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Abstract

Background: Whole-exome sequencing (WES) has led to an exponential increase in identification of causative vari-
ants in mitochondrial disorders (MD).

Methods: We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom
routine testing failed to identify a molecular defect. WES was performed using TruSegExome enrichment, followed by
variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family.

Results: Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6
patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients,

11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31
MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTNDS,
NAXE, NDUFS6, NDUFS7, NDUFV1, OPAT, PARS2, PC, PDHAT, POLG, RARS2, RRM2B, SCO2, SERACT, SLC19A3, SLC25A12, TAZ,
TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHAT genes recurred more than twice suggesting higher
general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNATA, CDKL5, CLN3, CPST,
DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found. The percentage
of positive WES results rose gradually with increasing probability of MD according to the Mitochondrial Disease Cri-
teria (MDC) scale (from 36 to 90 % for low and high probability, respectively). The percentage of detected MD-related
genes compared with non MD-related genes also grew with the increasing MD likelihood (from 20 to 97 %). Molecu-
lar diagnosis was established in 30/47 (63.8 %) neonates and in 17/28 (60.7 %) patients with basal ganglia involve-
ment. Mutations in CLPB, SERACI, TAZ genes were identified in neonates with 3-methylglutaconic aciduria (3-MGA) as
a discriminative feature. New MD-related candidate gene (NDUFBS) is under verification.

Conclusions: We suggest WES rather than targeted NGS as the method of choice in diagnostics of MD in chil-
dren, including neonates with 3-MGA aciduria, who died without determination of disease cause and with limited
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availability of laboratory data. There is a strong correlation between the degree of MD diagnosis by WES and MD likeli-

hood expressed by the MDC scale.

Keywords: Whole-exome sequencing, Mitochondrial disorders, Mitochondrial disease criteria scale, Neonates, Basal
ganglia involvement, Leigh syndrome, 3-methylglutaconic aciduria, Novel mutation, Candidate gene

Background

The diagnostics of mitochondrial disorders (MD)
remains a challenge due to clinical heterogeneity [1] and
the constantly expanding amount of gene candidates [2]
as well as new phenotypes of these conditions [3]. There
are eight published studies evaluating diagnostic utility
of next generation sequencing (NGS) in mitochondrial
patient cohorts, selected either based on particular bio-
chemical signatures of disease [4—8] or centre/cohort-
based studies [9-11]. However, of these only four used
whole exome sequencing (WES) [7-10].

A particular challenge is the diagnosis of MD in neo-
nates below 3 months of age as these patients may
account for up to 30 % of all MD cases [12, 13]. However,
so far, this group has not been specifically focused on in
terms of diagnostic effectiveness of WES. The prevail-
ing majority (96.5 %) of cases with a molecular diagnosis
of MD established at our national reference centre until
2013 included children older than 3 months, indicat-
ing considerable under-diagnosis rates in the youngest
infants in the Polish population. We have achieved some
improvement in neonatal MD detection by performing
targeted DNA sequencing (frequently post mortem) in
cases of neonates with lactic aciduria (LA-uria) found in
selective GC—MS screening, including over 90 % of SCO2
[14] and DGUOK [15] deficiencies, and ~ 50 % of SURF1I
deficiency [16].

The purpose of our study was to evaluate WES as a tool
for diagnosis of MD depending on the disease probabil-
ity assessed according to mitochondrial disease criteria
(MDC) [17]. We considered both patients with full-range
mitochondrial diagnostics (Leigh syndrome features
in MRI and/or muscle biopsy evaluation) and those in
whom only fragmentary clinical data e.g. abnormal result
of GC-MS screening indicating the presence LA-uria
and/or 3-methylglutaconic aciduria (3-MGA-uria) were
available.

