefore offer a practical solution to investigating CGRP
further in cardiovascular disease in vivo. Furthermore, pre-clinical murine studies have
hinted at the prospect of cardioprotective mechanisms of CGRP which is independent
of its hypotensive effect. Here, we discuss past and present evidence of vascular-
dependent and -independent processes by which CGRP could protect the vasculature
and myocardium against cardiovascular dysfunction.

Keywords: CGRP, cardiovascular, heart, mouse, nitric oxide, hypertension, heart failure

INTRODUCTION

The discovery of Calcitonin gene-related peptide (CGRP) mRNA in the rat hypothalamus by Amara
et al. (1982) sparked a series of studies exploring the effect of CGRP in the central and peripheral
systems, where it is widely distributed. The authors discovered that human CALCA gene, which
codes for the thyroid gland hormone calcitonin, can also produce CGRP via alternative splicing in
neural tissues. CGRP is a member of the calcitonin family of peptides, that include adrenomedullin,
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adrenomedullin 2/intermedin and amylin (Russell et al., 2014).
Soon after, it was found that CGRP has two structurally similar
isoforms – the α and β, which are encoded by two distinct genes
(Amara et al., 1985). Both isoforms are primarily located in
sensory C- and Aδ-fibers (Gibson et al., 1984), and it is generally
accepted that despite 94% sequence identity between the two
isoforms, β-CGRP synthesis and expression is concentrated
around the enteric nervous system, immune cells and pituitary
gland (Steenbergh et al., 1985; Brain and Grant, 2004) whereas
α-CGRP is primarily involved in the central and peripheral
nervous systems, and consequently, is the more extensively
studied isoform in cardiovascular studies. This review aims to
discuss past and present literature on CGRP in hypertension and
heart failure to stimulate thought on the future of CGRP and
cardiovascular research, with a particular focus on α-CGRP.

The current consensus is that, upon neuronal depolarization,
α- or β-CGRP is released from sensory neurons via calcium-
dependent exocytosis to bind to its receptor situated on the
plasma membrane of several cell types including, but not
limited to, smooth muscle cells (Argunhan et al., 2021),
endothelial cells (Gray and Marshall, 1992a) and cardiomyocytes
(Clark et al., 2021). The receptor complex is composed
of a seven domain G-protein coupled receptor (GPCR)
known as calcitonin receptor-like receptor (CRLR) and a
single transmembrane protein recognized as receptor activity
modifying protein-1 (RAMP1). RAMP1 is required for trafficking
of the receptor to the cell surface to form a heterodimer
with CRLR and mediate high-affinity binding to CGRP. Upon
activation of the CRLR/RAMP1 receptor, G-protein induced
signaling cascade is initiated, with Gαs-induced cyclic adenosine
monophosphate (cAMP) being the major secondary messenger
involved (McLatchie et al., 1998; Pioszak and Hay, 2020). The
CGRP family of receptors also comprise two other RAMP
proteins; RAMP2 and RAMP3. There is evidence that CGRP
may be able to signal via receptors including these components.
The receptors involved comprise the calcitonin receptor (CTR)
interacting with RAMP1, commonly called the amylin receptor
and CRLR interacting with RAMP2, the adrenomedullin receptor
(Hay et al., 2018). The selectivity of CGRP for receptors other
than CRLR/RAMP1 is under investigation.

Due to the CRLR/RAMP1 receptor complex being expressed
in the plasma membrane of smooth muscle cells and endothelial
cells, CGRP-induced vasodilation can manifest via two distinct
but related mechanisms. The CGRP ligand can bind directly to
the receptor complex in vascular smooth muscle cells to induce
PKA-mediated smooth muscle relaxation, or it can interact with
its receptor complex in endothelial cells to induce endothelial-
dependent relaxation via nitric oxide signaling (Crossman et al.,
1990; Gray and Marshall, 1992b). In vascular smooth muscle
cells, CGRP-induced PKA phosphorylation leads to: reduced
intracellular Ca2+ concentration; reduced binding affinity of
myosin light chain kinase (MLCK) to Ca2+-calmodulin complex;
and activation of ion channels such as ATP-sensitive potassium
channels (KATP). All of these contribute to smooth muscle
cell relaxation, and thus vasodilation (Brain and Grant, 2004;
Figure 1A). In endothelial cells, PKA phosphorylation of eNOS
results in NO generation, which is known to diffuse into

