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Abstract: Endocrine and metabolic disorders are a common condition in Europe and worldwide, and,
among these, thyroid dysfunction still remains a problem. The measurement of thyroid stimulating
hormone (TSH) levels represents the first-line assay for the assessment of thyroid function. In the
present study, we compared serum concentrations of TSH, measured using a commercially available
point-of-care test (POCT) method (FastPack® IP) and an established “conventional” laboratory-
based method (Beckmann Access 2) in a cohort of patients from Foggia in Southern Italy. A strong
correlation (r = 0.994) was found between both methods and was also confirmed by receiver oper-
ating characteristic (ROC) curve analysis (0.82). The within-run coefficient of variation (CV) using
FastPack® ranged from 4.03% and 8.57% at the TSH concentrations of 39.49 and 0.70 mIU/L, re-
spectively. The between-run CV was 10.34% and 6.33% at the TSH concentrations of 0.87 and
26.55 mIU/L, respectively. The ratios of within- to between-assay CV were 0.83 and 1.06 at the TSH
levels of 0.70 and 52.59 mIU/mL, respectively. In this study, we showed that serum TSH levels can
be measured in a few minutes and at low-cost in terms of materials and equipment required. We
observed that this approach is user-friendly, accurate, reproducible, and suitable for use in the clinic,
while also meeting the criteria for effectiveness, impact, efficiency, and sustainability.

Keywords: endocrine and metabolic disorders; thyroid stimulating hormone; point-of-care test

1. Introduction

Endocrine and metabolic disorders are a common condition in Europe and world-
wide [1–3]. They result in a costly use of health resources and a loss of productivity [4–7].
The prevalence and incidence of certain diseases such as thyroid disorders [8,9], diabetes [3],
obesity [10], hyperparathyroidism [11], osteoporosis [12], and vitamin D deficiency [13]
have been defined in several screening programs and population-based studies. Iodine
deficiency, defined as a daily iodine intake inferior to 50–100 µg, is the most common
cause of thyroid disorders and triggers the growth of the thyroid gland, leading to goiter
and thyroid nodule formation and, if untreated, hypothyroidism [14]. The prevalence
of goiter in iodine-deficient areas can be as high as 70–90% [15–18]. Iodine is essential
for brain development during fetal life and the neonatal period [19]. The most serious
complication of congenital iodine deficiency is endemic cretinism, characterized by severe
mental retardation, neurological symptoms, and/or hypothyroidism [19]. In addition,
iodine deficiency negatively affects quality of life and economic productivity [20].
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In the last decades, iodine prophylaxis programs, which are based on salt or water
iodization and implemented by the World Health Organization and in Italy (Law No.
55/2005), have not only decreased the prevalence of iodine deficiency disorders but have
also caused major changes in the steady pattern of thyroid disorders; these are character-
ized by an increased prevalence of autoimmune thyroid disease, ranging from atrophic
to goitrous Hashimoto’s thyroiditis, Graves’ hyperthyroidism, non-autoimmune hyper-
thyroidism, and autonomous thyroid nodules [9,20–22]. Thus, thyroid dysfunction still
remains a problem. Moreover, high resolution ultrasound allows the assessment of thy-
roid size and morphology as well as the detection of small and non-palpable thyroid
nodules, allowing subjects suffering from thyroid problems to be diagnosed by primary
care physicians.

Point-of-Care Tests (POCTs) are generally utilized outside the laboratories to directly
evaluate a number of clinical parameters. These diagnostic tools affect the quality and
rapidity of care and allow the design of a patient-centered care approach [23,24].

Unlike other laboratory tests, whose results can take several hours to a few days to
become available, POCTs reduce analysis time to a few seconds or minutes, being helpful
especially in emergency conditions.

In the last 15 years, some POCTs for thyroid stimulating hormone (TSH) measurement
have been developed and proposed [25–29], suggesting the need to compare these tools to
standard laboratory approaches. In the present study, we aimed to firstly compare serum
concentrations of TSH, measured by means of a commercially available POCT method
(FastPack® IP System, Qualigen Therapeutics, Inc., Carlsbad, CA, USA) and an established
“conventional” laboratory-based method in a cohort of patients and, secondly, to assess
the convenience of carrying out the POCT analysis instead of the laboratory-based one, in
terms of patience compliance.