Methods

Patients

WES was performed in patients with probable or possible
MD, in whom a molecular defect had not been identified
within the analysed period. In the retrospective subgroup
(88/113 patients) the lag time was 2—25 years (mean 7.5
+/5.9 years). Since 2013 WES has been considered in
consecutive patients (25/113). To undergo WES, a patient

had to fulfil at least one of the following criteria: 1/neona-
tal onset; 2/basal ganglia involvement (Leigh syndrome—
LS, nonspecific basal ganglia involvement); 3/increased
3-MGA in urine (patients recruited from a group of >250
cases of 3-MGA aciduria identified by national selective
GC-MS screening for metabolic disorders since 2000),
and 4/genetic counselling demands. Access to biological
material and informed consent of parents were sine qua
non conditions for participation in the study. Details of
criteria for patient selection and their clinical character-
istics are shown in Table 1 and Additional file 1: Table S1.

The study included cases with a high probability of MD
and those in whom MD was considered possible. The
level of probability was assessed according to the MDC
score proposed by the Nijmegen mitochondrial team as
follows: 2—4 points: MD possible; 5—8 points: MD prob-
able [17]. The MDC scoring for this study did not include
the results of muscle biopsy (panels A+B, without C).
The mean MD score in the study group was 4.1 £ 1.5
(range 2-8). Muscle biopsy with subsequent OXPHOS
evaluation was performed in 67 cases, and autopsy in
15 cases. The family history was positive in 26 cases and
three couples were consanguineous.

In the retrospective group, DNA was isolated from
fibroblast cultures or frozen tissue samples obtained by
muscle/liver biopsy or by autopsy. Whenever possible,
skeletal muscle was preferred. In the remaining cases,
DNA was isolated from blood. Throughout the paper the
genes were classified as MD-related if they had a connec-
tion with mitochondrial disorders documented in the
literature [9] or non MD-related when this was not the
case.

Parents of the patients gave informed consent for the
WES analysis. The study protocol was in agreement with
the Helsinki Convention and the study was approved by
the Ethics Committee of The Children’s Memorial Health
Institute.

Whole-exome sequencing

WES was performed using TruSeqExome Enrich-
ment Kits according to the manufacturer’s instructions
(llumina). The samples were run on 1/4 of a lane on
HiSeq 1500 using 2 x 100 bp paired-end reads. Bioinfor-
matics analysis was performed as previously described
[18]. Briefly, after initial processing with CASAVA, the
sequencing reads were aligned to the hgl9 reference
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Table 1 Characteristics of 113 MD suspected patients; inclusion criteria

ID Sex Date of birth Neonatal 3-MGA Basal ganglia Death MDC Muscle Period
patient (year) onset inurine involvement score biopsy from onset
to WES (year)

1 F 2009 + + 5 5
2 F 2013 + + 4 Autopsy 0
3 M 2012 + 5 + 2
4 F 2007 4 + 0
5 F 2013 + + + 5 0
6 F 2011 4 0
7 M 2006 + 5 + 7
8 M 2008 + 2 0
9 M 2011 + 6 + 2
10 M 2004 + 5 + 7
11 M 2005 2 2
12 M 2005 + 3 Autopsy 7
13 M 2014 + + + 4 Autopsy 0
14 F 2006 + 3 + Autopsy 7
15 F 2008 + + 4 + 5
16 M 2012 + 3 0
17 F 1992 + 3 + 21
18 F 2003 + 3 + 7
19 M 2009 5 + 3
20 M 2009 4 2
21 F 2006 + 6 + 8
22 M 2010 + + 8 + 2
23 M 2011 + + 4 + 3
24 F 2008 + 6 + 4
25 M 2010 + + 7 + 3
26 M 2011 + + 8 + 2
27 M 2008 + + + 5 6
28 M 2004 + + + 3 + 1
29 F 2007 + 5 + 7
30 F 2002 + + 2 + 13
31 F 2005 + 6 + 9
32 M 2002 + + 5 Autopsy 3
33 F 2006 3 2
34 M 2006 + 6 + 4
35 M 2012 + 6 + 2
36 M 2006 + + 5 + 6
37 M 2003 + + + 7 + 12
38 M 1985 3 + 12
39 M 1996 3 + M
40 M 2010 + + + 5 Autopsy 4
41 F 2011 + 4 + 3
42 F 2013 2 0
43 M 1967 + 2 10
44 F 1956 4 3
45 F 1995 2 + 1
46 M 2009 3 + 4
47 M 2013 2 0
48 F 2007 2 4
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Table 1 continued