neighboring vascular smooth muscles and mediate smooth
muscle cell relaxation via guanyl cyclase and protein kinase
G (PKG) signaling induction pathways (Russell et al., 2014;
Figure 1A). Additionally, there is some evidence for PKC-
mediated responses post-CGRP receptor activation (Walker
et al., 2010) but the cAMP response is the most established and
understood signaling pathway to date. However, it is important
to acknowledge the body of in vitro evidence suggesting that
the CGRP receptor can couple with other G proteins (Weston
et al., 2016). It is also noteworthy that, in addition to its canonical
receptor, CGRP has been shown to interact with other receptors
from the CGRP family of peptides, albeit with lower affinity
(Hay et al., 2018). Recently, the structure and dynamics of the
canonical CGRP receptor has been investigated using single-
particle cryo-EM (Liang et al., 2018; Josephs et al., 2021), and
agonist bias studies have revealed physiological consequences
for the CRLR-RAMP1 complex in different cell types (Clark
et al., 2021). Thus, this is an area of much interest that is
continually evolving, with RAMP proteins being the subject
of investigation.

CALCITONIN GENE-RELATED PEPTIDE
AND VASCULAR TONE – SMALL BUT
MIGHTY

Fisher et al. (1983) were the first to demonstrate the hypotensive
effects of systemically administered CGRP in rats, whereas
Brain et al. (1985, 1986) showed that intradermal injection
of CGRP at femtomole doses induces arteriole dilation, thus
increasing blood flow locally in animal and human skin.
These studies and others indicated that CGRP is a potent
vasodilator, leading researchers to further explore its beneficial
potential within the cardiovascular system. As a microvascular
vasodilator, the potency of CGRP is approximately 10-fold
higher than prostaglandins, up to 100 times greater than other
well-established vasodilators such as acetylcholine, thus making
CGRP the most potent peripheral vasodilator discovered to date
(Russell et al., 2014).

Gennari and Fischer (1985) were first to determine the
cardiovascular actions of CGRP on hemodynamic parameters in
healthy humans. In addition to CGRP’s intrinsic ability to cause
vasodilation and consequently hypotension, the authors revealed
that CGRP possesses positive chronotropic and inotropic
activities. CGRP was reported to increase the force of contractility
by stimulating the sympathetic nervous system, which was
further supported by Gennari et al. (1990) when patients with
congestive heart failure (CHF) demonstrated improved cardiac
contractility after receiving β-CGRP infusion for 24 h (12.5 ug/h).
Ex vivo experiments reinforce these findings, although the
mechanism behind the positive inotropic effect is still to be fully
elucidated. Franco-Cereceda et al. (1987) were the first to report
the effect of CGRP treatment in isolated human auricles, and
interestingly, the authors found both α- and β- isoforms of CGRP
to be equally potent in affecting positive inotropy.

Similarly, Struthers et al. (1986) infused hCGRP into healthy
patients (545 pmol/min), which, as expected, caused a significant
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FIGURE 1 | Proposed cardioprotective mechanisms of CGRP in the (A) vasculature and (B) myocardium. (A) In the vasculature, CGRP circulating in the blood or
released from sensory neurons can bind on to its canonical receptor, the CRLR-RAMP1 complex, expressed in the plasma membrane of vascular smooth muscle
and endothelial cells to initiate Gαs-protein signal transduction and subsequently cause relaxation of smooth muscle cells via nitric oxide (NO)-dependent and
-independent mechanisms thus leading to vasodilation. (B) In cardiac tissues, there is evidence for CGRP-stimulated modulation of sympathetic outflow and
expression of the CRLR-RAMP1 complex on cardiomyocytes. Hence, CGRP has the potential to induce Gαs-protein signaling from sensory and sympathetic nerves
leading to increased cardiac contractility, thus positive inotropy and chronotropy. AC, adenyl cyclase; cAMP, cyclic adenosine monophosphate; cGMP, cyclic
guanosine monophosphate; eNOS, endothelial nitric oxide synthase; GTP, guanosine triphosphate; KATP, ATP-sensitive potassium channels; LTCC, L-type calcium
channel; NO, nitric oxide; P, phosphate; PKA, protein kinase A; RyR, ryanodine receptor; sGC, soluble guanylate cyclase. [Images were obtained from
smart.servier.com under a Creative Commons Attribution 3.0 Unported License].