2. Materials and Methods
2.1. Study Design

All subjects provided a written informed consent and completed a questionnaire
concerning their compliance with the point-of-care test POCT FastPack® IP System and
the Access 2 Beckman Coulter method to participate in this interventional, single-center,
open-label study. Inclusion criteria were age > 18 years and stable disease or healthy status.
Exclusion criteria were any acute or chronic condition that would limit the ability to partic-
ipate in the study, pregnancy, breastfeeding state, or refusal to provide written informed
consent. The study was conducted in accordance with the ethical principles for medical
research involving human subjects, as set forth in the World Medical Association Helsinki
Declaration of October 2013. The study was approved by the local Ethics Committee at
Foggia (Italy) (Reference Number 26/SegCE/2020 of 27 April 2020). Once accepted to
participate in the study, each patient underwent a single blood withdrawal at the central
laboratory (Biometron, Apricena, Italy) to assess TSH values by means of FastPack® IP Sys-
tem compared to the ACCESS2 Beckman Coulter instrument. Unless otherwise indicated,
100 microliters of serum were utilized in both the FastPack® IP System and the Access
2 Beckman Coulter assay. The present study includes the following endpoints, biochemical
measurements, and quality control.

2.2. Biochemical Measurements

2.2.1. FastPack® IP TSH Immunoassay

The FastPack® IP TSH immunoassay is quantitative chemiluminescence assay based
on the “sandwich” principle. Briefly, a mixture of a biotinylated monoclonal TSH-specific
antibody and a monoclonal anti-TSH antibody labeled with alkaline phosphatase reacts
with TSH from a 100 µL sample. During a secondary incubation, streptavidin-coated
paramagnetic particles react with the TSH-antibody complex via the interaction between
biotin and streptavidin. After washing off the unbound material, a chemiluminogenic
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substrate is added and light is measured. The intensity of light produced is directly
proportional to the TSH concentration in the sample.

2.2.2. Beckman Access 2 TSH Immunoassay

The Access 2 TSH immunoassay is an immunoenzymatic sandwich assay. Briefly, a
mixture of a mouse anti-human TSH antibody labeled with alkaline phosphatase and a
mouse anti-human TSH monoclonal antibody adsorbed on paramagnetic particles reacts
with two different sites of TSH from a 100 µL sample. Following incubation, the chemi-
luminogenic substrate is added and light is measured. The intensity of light produced is
directly proportional to TSH concentration in the sample.

2.3. Instrument Description

The FastPack® IP System is a rapid immunoassay testing system including the
FastPack® IP immunoassay analyzer and the FastPack® IP test pouch [30]. The FastPack®

IP System performs a series of complex software-controlled operations ranging from read-
ing the bar code attached to the individual test pouch to the measurement of light produced
in the final reaction (Figure 1).
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2.4. Quality Control

In order to evaluate the reproducibility and stability of the FastPack® IP System assay,
we preliminarily implemented a quality control process. The quality control protocol,
determined according to the NCCLS EP6-A guideline [31,32], was based on (i) assessment
of the within- and between-assay variation; (ii) parallelism on the dilution test; and (iii) the
recovery test. For the assessment of the within-run precision, 10 replicates of sera coming
from 2 patients with high TSH, 1 patient with intermediate TSH, and a pool of sera from
3 patients with low TSH levels were sequentially run each in the same series and within
the same day.

The between-run repeatability was evaluated calculating the coefficient of variation of
14 replicates of two control samples, which were run on separate days. We also calculated
the ratio of within- to between-assay CV, which is considered an index of the temporal
stability of the system [32,33].

Accuracy was checked with dilution/parallelism and recovery tests at the same
time that precision was being evaluated. To perform a dilution study, patient’s serum
from a hypothyroid patient was serially diluted with TSH-free (TSH 0.001 mIU/L) serum
from a patient with active Graves’ disease. Dilutions, covering an interval from 36.87 to
0.97 mIU/mL, were selected so that they were falling in the range of TSH levels, which
guarantees a low statistical error as previously indicated by the within-run precision test.
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All samples were run in triplicate and in parallel on the FastPack® IP and on the
Beckman Access 2 systems, respectively. The observed values uncorrected for dilution
were plotted against the dilution or, alternatively, the final concentrations were multiplied
by the appropriate dilution factor and the results were plotted against dilution.