ID Sex Date of birth Neonatal 3-MGA Basal ganglia Death MDC Muscle Period
patient (year) onset in urine involvement score biopsy from onset
to WES (year)
49 M 2012 + + 6 Autopsy 2
50 M 2009 + + 2 Autopsy 5
51 M 2003 + + + 5 + 12
52 F 2011 + 5 3
53 M 2007 6 + 7
54 M 1990 + 6 + 25
55 F 1981 4 + 21
56 F 2012 4
57 M 2010 + 6 +
58 M 2012 + 6 +
59 F 2010 + 6 +
60 M 2003 + + + 6 + 10
61 M 1989 + 8 + 23
62 M 1997 + + 6 + 18
63 F 1989 4 + 16
64 F 2012 + + 6 + 2
65 M 1991 + + 4 + 23
66 F 2012 + 5 + 2
67 F 2014 + + 4 0
68 M 2012 + 4 + 0
69 M 2013 3 0
70 F 2004 + 5 + M
71 M 2001 + + 5 + 14
72 M 2011 + + 4 Autopsy 3
73 F 2002 + 3 + 1
74 F 1989 4 + 12
75 M 2008 + + 5 + 6
76 F 2003 + 4 + 6
77 F 2011 + + + 6 + 3
78 M 1994 + 3 17
79 M 2004 3 + 6
80 F 2012 + + 2 0
81 F 1990 + + 4 + Autopsy 21
82 F 2000 + 3 2
83 F 2003 + + 4 + 12
84 M 2010 + 3 + 4
85 F 2013 + + 3 0
86 M 2008 + 2 5
87 M 2010 3 0
88 M 1997 2 0
89 F 2004 + + + 4 + I
90 M 2002 + 4 + 13
91 M 2009 + 6 + 5
92 M 1995 + 2 5
93 M 2011 + + 3 Autopsy 3
94 F 2010 + + 4 3
95 F 2011 + 4 + 3
96 M 2011 + 2 2
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Table 1 continued

ID Sex Date of birth Neonatal 3-MGA Basal ganglia Death MDC Muscle Period

patient (year) onset in urine involvement score biopsy from onset
to WES (year)

97 M 2005 + ND 4 + 10

98 F 2012 + + + 2 Autopsy 2

99 F 1974 2 0

100 M 2009 + 3 + 5

101 M 2012 4 0

102 F 2006 3 0

103 F 2008 + + + 3 Autopsy 4

104 F 1988 4 + 18

105 F 2014 + + 5 0

106 M 2011 + 3 + 2

107 M 2006 4 + 8

108 M 2012 + 3 + 2

109 M 1997 + + 4 Autopsy 18

110 M 2010 2 + 4

m F 2014 + + 4 0

112 F 2010 + + 3 Autopsy 4

113 M 2013 + 4 + 0

F female, M male

genome with the Burrows-Wheeler Alignment Tool and
further processed by Genome Analysis Toolkit [19]. Base
quality score recalibration, indel realignment, duplicate
removal, and SNP/INDEL calling were done as described
[20]. The detected variants were annotated using Annovar
and converted to MS Access format for final manual anal-
yses. Alignments were viewed with Integrative Genomics
Viewer [21, 22]. The complete results of WES, includ-
ing VCF and/or FASTQ files, are available on demand to
qualified researchers. All samples were sequenced so that
min. 80 % of target was covered 20x or more.

The presence of the variants identified by WES was
confirmed by Sanger sequencing.