decrease in diastolic pressure accompanied with an increase in
heart rate. The authors suggested a potential role for CGRP in
modulating vascular tone in humans, and this was supported

by findings from Girgis et al. (1985) demonstrating that CGRP
concentration is fivefold higher than calcitonin. Given that it
is widely expressed in the human body, these results raised
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the possibility that CGRP is a critical physiological regulator of
vascular tone and hemodynamics.

Collectively, these studies laid the foundation for elucidating
the biological actions of CGRP, which recently reached fruition
in the field of migraine research where CGRP blockers are now
used therapeutically (Edvinsson et al., 2018; Kee et al., 2018).
Generally, the use of migraine blockers have not been associated
with significant cardiovascular effects, indicating that CGRP does
not play a major role in cardiovascular regulation in individuals
with normal blood pressure (Bigal et al., 2015). Separately,
there has been increasing research into elucidating the role of
CGRP and of exogenous CGRP, in the cardiovascular system.
However, the potential biological importance and underlying
mechanisms, particularly with respect to heart failure, will be
discussed in later sections.

CALCITONIN GENE-RELATED PEPTIDE
IN HYPERTENSION –
VASCULAR-DEPENDENT EFFECTS

Shekhar et al. (1991) was one of the first to demonstrate the
cardiovascular effects of prolonged CGRP infusion (8 ng/kg/min
for 8 h) in CHF patients. In agreement with others, they reported
significant decreases in cardiac and arterial pressures, as well
as in pulmonary and systemic vascular resistance, and increases
in cardiac output and stroke volume. Accordingly, the reported
hemodynamic changes were absent 30 min after discontinuation
of CGRP infusion, consistent with the short half-life of CGRP
(approximately 7–30 min) (Kraenzlin et al., 1985).

Concomitantly, preclinical data from rodents have facilitated
human studies. Research in the 1990s focusing on the role
of CGRP in blood pressure control was dominated by
preclinical hypertension studies carried out in rats that were
spontaneously hypertensive (SHR), treated with hypertensive
agents, or hypertensive due to surgical intervention. These
studies and others reported in vivo evidence that CGRP can
protect against hypertension and the vasoconstrictor effects of
hypertensive agents including angiotensin-II (AngII) (Itabashi
et al., 1988; Fujioka et al., 1991), noradrenaline (Fujioka
et al., 1991), deoxycorticosterone-salt (Supowit et al., 1997;
Supowit et al., 2005), and the nitric oxide synthase (NOS)
inhibitor L-NAME (Gardiner et al., 1991; Gangula et al.,
1997), making progress toward understanding the mechanism
of action of CGRP (Kumar et al., 2019a). Kawasaki et al.
(1990) found that reduced CGRP-containing nerves in SHRs
contribute to the development and maintenance of hypertension,
further supporting a protective role for CGRP in hypertension.
Furthermore, ex vivo experiments, particularly in isolated arterial
and mesenteric resistance vessels, have complemented the
in vivo data to-date (Nelson et al., 1990; Kawasaki et al., 1998;
Kawasaki et al., 1999).

It has been difficult to study α-CGRP in vivo due to its
peptide nature, therefore the use of genetically engineered mice
has been fitting. Genetic deletion of CGRP has been reported
to cause elevated baseline blood pressure in some (Gangula
et al., 2000; Oh-hashi et al., 2001; Li et al., 2004; Mai et al., 2014)