The recovery test is most often used in the clinical chemical literature. The objective of
a recovery study is to test whether a known increment of analyte added to a sample can be
measured quantitatively by the assay being examined. For the recovery test we previously
analyzed the TSH level both in base and spike samples alone, and then we measured it
in triplicate in a single-run patients’ serum opportunely mixed to obtain base plus spike
TSH levels covering a low, intermediate, and high TSH concentration range. Samples to
be measured were obtained by adding fifty microliters of spike sample to fifty microliters
of base sample to obtain TSH concentrations ranging from 1.09 to 41.2 mIU/L. Percent
recovery (R%) was calculated according to the formula: R% = (amount observed/amount
expected) × 100, where amount expected = amount in base + amount added.

2.5. Study Population

Sera to be tested for TSH were obtained from 72 patients and 28 control subjects
(32 males, 68 females, aged 19–90 years) coming to Biometron Laboratory (Apricena, Foggia,
Italy). The serum was separated from the cells by centrifugation (3000 RPM for 10 min),
and the serum was used for Beckman Access 2 and FastPack® IP analyses.

All 100 subjects participating in the study underwent a thorough medical examination
and thyroid ultrasound. All subjects were asked about their personal and family history of
thyroid and autoimmune disorders, eating and smoking habits, any past or current therapy
with special attention paid to L-T4 and any other drug that could affect thyroid function,
recent exposure to iodinated contrast media, and previous radiation treatment to the head,
neck, or chest.

Thyroid ultrasound was performed by a single operator using the SonoSite MicroMaxx
portable ultrasound system equipped with HFL38 [6–13 MHz] linear transducer (SonoSite,
Inc., Bothell, WA, USA). Thyroid volume was calculated according to the formula of the
ellipsoid model (length × width × thickness multiplied by the correction factor π/6) for
each lobe [34].

2.6. Questionnaire Data

All subjects were asked to complete an anonymous questionnaire concerning their
compliance with receiving the medical examination immediately after biochemical analyses
results (<15 min) achieved by means of FastPack® IP with respect to the 2-day response
time required by Beckman Access 2.

2.7. Statistical Analysis

Data were analyzed using GraphPad Prism 8 software (GraphPad Software, Inc., La
Jolla, CA, USA). To evaluate the normal distribution of patients’ age, TSH levels, and thy-
roid volumes, normality tests were preliminarily performed using the Anderson–Darling
test, the D’Agostino & Pearson test, the Shapiro–Wilk test, and the Kolmogorov–Smirnov
test. Continuous variables are presented as mean ± SD or median (25/75 percentile) and
compared using parametric or non-parametric tests, according to normality test results.
Categorical variables are expressed as percentages, and the differences were analyzed
using the chi-square (Fisher’s exact) test. The coefficient of variation (CV%) and relative
standard deviation (RSD%) were calculated according to the formula (SD/mean) × 100,
while accuracy was evaluated by means of the coefficient of correlation (coefficient of
determination (r2) and Bland–Altman methods). We also compared FastPack® IP and
Beckman Access 2 methods in terms of sensitivity and specificity by means of receiver
operating characteristic (ROC) curve and/or area under curve (AUC). * p < 0.05 was
considered significant.
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3. Results
3.1. Quality Control

The results of the within- and between-run reproducibility tests are shown in Table 1.

Table 1. TSH (mIU/mL) within- and between-run CV and relative standard deviation (RSD) of the
FastPack® IP TSH assay. (* Nominal values given by manufacturer.).

Within-Run Assay

Low–Normal
TSH Level

Intermediate
TSH Level High TSH Level High TSH Level

Samples N = 10 N = 10 N = 10 N = 10
Mean ± SD 0.70 ± 0.06 9.51 ± 0.71 39.49 ± 1.59 52.59 ± 3.53

CV (%) 8.57 7.47 4.03 6.71
RSD (%) 0.70 ± 8.57 9.51 ± 7.47 39.49 ± 4.03 52.59 ± 6.71

Between-Run Assay

Control Sample 1 Control Sample 2

Lot# 2001037 2001038
Mean * 0.89 23.80
Range * 0.39–1.40 15.8–31.8

Samples N = 14 N = 14
Mean ± SD 0.87 ± 0.09 26.55 ± 1.68

CV (%) 10.34 6.33
RSD (%) 0.87 ± 10.84 26.55 ± 6.33

The within-run CV ranged from 4.03% and 8.57% at the TSH concentrations of
39.49 and 0.70 mIU/L, respectively. The between-run CV was 10.34% and 6.33% at TSH
concentrations of 0.87 and 26.55 mIU/L, respectively. The ratios of within- to between-assay
CV were 0.83 and 1.06 at TSH levels of 0.70 and 52.59 mIU/mL, respectively. The experi-
mental results obtained from both within- and between-run assays were then evaluated
for the presence of possible outlier data. To do so, we decided to set the tolerance limit at
±2 SD (95% confidence limit) and plot the individual results to see if there were any values
outside the set limits. As shown in Figure 2, all data fell within the tolerance limit.
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3.2. Dilution/Parallelism Assay