Results
Among 67 probands, we found 99 variants in 49 different
genes with a Known disease link (Table 2). They were var-
iants in mtDNA (6 patients) and nuclear DNA (nDNA):
X-linked (9 patients), autosomal dominant (5 patients),
and autosomal recessive (47 patients), including 11
homozygotes. In 50.5 % (50/99) the detected variants
were novel (Table 3). Sixty-six of the variants found in the
study group occurred in MD-related genes, whereas 31
were found in non MD-related loci. In addition, deleteri-
ous variants in a gene not previously linked to disease in
humans were identified in one proband (Table 2).
Mutations in MD-related genes were found in 47
probands. Identified pathogenic variants in 31 different
genes included 27 located in nDNA and 4 in mtDNA

(Table 2). Eleven genes were found defective more
than once (PDHAI-4x, ACAD9, CLPB, and FBXL4-
3x, COX10, EARS2, MTNDI, MTND5, PC, RRM2B,
SLCI19A3-2x). The majority of these genes were not pre-
viously screened for in our mitochondrial diagnostic cen-
tre, with the exceptions of TAZ, PDHA1 [23], SCO2, and
the genes encoding MTND and MTATP subunits. Below
we present the results that were analysed according to
selected phenotypic features (neonatal onset, basal gan-
glia involvement, 3-MGA) and MD likelihood.

Subgroup of neonates

WES vyielded conclusive results in 63.9 % (30/47) of neo-
nates studied (Fig. 1a). We found mutations in 23 differ-
ent genes, including 16 MD-related (ACAD9, AIFMI,
CLPB, FBXL4, NDUFS6, NDUFS7, PARS2, PC, PDHA1
[23], RRM2B, SERACI, SLCI9A3, SLC25A12, TAZ,
TMEMI126B, VARS2) and 7 non MD-related (CDKLS,
CPS1, HSD17B4, MECP2, PGAP2, PRF1, SBDS). The
majority of the neonates with positive WES results came
from the first pregnancy of healthy unrelated parents.
Twenty-nine neonates died before establishing a diagno-
sis; half in the early neonatal period. In 28 cases the mito-
chondrial testing was completed, including MR imaging
and spectroscopy, muscle biopsy and fibroblast culture
collection. In the remaining cases, mitochondrial diag-
nostics were absent or limited only to selective GC-MS
screening showing increased excretion of lactate, Krebs
cycle metabolites, 3-MGA and/or ketone bodies.
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36,10%

12,50%

35,70%

* 3-MGA level >20 mmol/mol creatinine; **, 3-MGA level <20 mmol/mol creatinine

Fig. 1 The percentage of detected MD-related genes, non MD-related genes and non-conclusive WES results in (@) neonates (n = 47), b patients
with 3-MGA-uria (n = 16) and ¢ patients with basal ganglia involvement (n = 28)
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Subgroup with 3-methylglutaonic aciduria

Positive WES results were obtained in seven of 16
patients with persisting 3-MGA (Fig. 1b). In two sub-
jects [P28 and P37] we found mutations in TAZ and
SERACI genes known to cause mitochondrial diseases
with 3-MGA as a discriminative feature [24]. Ex post it
was apparent that earlier some important clinical fea-
tures, including hearing impairment in the patient with
SERACI mutations and increased excretion of 3-MGA in
the terminal stage in the boy with the TAZ mutation, had
been overlooked.

In three unrelated 3-MGA neonates included in this
study, we identified mutations in the CLPB gene, whose
link to human disease was subsequently established [25].
Two of them [P5 and P27] have already been reported in
the first disease description [25].

Additionally, in two 3-MGA patients [P13, P40] we
found molecular variants in the CPS1, a non MD-related
gene linked to urea cycle disorder. In remaining patients
in whom the reason for inclusion in the study group
was a single GC-MS assessment (ACAD9 and MYBPC3
patients [P15, P8]), increased excretion of 3-MGA has
been apparently transient or it was within normal lim-
its after quantitative verification (Additional file 1: Table
S1). Since traces of 3-MGA excretion were also found in
a number of healthy siblings and parents of the patients
the transient or mild increase in patients was most likely
without a causal relationship.