but not all studies (Smillie et al., 2014; Argunhan et al., 2021).
This is likely due to differences in methodology, such as
differences in the precise genetic deletion site when generating
knockout (KO) mouse lines, particular strains preserving unique
hemodynamic phenotypes, and the utilization of various different
blood pressure measurement techniques. Most importantly, most
preclinical hypertension studies conclude that genetic deletion of
CGRP is detrimental, if not in a naïve state, then evidently in a
stressed or hypertensive setting. This indicates that endogenous
CGRP may only be functionally active in cardiovascular
dysfunction. CGRP blockers (antibodies and now CGRP receptor
antagonists) have been studied in humans with migraine over
several years now (Al-Hassany and Van Den Brink, 2020). The
majority of findings from recent clinical trials report little or no
change in blood pressure from migraine patients who received
anti-CGRP therapy. Additionally, very few cardiovascular side-
effects have been observed in migraine patients taking CGRP
blockers (Tepper, 2019). Thus, it is not yet known whether CGRP
has a functionally important cardiovascular role in humans, apart
from the neurogenic vasodilator response observed typically
in patients with migraine (Tepper, 2019). However, due to
CGRP being widely expressed and the increasing evidence for
a cardioprotective role, there are concerns regarding long-
term blockade of CGRP in migraine patients who may also
suffer from cardiovascular complications (Rubio-Beltran and
Maassen van den Brink, 2019). The observation of cardiovascular
adverse effects with CGRP blockers in migraine has not been
commonly observed. However, a recent study conducted a
retrospective analysis of cases reporting a CGRP receptor
antagonist (erenumab) associated with elevated blood pressure
(BP) (Saely et al., 2021). The authors identified 61 cases of
elevated BP between May 2018 and April 2020, of which the
median systolic BP increase was 39 mm Hg. Interestingly,
44% of reported cases required anti-hypertensive medication
and the elevated BP occurred most frequently within a week
of commencing erenumab treatment. Most importantly, the
prescribing information for erenumab/Aimovig now includes
hypertension. This further supports the need to continue
monitoring cardiovascular parameters in those receiving anti-
CGRP therapy for migraine, in addition to continuing research
within the CGRP and cardiovascular field (Saely et al., 2021).

Much like CGRP KO mice, RAMP1 KO mice develop
high blood pressure (Tsujikawa et al., 2007) and knock-in or
overexpression of human RAMP1 in all (Sabharwal et al., 2010)
or solely neural tissues (Sabharwal et al., 2019) potentiates
CGRP-dependent blood pressure reduction in AngII-induced
hypertension. Additionally, in the periphery, in tissues such as
skin, it is clear that CGRP is a potent vasodilator and is well placed
to play a regulatory role, for example in the recovery of blood flow
in the cold-induced vascular response (Aubdool et al., 2014), a
response that diminishes as aging occurs (Thapa et al., 2021).

Our research group has reported that, despite a lack of
vascular tone modulation at baseline, α-CGRP-specific KO mice
display elevated blood pressure after AngII or L-NAME treatment
(Smillie et al., 2014; Argunhan et al., 2021). α-CGRP KO mice
present with hypertrophic vascular remodeling in their aortic
tissues and increased mRNA levels of inflammatory and oxidative
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stress markers after 14 or 28 days of AngII treatment (Smillie
et al., 2014). These results indicate a protective role for CGRP
in AngII-induced pathophysiology, where the benefits are not
limited to one system, but instead multiple processes in order to
attenuate the pathophysiological changes induced by AngII.

Intriguingly, Smillie et al. (2014) also showed that AngII-
treated α-CGRP KO mice display a significant reduction
in protein and mRNA expression of endothelial nitric oxide
synthase (eNOS). These findings probed us to investigate whether
α-CGRP can protect against hypertension independently of
eNOS in vivo. The decreased production of NO in pathological
states disrupts the endothelial equilibrium thus leading to
endothelial dysfunction. CGRP receptors are expressed in the
plasma membrane of both endothelial and vascular smooth
muscle cells, hence have the capacity to induce vasodilation via
NO-dependent and -independent pathways. However, there
is very limited evidence of this in vivo. We demonstrated that
α-CGRP KO mice develop exacerbated hypertension and present
with dysfunctional blood flow recovery in mesenteric vessels
in vivo after chronic L-NAME administration (Argunhan et al.,
2021) indicating that α-CGRP can induce vasodilation and
hence attenuate hypertension independently of NOS. These
findings suggest that α-CGRP may be able to offer protection
to compensate for pathophysiological processes such as
endothelial dysfunction, which contributes to hypertension and
cardiovascular disease. We also found that 2 weeks of α-CGRP
infusion (165 ug/kg/day) via osmotic minipumps was able to
reverse L-NAME-induced hypertension, left ventricular heart
weight gain, and associated increases in mRNA expression of
hypertrophic markers in α-CGRP KO mice, providing evidence
for the antihypertrophic effects of CGRP. Conversely, this means
that the nitric oxide vasodilator pathway theoretically could
compensate, in terms of vasodilation, when CGRP is inhibited.