The serum used for the dilution assay was serially diluted with a TSH-free serum
starting from a TSH level of 36.87 mUI/L to a final concentration of 1.07 mUI/L. When the
observed results were plotted against the dilution, or when TSH levels were multiplied
by the dilution factor, we observed a similar trend between the patient’s sample and the
reference sample (Figure 3A,B).
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3.3. Recovery Test

Percent recovery, as shown in Table 2, ranged from 89.0 to 102.0% at TSH concentra-
tions of 1.09 and 39.4 mIU/L, respectively. Table 1 also shows that all data were within
80 and 120%, which is considered the acceptance range for the recovery test [35].

Table 2. Recovery ability of FastPack® IP system at seven different TSH levels.

Sample TSH Added (mIU/L) TSH Recovered (mIU/L) Recovery (%)

#1 1.09 0.97 89.0
#2 3.26 3.07 94.2
#3 9.77 9.67 99.0
#4 21.1 20.4 96.7
#5 29.3 29.8 101.7
#6 39.4 40.2 102.0
#7 41.2 39.6 96.1

3.4. Comparison between FastPack® IP and Access 2 TSH Immunoassays

The initial aim of the study was to compare the FastPack® IP TSH immunoassay
with the established conventional laboratory-based Access 2 Beckman method. Thus, after
the encouraging results of preliminary quality control studies, we compared TSH levels
obtained with the two different laboratory methods. A strong correlation (r = 0.994) was
found between the two sets of data (Figure 4A,B).

1 

 

 

Figure 4. Schematic representation of (A) correlation and (B) Bland–Altman plot of TSH levels of
Access 2 vs. FastPack® IP.

At the same time, such correlation was also confirmed by the ROC curves (0.82 for
FastPack® IP and Access 2) as shown in Figure 5.
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3.5. Study Population

A total of 100 subjects agreed to participate in the study and were enrolled from
November 2020 to April 2021. The 100 subjects recruited for the study were divided into
groups based on physiological status or thyroid disease (Table 3).

Table 3. Baseline and clinical characteristics of subjects at the enrollment.

Patients’ Features Mean ± SD Median Range

Age (yr)
-All subjects (100) 52.2 ± 17.3 51.5 19–90
-Control subjects (25) 47.8 ± 18.3 44 19–79
-Hashimoto’s thyroiditis (45) 51.2 ± 16.7 51 21–86
-Graves’ disease (6) 48.3 ± 11.8 52.5 30–89
-Nodular non-toxic goiter (6) 56.2 ± 20.3 54 28–90
-Multinodular non-toxic goiter (15) 59.1 ± 16.9 52 23–89
-Papillary thyroid carcinoma (3) 69.3 ± 11.9 73 56–79

Sex (F/M) 68/32
Family history of thyroid disease (Y/N) 41/59
Smoker (Y/N) 22/78
Use of iodized salt (Y/N) 61/39
Radiation treatment to head, neck, or chest (Y/N) 0/100
Other autoimmune diseases (Y/N) 4/96

Thyroid volume (mL)
-All subjects (97) 16.6 ± 9.1 14.0 2.4–56.0
-Control subjects (25) 11.1 ± 3.1 11.4 5.8–16.2
-Hashimoto’s thyroiditis (45) 16.3 ± 7.0 14.1 2.4–35.2
-Graves’ disease (6) 15.9 ± 8.2 18.3 4.3–25.7
-Nodular non-toxic goiter (6) 15.5 ± 9.5 10.7 8.1–30.4
-Multinodular non-toxic goiter (15) 27.7 ± 12.4 24.8 9.9–56.0
-Papillary thyroid carcinoma (3) NA NA NA

TSH (mIU/L)
-All subjects (100) 3.00 ± 4.29 1.85 0.22–34.50
-Control subjects (25) 1.37 ± 0.81 1.20 0.42–4.20
-Hashimoto’s thyroiditis (45) 3.72 ± 3.00 2.80 0.52–34.50
-Graves’ disease (6) 2.16 ± 1.83 3.50 0.34–4.60
-Nodular non-toxic goiter (6) 1.05 ± 0.61 1.12 0.22–1.70
-Multinodular non-toxic goiter (15) 1.64 ± 1.13 1.60 0.30–4.60
-Papillary thyroid carcinoma (3) 1.80 ± 0.53 1.60 1.40–2.40