Basal ganglia involvement (Leigh syndrome, Leigh-like,
others)
In 15 of 28 patients from this group (Fig. 1c), molecular
variants in LS-associated genes, including genes respon-
sible for deficiency of complex I (MTNDI1, MTND3,
MTNDS5, NDUFVI), complex IV (COXI10), complex V
(MTATP6), combined OXPHOS defect (EARS2, PARS2,
RARS2, RRM2B, SERACI, SLC19A3), and pyruvate dehy-
drogenase complex deficiency (DLD, PDHA1) [23] were
identified. In the remaining 13 patients with LS or other
basal ganglia involvement WES did not reveal variants in
MD-related genes as listed by Neveling [9].

In three patients with basal ganglia involvement one
MD-related candidate (NDUFB8) and two known non
MD-related genes (ADAR, CDKLS5) were identified.

Defects in non MD-related genes

In 19 patients who were included in the study because of
a possible (low probability) mitochondrial disease, muta-
tions in various non MD-related genes (ADAR, CAC-
NAIA, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GEAP,
HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN,
PRF1, SBDS, SCN2A) were identified (Table 2; Additional
file 1: Table S1).
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New MD-related disorders

While our project was ongoing new candidate genes
found by us including PARS2 [26] and CLPB have been
described by other research teams [25]. The causal
role of another two of our candidates has been recog-
nized even more recently. The NAXE gene (APOAIBP
according to old nomenclature), a susceptibility locus
for migraine [27], in which likely pathogenic vari-
ants were found by us in two brothers with a fatal
encephalitis-like disorder [P12], has been described
in April 2016 as the cause of lethal infantile leukoen-
cephalopathy in a large consanguineous family [28]. A
homozygous variant in the TMEMI26B gene encod-
ing a subunit required for mitochondrial complex I
assembly [29, 30], found by us in a complex I deficient
girl with extra-neurological presentation [P59], has
been discovered and verified functionally as a cause of
the disease in a subset of other patients (ESHG 2016,
Alston et al.).

The interesting remaining candidate for a novel disease
gene identified in our study is NDUFB8. Compound het-
erozygosity for two variants in NDUFB8 was found in a
boy with a typical course of LS and complex I deficiency
in muscle homogenate [P26] (Additional file 1: Table S1).
NDUFBS8 [31] encodes a known subunit of complex I,
but, to the extent of our knowledge, its association with
complex I deficiency and LS in humans has not been pub-
lished so far.

Mitochondrial disease criteria score

In the studied cohort there were 40 patients with high
probability of MD, i.e., with an MDC score above 4 (5-8,
criteria A+B, without C). Positive WES results were
obtained in 36 of them (90 %). In this group, pathogenic
variants were found mainly in MD-related genes (CPS1
being the exception). WES failed in four patients [P49,
P62, P77, P105] with an MDC score above 4. Some of
them were found to carry a deleterious variant in one
of the known MD-related genes only on one allele. The
definite diagnosis still remains open in these cases. Bio-
informatics tools for identification of structural vari-
ants using NGS have not been applied to our data so it
is possible that in some cases the disease may be caused
by large deletions/duplications. The complete lists of
variants detected in the subjects without fully conclusive
results and/or the respective FASTQ files are available on
demand to qualified researchers.

Intermediate probability of MD (MDC = 4) was associ-
ated with the occurrence of variants in both MD-related
and non MD-related genes, in ten (10/31) and six (6/31)
patients, respectively. MD-related genes were repre-
sented in this subset twice by ACADY [P15, P23] and
PDHA1I [P56, P68], and in single cases by CLPB [P67],
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FBLX4 [P55], POLG [P113], RARS2 [P41], SLC19A3
[P109], and VARS?2 [P97].

In the subgroup with low probability of MD, ie., a
MDC score of 2-3 points, positive WES results were
obtained in 15 of 42 cases (36 %). Three MD-related
genes (7 %) including: OPA1 [P33], TAZ [P28] and NAXE
[P12] were found. Non MD-related genes were identified
in 12 of 42 cases (29 %).

The percentage of positive results rose gradually as the
likelihood of MD increased, as shown by the MDC score
(Fig. 2). In the subset of high probability of MD (MDC
above 4), the detection percentage reached 90 %. There
was a broad range of MD-related genes (Table 2). Only
one non MD-related gene (CPS1) was found in a neonate
with a MDC score of 5.