Antihypertrophic effects of CGRP have also been investigated
recently by Skaria et al. (2019). The authors examined
whether endogenous, physical activity-induced α-CGRP has
blood pressure-independent cardioprotective effects in mice
which had 1 kidney 1 clip (1k1c) surgery and hence developed
chronic hypertension. The authors claimed that exercise
has cardioprotective effects in chronic hypertension, which
is mediated at least partially through endogenous α-CGRP
signaling. They demonstrated αCGRP concentration in plasma is
significantly elevated after 7 min of running in hypertensive mice
and showed that chronic exogenous CGRP infusion via osmotic
minipumps can alleviate hypertension-induced hypertrophy and
cardiac dysfunction by suppressing pathological cardiac growth
and interstitial fibrosis. Importantly, CGRP was infused at a sub-
pressor dose (4 nM/h), suggesting that CGRP administration
can help to preserve cardiac function in chronic hypertension
independent of its blood pressure lowering effect.

LONG-LASTING AGONIST OF
CALCITONIN GENE-RELATED PEPTIDE

While the protective effects of CGRP discussed thus far are
detailed and mostly consistent between research groups, they

do not constitute a complete record of documented studies
demonstrating a cardioprotective role of CGRP. It is apparent
that the beneficial effects of CGRP have been limited due to its
short peptide half-life. Our group was fortunate to investigate the
therapeutic potential of a longer lasting CGRP agonist in AngII-
induced hypertension and mice that underwent abdominal
aortic constriction surgery, which eventually caused heart failure
via increased pressure-overload on the heart (Aubdool et al.,
2017). The acylated α-CGRP analog had been characterized
by Nilsson et al. (2016) and has a half-life of >7 h in
rodents. Our group demonstrated that daily administration
of the CGRP analog [50 nmol/kg/day, subcutaneous injection
(s.c.)] for 2 weeks in AngII-treated mice led to significant
attenuation of AngII-induced hypertension and protected against
vascular, renal and cardiac dysfunction. α-CGRP analog-treated
mice presented with attenuated hypertrophic and fibrotic
markers as well as reduced inflammation and oxidative stress.
Furthermore, the α-CGRP analog was effective in preserving
ejection fraction, a measure of cardiac function, and protecting
against fibrosis and apoptosis in cardiac tissues of mice that
had undergone abdominal aortic constriction surgery and
consequently developed heart failure. Moreover, α-CGRP-treated
mice presented with better vascularization in their hearts and
expressed reduced mRNA and protein expression of biomarkers
for hypertrophy, apoptosis, oxidative stress and inflammation.
These findings agree with other in vivo heart failure studies
(Li et al., 2013; Kumar et al., 2019b; Kumar et al., 2020).
In vitro experiments have demonstrated similar findings in
different cell types. CGRP administration has been shown
to: stimulate proliferation of endothelial cells (Haegerstrand
et al., 1990), supporting CGRP’s proangiogenic effects in vivo;
reduce vascular smooth muscle cell proliferation (Li et al.,
1997) and thus vascular hypertrophy; and show antioxidant and
antiapoptotic effects in dorsal root ganglion (DRG) neurons
(Liu et al., 2019).