Previous steroid treatment for active Graves’ orbitopathy (Y/N) 0/6
TRAb-positive Graves’ patients (Y/N) 0/6
Recent exposure to iodinated contrast media (Y/N) 0/100
Methimazole-treated Graves’ patients (Y/N) 6/0
LT4-treated Hashimoto’s patients (Y/N) 17/28

Yr = years, F = female, M = male, Y = yes, N = no, TSH = thyroid stimulating hormone.
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Twenty-five did not have any disease and were used as controls. Forty-five patients
were suffering from Hashimoto’s thyroiditis (28 untreated, 17 on L-thyroxine replacement
therapy), 6 from Graves’ disease, 21 from nonautoimmune thyroid disease (including 6 from
uninodular and 15 multinodular nontoxic goiter), and 3 from papillary thyroid carcinoma.
Patients with overt hypothyroidism were treated with doses of L-T4 adequate to normalize
serum thyrotropin concentrations. Among patients with subclinical hypothyroidism, only
individuals with TSH levels > 10 mIU/L, thyroid-antibody positive, or antibody-negative
with symptoms related to hypothyroidism, were treated with replacement L-thyroxine
therapy. All patients with Graves’ disease were on methimazole as they refused radioiodine
therapy. Two Graves’ patients reported having previously received a steroid therapy for
active thyroid-associated orbitopathy. None was thyrotropin-receptor antibody positive at
inclusion. Six and 15 patients were suffering from uninodular and multinodular non-toxic
goiter, respectively. Fine needle aspiration (FNA) was advised to three of these patients. In
these subjects, clinical findings and the echographic pattern suggested possible absence of
malignancy. All three patients with a history of papillary thyroid carcinoma had undergone
thyroidectomy, prophylactic central neck lymph node dissection, and radioactive iodine
treatment and were currently being treated with replacement doses of L-thyroxine. When
TSH levels were analyzed within individual groups of patients, no significant difference
was found between the FastPack® IP and Access 2 Beckman TSH immunoassays.

3.6. Prevalence of Goiter

Frequency distribution of thyroid volumes for the study population is shown in
Figure 6.
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Thyroid volumes were not normally distributed (normality tests: Anderson–Darling
test, p < 0.0001; D’Agostino & Pearson test, **** p < 0.0001; Shapiro–Wilk test, **** p < 0.0001;
Kolmogorov–Smirnov test, **** p < 0.0001). The median volume value was 14.0 mL
(mean ± SD, 16.6 ± 9.1) (range 2.4–56.0) (Table 3).

The thyroid volume in control subjects was 11.1 ± 3.1 mL (mean ± SD) and 14.0 ± 1.8 mL
in males and 9.7 ± 2.6 mL in females (*** p < 0.001). Thus, goiter was diagnosed when thyroid
volume was more than 2 SD above the mean thyroid volume of sex-matched control subjects
(i.e., greater than 17.6 and 14.9 mL in males and females, respectively). Based on these cut-off
values, goiter was diagnosed in 25 out of 66 females (37.9%) and 14 out of 31 males (45.2%).
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The prevalence of goiter was not significantly different between females and males (Fisher’s
exact test, p = 0.51) and was not increasing with age (Spearman r = 0.1341, p = 0.19). A
significant difference was found for thyroid volume between control subjects vs. Hashimoto’s
patients, control subjects vs. patients with multinodular goiter, Hashimoto’s patients vs.
patients with multinodular goiter (Dunnett’s T3 multiple comparison test: *** p < 0.001,
*** p < 0.001, and * p < 0.05, respectively) (Figure 7A), and control males vs. females (Mann-
Whitney test, *** p < 0.001) (Figure 7B) but not between untreated and treated Hashimoto
patients (Mann–Whitney test).
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3.7. Questionnaire Data Results

At the enrolment, most of the patients were used to undertaking TSH analysis three
to five times per year, complaining about the long times required to achieve a result when
using the laboratory-based instrument. At the same time, all of the patients appreciated
the innovative POCT-based analysis approach and, in particular, the shorter time (<15 min)
required to achieve the results.

4. Discussion

Thyroid gland disorders are common in the general population [36]. Besides iodine
deficiency, which is becoming gradually less of a concern due to iodine prophylaxis and
food circulation, autoimmune thyroid diseases and thyroid nodules represent the most
common thyroid disorders faced by clinical endocrinologists worldwide [1,2,16–18,37–39].