The participation of detected MD-related genes as
compared with non MD-related genes also grew as the
likelihood of MD probability increased (from 20 to 97 %,
data not shown).

WES diagnostics of current cases vs. archival DNA samples

Characteristics of the patients stratified by the waiting
period between disease onset and WES qualification
into archival material and current diagnostics subset is
shown in Table 4. WES efficacy assessed as percentage of
molecularly confirmed diagnoses was comparable being
higher than 50 % in both subsets. Contribution of MD-
related genes expressed by the ratio of MD-related/non
MD-related genes was higher in the archival than current
subset (3.4 vs. 1.0, respectively) indicating that this subset
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contained more patients with non-mitochondrial genetic
disorders and that our current qualification for WES
became less demanding.

Muscle biopsy findings

OXPHOS assessment available for 67 muscle homoge-
nates showed isolated complex I deficiency in 16 cases,
complex IV deficiency in 6 cases and combined OXPHOS
defect in 10 cases. There were unspecific changes in 22
bioptates and normal OXPHOS activity in 10. The results
were not conclusive in three cases due to technical prob-
lems (too small muscle specimen, low protein concentra-
tion, low citric synthase activity).

Complex I deficiency was found in 11 patients with
molecular variants in MD-related genes (ACAD9 [P15,
P23, P53], NDUFV1 [P10], NDUFS7 [P75], MTNDI
[P64], MTND3 [P57], EARS2 [P7], SLCI9A3 [P58],
TMEMI126B [P59]) and in one candidate (NDUFB8
[P26]. In one patient [P95] a defect in non MD-related
gene (SBDS) was found. In 4 patients WES results were
not conclusive.

In the subset with complex IV deficiency molecu-
lar defects were confirmed in three patients including
COX10 [P9, P36] and EARS2 [P70]) while three WES
analyses were not conclusive.

Combined OXPHOS defect occurred in 8 patients
with variants identified in MD-related genes (FBXL4
[P3], ADCK3 [P61], RRM2B [P21, P51], AIFM1 [P25],
TAZ [P28], PC [P71], MTNDS [P34]). In two cases WES
results were not conclusive.

Detection [%]

120%

100%

80%

60%

40%

20%

0%
2 3 4 5

Nijmegen score

=== MD patients

=== non MD patients

MDS score
6 7 8

Fig. 2 Efficacy of WES in 113 patients with possible or probable mitochondrial pathology depending on the level of probability expressed by MDC
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Table 4 WES results related to the origin of the qualified material and to the specific inclusion criteria
Subgroups of patients MD or non-MD genes Diagnostics based on Current Total
loci of variants archival material diagnostics
Disease onset (year) 1996-2012 2013-2014 1996-2014
Number of patients 88 (5.5/year) 25 (12.5/year) 113
Period from onset to WES qualification (years) 2-25(mean 55+59) 0 0-25
MDC scale (A+B, without C) 42+ 15(2-8) 3.6+ 1.2(2-6) 41+£15
Ratio of MD-related/non MD related genes 34 1.0 24
Patients deceased Total no. 41 8 44 %
MD 51.2%(21) 2 47 % (23)
non MD 3) 2 (5
Patients with neonatal onset Total no. 41 6 42 %
MD 53.7%(22) 2 519% (24)
non MD (5) 2 (7)
Patients with LS or other basal ganglia involvement ~ Total no. 21 7 25%
MD 61.9%(13) 3 57%(16)
non MD ) 0 @)
3-methylglutaconic aciduria Total no. 13 3 14 %
MD 53.8%(7) 2 539%(9)
non MD 0 1 (1)
Muscle biopsy Total no. 62 5 67/113
MD 56.4 % (35) (4) 58% (39)
non MD (10) ) (10)
Percentage of muscle biopsy 70 % 20% 59 %

? Italics in brackets indicates the number of patients in the given subset

LS Leigh syndrome, MD mitochondrial disorder, MD/non MD MD-related/non MD-related genes wherein variants were identified

Histological and histochemical data of the patients with
positive WES showed presence of ragged red fibers in
four cases (ADCK3 [P61], ACADS9 [P15, P23, P53]), “lipid
storage myopathy” in four (PC [P71, P29], MTND5 [P35],
PDHA1 [P66]) and SMA-like pattern in three (AIFMI
[P25], SCO2 [P54], RRM2B [P51]).