However, data from the Aubdool et al. (2017) study suggests
these protective effects of CGRP can be long lasting using a novel
α-CGRP agonist with an extended half-life. The CGRP agonist
can delay the onset and development of hypertension through
cardioprotective mechanisms in addition to ameliorating
pressure overload-induced heart failure. Interestingly, mice
with heart failure that had received the α-CGRP analog
or its vehicle presented with comparable blood pressures,
indicating that the cardioprotective mechanisms involved are
likely to be blood pressure-independent. Furthermore, the
same analog has recently been administered to rats that have
undergone permanent occlusion of their left coronary artery
to investigate coronary perfusion in myocardial infarction.
Three injections of the CGRP analog, SAX, at 20 min, 24
and 48 h after coronary ligation, was sufficient to improve
myocardial perfusion recovery in rats, indicative of myocardium
protection after ischemic damage (Bentsen et al., 2021). An
earlier study by Kallner et al. (1998) reported CGRP-mediated
improvement in post-ischemic coronary flow early after MI,
but whether treatment with the long lasting agonist will
increase cardioprotective effects in the long term is still to
be investigated.
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CALCITONIN GENE-RELATED PEPTIDE
IN THE MYOCARDIUM –
VASCULAR-INDEPENDENT EFFECTS

The heart is densely innervated by nerve fibers comprised of:
the sympathetic trunk, which starts from the base of the skull;
parasympathetic nerves, including the right and left vagus nerves;
cervical cardiac nerves, which run parallel to the vagus nerves;
and the cardiac plexus at the base of the heart. α-CGRP producing
sensory nerves have been reported within the perivascular
layer of coronary arteries, in the myocardium of ventricles,
and within the cardiac conduction system (Gulbenkian et al.,
1993). In addition to this, CGRP immunoreactivity has been
associated with; myocytes from atria, coronary vessels, local
parasympathetic ganglia and with epi-and endocardia (Franco-
Cereceda et al., 1987). Therefore, it is likely that CGRP signaling
manifests within cardiac cells, in addition to cardiac vessels,
and that the sensory, parasympathetic and sympathetic nerves
are involved in facilitating CGRP-induced signaling within, and
surrounding, the myocardium.

Several in vivo studies of hypertension and heart failure have
reported an upregulation of RAMP1 and/or CGRP expression in
pathological conditions (Supowit et al., 1995; Li and Wang, 2005;
Aubdool et al., 2017; Argunhan et al., 2021). In addition to this,
Franco-Cereceda and Liska (2000) have previously reported the
presence of a subpopulation of capsaicin-sensitive cardiac C-fiber
afferents that store CGRP, substance P and neurokinin A. The
C-fibers are likely to express transient receptor potential vanilloid
1 (TRPV1) channel, which upon stimulation by capsaicin lead
to CGRP release (Franco-Cereceda, 1991). This finding of local
efferent release of CGRP in the heart is consistent with the
presence of capsaicin-sensitive receptors on the epicardial surface
of rat hearts (Zahner et al., 2003). More recently, Moreira et al.
(2020) reported elevated CGRP levels in human atrial tissue
lysates and atrial cardiomyocytes obtained from patients with
atrial fibrillation, in agreement with Franco-Cereceda et al. (1987)
who found between threefold and fourfold higher levels of CGRP-
like immunoreactivity in atria compared to ventricles. These
studies describe and support a structural basis for CGRP signaling
within cardiac tissues.

Furthermore, coinciding with its interactions in vascular
smooth muscle and endothelial cells, CGRP has similarly
been demonstrated to bind to its canonical receptor complex
and activate Gαs-signaling in cardiomyocytes (Huang et al.,
1999; Sueur et al., 2005; Schavinski et al., 2021). It is well
established that an increase in cAMP concentration followed
by PKA activation leads to phosphorylation of key Ca2+-
handling proteins including phospholamban, ryanodine receptor,
voltage-gated L-type Ca2+ channels, troponin I, and myosin
binding protein C; all which play an essential role in cardiac
excitability and contraction (Zaccolo, 2009). Earlier studies have
reported that activation of the CRLR/RAMP1 complex leads
to stimulation of a contractile response in adult rat ventricular
cardiomyocytes (Bell and McDermott, 1994; Bell et al., 1995).
However, unlike the vascular-dependent effects of CGRP, the
precise mechanism of action of CGRP in cardiomyocytes remains
to be fully elucidated.