Today, thyroid dysfunction includes diseases ranging from biochemical, asymptomatic
subclinical hypo- or hyperthyroidism to overt symptomatic hypo- or hyperthyroidism.
Subclinical hypothyroidism, defined as a normal FT4 and moderately elevated TSH levels,
affects approximately 5% of women and 3% of men in the United States, and 0.5% of the
adult population may be suffering from undiagnosed overt hypo- or hyperthyroidism,
characterized by low or high levels of thyroid hormones, respectively [37–40].

In 2015, the U.S. Preventive Services Task Force (USPSTF) published a study aimed to
update the 2004 USPSTF review on the benefits and harms of screening and treatment of
subclinical and undiagnosed overt hypothyroidism and hyperthyroidism in adults without
goiter or thyroid nodules. The conclusion of the study was that “More research is needed
to determine the clinical benefits associated with thyroid screening” [41]. However, it is
commonly accepted that the measurement of TSH levels represents the first-line assay
for the assessment of thyroid function. Due to the high prevalence of thyroid disorders,
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rapid diagnosis and treatment are required. Thus, it would be desirable that TSH levels are
measured in a rapid way directly at the general practitioners’ and endocrinologists’ offices.
This is especially important for patients suffering from subclinical hypo- and hyperthy-
roidism who may not have symptoms or signs of thyroid dysfunction. However, the TSH
assay should be standardized, quality control studies implemented, and repeatability and
accuracy ensured.

Since the 1950s, many methodologies have been utilized to measure thyroid hormone
as well as TSH levels in plasma or serum. Diagnosis and treatment of thyroid disorders
could benefit from improvements in the sensitivity and specificity of in vitro thyroid tests.
The serum level of TSH has been evaluated by radioimmunoassay (RIA) since 1965 [42].
The main disadvantage of these earlier assays was low sensitivity (making them unable to
detect TSH levels below 0.1 mIU/L), and specificity added to possible cross-reactivity with
similar molecules, like LH and FSH, and, especially during pregnancy, hCG.

Afterwards, other methodologies, including third-generation methods, characterized
by a much higher sensitivity (up to ≤0.01–≤0.001 mIU/L), including isotopic (immuno-
radiometric, IRMA; immunoenzymatic), and non-isotopic methods (like enzyme linked
immunosorbent, ELISA; immunofluorometric, FIA; immunochemiluminescence assays,
CLIA) have been utilized [43]. Because of its advantages, mainly high sensitivity and
specificity as well as a low background signal, automatic and faster sample processing, e.g.,
CLIA technology, has gradually invaded the immunoassay territory, now being the technol-
ogy, most frequently utilized to measure hormone levels in serum/plasma. Nevertheless, a
significant disadvantage of CLIAs is represented by the high cost of instrumentation.

In this study we utilized a CLIA-based POCT methodology using paramagnetic parti-
cles to separate free- from antibody-bound TSH and a small-sized bench-top luminometer
to read the intensity of light produced after adding the chemiluminogenic substrate. We
showed that serum TSH levels can be measured with precision and accuracy in a few min-
utes, at low cost in terms of materials and equipment and with good compliance from the
patients. Although we acknowledge that biotin plasma levels interfere with SA/B-based
systems [44], none of our study subjects showed discrepancies between results of the TSH
assay and their clinical presentation. Moreover, none of them reported to be taking dietary
supplements or multivitamin formulations containing biotin within the seven days prior
to blood withdrawal.

In 2016, Wang et al. published an article describing a new method for qualitative and
quantitative measurement of TSH in serum, based on the use of colloidal gold-labeled
TSH antibody coated on a microporous membrane [45]. They showed within-assay CVs of
17.84%, 13.92%, and 9.62%, and between-assay CVs of 20.19%, 15.34%, and 8.76%, at TSH
concentration of 2.51, 7.63, and 11.08 mIU/L, respectively. While recognizing a precision
failure of the method at low TSH levels, they concluded that the immune colloidal method
can be acceptable in a simplified screening for hypothyroidism.

5. Conclusions

In the present study we showed that the FastPack® IP assay is a very reliable method
for evaluation of low-physiological, intermediate, and high TSH levels. Moreover, from
a practical point of view, we observed that it is user-friendly, accurate, reproducible, and
suitable for use in the clinic. Finally, in terms of criteria for evaluation, it fulfils the promise
of effectiveness, impact, efficiency, and sustainability.
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