Depletion of mitochondrial DNA (<30 % of reference
value) was revealed in tissues of 8 patients. Molecular
defect was established by WES in four of them (COX10
[P9], FBXL4 [3], RRM2B [P21, P51]).

Verification of mitochondrial genome variants
Interestingly, in six patients with typical MD phenotype
the search for pathogenic variants in MD-related nuclear
genes by WES was negative yet pathogenic variants were
found in mtDNA. Each mtDNA variant identified by
WES, was subsequently verified by Sanger sequencing
using specific primers for mitochondrial genome. All
detected changes are known and have been repeatedly
reported. Examination of different tissues in probands
and maternally related family members showed varying
levels of heteroplasmy (Fig. 3).

Discussion

Our results confirm that the implementation of WES led
to a significant breakthrough in the diagnostics of MD
in children [32]. This is expressed by both the increased
number of identified genes and faster establishment of
final diagnosis. The total number of genes with likely
causative defects found in the present work was 47, a very
satisfactory diagnostic yield when compared with 8 genes
identified by us by single-gene Sanger sequencing before
the introduction of WES (203 such diagnoses per ~1200
patients studied in the period from 1996 to 2013).

In our study we observed a pronounced upward trend
in the detection of the molecular background of mito-
chondrial diseases that was associated with increased
MD probability (Fig. 2). According to the MDC scale
that we used, a final genetic diagnosis was achieved in
over 90 % of patients with the highest MDC scores (5-8
points). In all such cases (with one exception for a neo-
nate with CPSI mutation), variants were found exclu-
sively in MD-related genes. The diagnostic yield was
the lowest (36 %) in the patients with low MD suspicion
(MDC score 2-3), and most of the variants in this group
were present in non MD-related genes.
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P35
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D male; O female; . ‘ affected individuals; . ,‘ death; m, muscle; u, urine; b, blood; s, saliva; f, fibroblasts; heteroplasmy level: +, low; ++,
moderate; +++, high, -, absent; PSENI molecular variant p.(Leul53Val) in P32 was a random WES finding, which revealed early Alzheimer disease

in the family: PSENI+, detection , PSEN1-, absent
Fig. 3 Family study in six probands with mtDNA known mutations

A similar correlation between detection rate and the
level of MD probability was described recently in a simi-
lar patient group studied by WES at the Nijmegen Mito-
chondrial Centre [10]. However, our results differed from
that study in terms of the scope of detected defects. In
our cohort, mutations in MTOI, TK2, C120rf65, COAS,
TUFM, GEM1 were absent and the defects in nuclear
encoded complex I subunits are different. This may be
a result of random patient selection, but we should also
take into account ethnic differences among European
populations, e.g., the Slavonic vs. north-western Euro-
pean populations.

In addition, we identified six rare mtDNA pathogenic
variants, not included in the common mutations screen-
ing i.e. m.9185T>C in MTATP6 [33-35] and in mito-
chondrial DNA genes encoding complex I subunits,
MTNDI1 [36-38], MTND3 and MTNDS5 [39-42].

One-third (15/47) of the identified gene defects were
discovered during last 10 years and relatively poorly

characterized in terms of phenotype. These included
PGAP2 [43, 44], ACAD9 [45, 46], EARS2 [47], SERACI
[48], SLC19A3 [49, 50], MTFMT [51], SLC25A12 [52] as
well as VARS2 [53], AIFM1 [54], RARS2 [55], RRM2B
[56], PIGN [44, 57], ADCK3 [58, 59] which were
described in just individual cases. Notably, most of these
genes are generally absent from commercial NGS panels
available at present.