Interestingly, a recent study investigating GPCR agonist bias
in CGRP and CGRP-like family peptides demonstrated that, in
human ventricular cardiomyocytes, CGRP is more potent than
adrenomedullin and adrenomedullin 2/intermedin in generating
cAMP (Clark et al., 2021). Acute cAMP elevation is known to
compensate for impaired cardiac function by modulating the
positive-inotropic, -chronotropic and -lusitropic responses in the
heart. Thus, in addition to its vascular dependent actions, it
is tempting to speculate that CGRP-induced positive-inotropy
and -chronotropy observed in earlier human studies could
be a consequence of vascular-independent actions via direct
interaction with cardiomyocytes. Chronic cAMP activation,
however, has been associated with adverse cardiac remodeling
(Triposkiadis et al., 2009). Importantly, cAMP is a pleiotropic
secondary messenger and thus able to produce several biological
outcomes in response to different stimuli. Moreover, locally
accumulated cAMP has been shown to ameliorate cardiac
hypertrophy via cAMP-degrading enzyme phosphodiesterase-
2 (PDE2; Zoccarato et al., 2015). The regulation and function
of local cAMP-PKA signaling remains to be fully understood,
and compartmentalized cAMP-PKA has been suggested to
play a key role in cardiac physiology and pathophysiology
(Surdo et al., 2017).

Coupling of the CRLR-RAMP1 complex to Gαs can lead
to other responses such as phosphorylation of ERK1/2 or cell
proliferation; a response which has been suggested to be cell type
dependent (Clark et al., 2021). Interestingly, the CGRP family
of receptors, including CRLR/RAMP1, can couple to Gαi and
Gαq subunits too, although there is little evidence of this in
cardiomyocytes (Nishikimi et al., 1998; Walker et al., 2010). These
findings further support the need to investigate CGRP-signaling
in cardiomyocytes and fibroblasts in vitro, which may help to
clarify the mechanism of action behind the cardioprotective
effects of CGRP reported in whole body physiology studies (Li
et al., 2013; Aubdool et al., 2017; Kumar et al., 2019b; Skaria et al.,
2019; Kumar et al., 2020; Argunhan et al., 2021), especially in
studies that have shown blood pressure independent effects of
CGRP (Aubdool et al., 2017; Skaria et al., 2019).

In addition to its direct effect on cardiomyocytes, CGRP
has also been shown to modulate sympathetic nervous activity
(Figure 1B). Activation of β-adrenoceptors via increased
sympathetic nervous activity leads to Gαs-signaling-induced
cardiac contractility. Earlier studies suggest that CGRP-induced
positive inotropic effects may be, at least partially, due to
increased sympathetic activity (Fisher et al., 1983; Gennari
and Fischer, 1985; Struthers et al., 1986; Katori et al., 2005).
On the other hand, Kawasaki (2002) reported that exogenous
CGRP treatment can impair noradrenergic-induced constriction
in rat mesenteric vessels. Thus, it is thought the activation
or increased sympathetic activity reported in some studies is
part of a compensatory reflex system to combat CGRP-induced
hypotension. Considering that exogenous administration of
CGRP primarily lowers blood pressure, its ability to stimulate the
sympathetic nervous system is likely to be minimal and secondary
to its primary action of inducing vasodilation. Evidence suggests
that stimulation of the sympathetic nervous system may be one
of the mechanisms CGRP is able to stimulate in situations where
inotropic support is necessary (Figure 1B).
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It is unclear whether the aforementioned inotropic effects
of CGRP are solely a consequence CGRP directly binding
to its receptor complex found on myocardial cells (Bell and
McDermott, 1994), modulation of the sympathetic nervous
system, or an as yet unknown mechanism. A combination
of these pathways is likely, with the choice dependent on the
pathophysiological setting. It is important to acknowledge
that selective and non-selective β-blockers, which target
β-adrenoreceptors, constitute well-established therapeutics for
cardiovascular diseases such as hypertension, coronary artery
disease and severe tachycardia. They decrease contractility, thus
reducing cardiac output and oxygen demand (Chatterjee et al.,
2013; McDonagh et al., 2021), and are therefore part of the
evidence-based long-term management of heart failure with
reduced ejection fraction (HFrEF). β-blockers are, however,
concurrently used with ACE inhibitors, and in many cases, an
aldosterone inhibitor or diuretic, to off-set other symptoms
of heart failure. Despite being generally well tolerated and
recommended as pharmacological therapeutics for heart failure
patients who require long-term management of their medical
symptoms, there remains an unmet therapeutic need for better
management of HF pathophysiology.