It is worth emphasizing that in some cases WES
allowed for a diagnosis in statu nascendi, that is, at the
time of the first publication of the new gene. This con-
cerned, for example, mutations in CLPB [25, 60], PARS2
[26], FBXL4 [61, 62] and recently added TMEM126B
(data published on ESHG 2016 by Alston et al.), and
NAXE [28] In one of the patients with the MD phenotype
we identified potentially pathogenic variants in candi-
date NDUFB8 which role in human pathology is under
verification [Piekutowska-Abramczuk et al. submitted to
SSIEM 2016].
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According to published literature, every third paediat-
ric MD case (approximately 30 % of all MD diagnoses in
this age group) manifests clinically shortly after birth [12,
13]. The fatal outcome in such cases precludes transport
to a reference centre and proper mitochondrial diagnos-
tics. We have previously shown significantly reduced (up
to ten times, about 3 % of all diagnoses) recognition of
MD in this age group in Poland [16]. Therefore, neonates
with suspected MD intentionally constituted a significant
proportion of patients (47/113) undergoing WES in the
present study.

Surprisingly, in the neonatal subgroup WES proved to
be particularly useful, allowing identification of patho-
genic variants in 24 various genes in 63.8 % of patients,
including those without muscle biopsy or even autopsy.
Our results extend the list recommended by Honzik [13]
for neonatal MD diagnostics by at least 15 genes (MD-
related: RRM2B, CLPB, ACAD9, FBXL4, PC, AIFMI,
SLC25A12, MTNDS5, NDUFS6 and non MD-related:
CPS1, PGAP2 and more).

In the LS subgroup WES expanded the set of patients
from our centre diagnosed with complex I deficiency by
three known genes: NDUFS6 [63, 64], NDUFV1 [65, 66],
NDUFS7 [67], a new candidate NDUFBS8 [68] and five
MTNDs mentioned above. Despite this, complex I defi-
ciency continues to be underrepresented in our cohort
in relation to complex IV deficiency because of the high
carriage rate of SURFI mutations in Poland [69]. In a
number of cases with basal ganglia brain changes, WES
failed to show mutations in known LS-associated genes.
This was especially the case in patients without lactic aci-
daemia and MDC scores below 5 (MD possible but not
likely). We speculate that other, still unknown, genes or
non-genetic factors might influence the occurrence of
LS-brain changes.

Taken together, our results indicate that WES rather
than targeted NGS should be the method of choice for
MD testing, at least until all MD-associated genes are
identified. Furthermore, the rationale for choosing WES
in MD-suspected neonates is the non-specificity of
symptoms and overlapping results of biochemical tests
with non-mitochondrial errors of metabolism.

In 50.5 % the molecular variants were novel (Table 3).
However, a number of recurrent rare pathogenic variants
found in some recently discovered MD genes (p.Arg22* in
FBLX4, p.Arg518Cys in ACADY, p.Arg417* in CLPB and
c.1822 1828+10delinsACCAACAGG in SERACI) may
extend the ethnic specificity of MD in the Polish popu-
lation reported earlier by us for variants p.Glu140Lys in
SCO2 [14] and c.845_846delCT in SURFI genes [69].
Confirmation of these findings could facilitate in-house
diagnostics in selected suspected cases.
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Conclusions

1. In a nationwide reference centre, WES provided pos-
itive results in >90 % of children with high likelihood
of MD (MDC score above 4);

2. WES should be recommended for diagnostics of
mitochondrial pathology considering remarkable
representation of non MD-related genes among
causal factors in patients with lower likelihood of
MD, as well as a possibility to discover new mito-
chondrial genes;

3. WES significantly improves recognition of MD in
newborns, even in the case of limited availability of
appropriate diagnostic procedures;

4. Despite being a sine qua non for certain diagnoses
3-MGA is not a universal marker of mitochondrial
dysfunction;

5. Recurrent variants recognized in some relatively new
MD genes (FBLX4, ACADY, and CLPB) may extend
the known ethnic specificity of MD in the Polish
population reported earlier for SCO2 and SURF1 var-
iants.

Additional file

Additional file 1: Table S1. Characteristics of 113 patients with prob-
able/possible mitochondrial disease recruited for the study.
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