Contrary to the above, increasing inotropy can also be of
benefit in heart failure patients (Page et al., 2016). However,
this is specifically for those who require inotropic- or short-
term hemodynamic support due to suffering with decompensated
HFrEF, presenting with low cardiac output and hypotension
or evidence of end-organ hypoperfusion (McDonagh et al.,
2021). Sympathetic cardiac stimulants such as dopamine and
dobutamine are therefore still recommended for use in such
cases (Bistola et al., 2019) and vasodilator therapeutics are
also first-line agents for acute HF with elevated blood pressure
(McDonagh et al., 2021). Human studies suggest that CGRP
administration is protective in patients who require short-
term inotropic support, whilst long-term pre-clinical studies
indicate CGRP can improve cardiovascular function parameters
in pressure-overload-induced heart failure.

However, whether a sub-pressor dose of CGRP can protect
against the development and progression of hypertension and
heart failure needs to be investigated further. If CGRP can indeed
protect against cardiovascular disease without lowering blood
pressure, this answers one query but raises further questions
regarding its mechanism of action. Vasodilators are known to
primarily reduce total peripheral resistance via vasodilation in
blood vessels, thus lowering blood pressure. This in turn acutely
enhances sympathetic stimulation due to the baroreceptor reflex,
hence increasing heart rate and cardiac contractility (positive-
chronotropy and -inotropy) in the short-term. The dilation of
venous and arterial vessels also leads to a reduction in venous
return to the heart (pre-load), which reduces congestion and
after-load, therefore increasing stroke volume, cardiac output
and subsequent relief of symptoms. It is for these reasons that
vasodilators such as nitrates or nitroprusside are recommended
for management of acute heart failure (AHF) in patients
with elevated blood pressure (McDonagh et al., 2021). If a
dilator such as CGRP does not affect blood pressure but is
able to improve cardiac function, this adds complexity to

our understanding of how vasodilators can modulate cardiac
function. The recent data from Aubdool et al. (2017) and Skaria
et al. (2019) suggests that CGRP can regulate cardiac function
independently of blood pressure, thus via vascular-dependent
and -independent pathways.

Collectively, these studies propose vascular-independent
mechanisms for CGRP in cardiac tissues and may be the primary
mechanism by which CGRP elicits protection in the absence
of vascular tone changes. There is evidence supporting that
CGRP can act locally on cardiomyocytes to elicit some of its
cardioprotective actions, and future studies should aim to clarify
the precise mechanism(s) involved in cardiac pathophysiology.

DISCUSSION

A wide spectrum of in vitro, ex vivo, in vivo and human studies
have highlighted the therapeutic potential of CGRP in various
pathophysiological conditions within the cardiovascular system.
Genetic tools such as transgenic mouse lines combined with
pharmacological agents including CGRP peptide administration
systems and delivery of selective receptor antagonists, means
that researchers are well-equipped to investigate the effects
of reduced, enhanced and lack of CGRP signaling in whole
body pathophysiology studies. More recently, anti-CGRP
therapies for treatment of migraine have proven to be
successful with generally minimal adverse effects reported.
Additional follow-up clinical trials will be welcomed by
all to clarify whether long-term CGRP blockade leads to
hypertension-related side effects. Meanwhile, long lasting
agonists have emerged as a promising avenue for CGRP-
therapy in cardiovascular disease, which will facilitate research
into the intrinsic proliferative and angiogenic characteristics
of CGRP, in addition to its anti-inflammatory and anti-
apoptotic effects reported in vivo. Future studies should aim
to investigate the blood pressure-independent cardioprotective
mechanisms of CGRP treatment in PO-induced heart failure,
and whether treatment with the long-lasting agonist could
improve outcome after ischemic heart failure. Collectively, these
findings further demonstrate the importance of continuing
CGRP research to fully elucidate the physiological influence
of CGRP in the cardiovascular system, as well as in migraine
pathophysiology.
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