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Abstract: The greatest challenges for therapeutic efficacy of many macromolecular drugs that
act on intracellular are delivery to key organs and tissues and delivery into cells and subcellular
compartments. Transport of drugs into critical cells associated with disease, including those in organs
protected by restrictive biological barriers such as central nervous system (CNS), bone, and eye
remains a significant hurdle to drug efficacy and impacts commercial risk and incentives for drug
development for many diseases. These limitations expose a significant need for the development
of novel strategies for macromolecule delivery. RTB lectin is the non-toxic carbohydrate-binding
subunit B of ricin toxin with high affinity for galactose/galactosamine-containing glycolipids and
glycoproteins common on human cell surfaces. RTB mediates endocytic uptake into mammalian
cells by multiple routes exploiting both adsorptive-mediated and receptor-mediated mechanisms.
In vivo biodistribution studies in lysosomal storage disease models provide evidence for the theory
that the RTB-lectin transports corrective doses of enzymes across the blood–brain barrier to treat
CNS pathologies. These results encompass significant implications for protein-based therapeutic
approaches to address lysosomal and other diseases having strong CNS involvement.

Keywords: enzyme replacement therapy (ERT); BBB; RTB; lectin; macromolecule transport; lysosomal
storage diseases, CNS

1. Introduction

Biologics represent the fastest-growing sector for new drug development. Most of these drugs,
for example immuno-therapeutics, typically act on targets in the blood or localized at the cell surface.
However, mobilizing large therapeutic molecules into and across endothelial/epithelial cell layers to
reach complex intracellular targets present in distal cells remains a challenge. Delivering these products
across the blood–brain barrier (BBB) to treat pathologies of the central nervous system is particularly
problematic and new strategies are clearly required to address diseases having severe neurological
manifestations. Lectins such as the plant lectin RTB show significant promise as protein carriers with
the potential to address delivery to CNS as well as delivery to other hard-to-treat tissues and cells.
The term lectin refers to a group of proteins that binds to specific sugars. The surface of human
cells is covered with complex glycolipids and glycoproteins providing abundant targets for lectin
binding. Following binding, lectins such as RTB direct efficient endocytosis and transcytosis, delivering
associated cargo to lysosomes or across cells for delivery to adjacent cells. The unique mechanistic
attributes of lectin-based carriers differ significantly from those of current protein delivery approaches,
which typically depend on specific receptor interactions to direct uptake into cells and lysosomes.
RTB’s ability to access a broad array of cell types, to traverse multiple cell layers, and to place cargo
enzymes in lysosomal compartments make it particularly well suited for enzyme-based treatments of
lysosomal diseases. This review highlights current unmet needs in treating the neurodegeneration and
other CNS manifestations prevalent in lysosomal diseases, the promise of the RTB lectin to support a
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new class of delivery-enhanced enzyme replacement therapies (ERTs) based on human enzyme:RTB
fusions, and the broader implications of this emerging technology for delivery of biologic drugs.

2. Treating the CNS–A Significant Unmet Medical Need

The demand for more effective drug delivery to the central nervous system remains high.
Neurological disorders such as Alzheimer’s, Parkinson’s, and multiple sclerosis, among others,
constitute 16.8% of total deaths globally [1]. Many promising drugs with the potential to treat CNS
disorders fail to enter the clinical development phase due to failure to deliver adequate quantities of
the active molecule to the CNS, thus leaving many diseases undertreated. Many rare genetic disorders
also manifest with significant progressive neurodegeneration and have served as models for the
development of novel strategies to address trans-BBB drug delivery and treatment of CNS pathologies.

Effectiveness of therapeutic options depends on the drug’s bioactivity, but equally important
is its ability to reach critical targets within tissues and cells linked with pathology. Intravenous
administration is the simplest and least invasive method for systemic delivery of drugs by infusing
molecules directly into the circulatory system. The blood supplies all cells and tissues with vital
elements and nutrients. However, the delivery of macromolecules such as proteins from circulation
into adjacent cell layers is limited by a variety of biological barriers and selectivity of cell uptake
mechanisms. Macromolecular transport across plasma membranes and intracellular membranes
is regulated by integral transmembrane channels or carriers. For any particular drug, the specific
components required for uptake might be limited or lacking, especially in specialized tissues such as
the endothelium of the central nervous system.

Neuronal signaling within CNS requires a highly controlled chemical environment. Multiple
protective mechanisms have evolved to regulate access into the brain. Exogenous molecules interface
with at least three distinct barriers that modulate transport into the brain: the blood–brain barrier
(BBB), the blood-cerebrospinal fluid (CSF) barrier, and the arachnoid barrier [2]. The BBB is created
by the vascular endothelial cells, which form a relatively impenetrable wall of cells cemented by
tight junctions (Figure 1). This network of specialized capillaries comprises the largest interface
for blood–brain exchange with a total surface area of 12–18 m2 in humans [3]. Transport through
this wall is highly controlled and most molecules lack the required chemical characteristics to gain
access to the brain. Molecules in the blood gain access to the brain by exploiting selective cell surface
transporters or by free diffusion if the molecule is lipophilic and has a molecular weight lower
than 400 Da [4]. Most macromolecules, including proteins and infectious agents such as viruses, are
physically prevented from entering the brain by the tight junctions and the limited presence of selective
receptors within this specialized barrier.

Recognizing the challenges of treating the CNS, various strategies to deliver therapeutics to the
brain include neurosurgical-based interventions which encompass invasive transcranial procedures;
chemical-based strategies which consist of increasing the lipid solubility of the molecule; and
biology-based strategies which require drug modifications to use vesicular mechanism regulated
by endogenous BBB transporters [4]. These vesicular mechanisms involve either receptor-mediated
transcytosis (RMT) or adsorptive-mediated transcytosis (AMT) [2]. In addition to paucity and limited
selectivity of receptor targets on cells comprising the BBB, there is also reduced vesicular trafficking
within these cells. Thus, directing efficient directional transcytosis across the BBB to provide therapeutic
protein presentation to neurons and glial cells of the CNS remains problematic.

3. Lysosomal Storage Diseases and the Need for Widespread Biodistribution of Therapeutics

Lysosomal storage disorders (LSD) are autosomal recessive inherited pathologies caused by
mutations in genes that encode proteins that are essential for macromolecule degradation in lysosomes.
Around 83 lysosomal storage disorders have been described that encompass about 50 different enzyme
deficiencies [5]. The lack of any one of these enzymes can cause chaos in the lysosomal system, including
substrate buildup, aberrant intra-lysosomal protein accumulation, changes in lysosome number,
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lysosomal membrane permeabilization, accumulation of undegraded autophagosomes, aberrant
exocytosis, and translocation of soluble lysosomal components into the cytosol [6]. These cellular
changes lead to significant pathologies and disease manifestations. Since these genetic mutations
affect all cells in the body, pathologies are typically progressive and show multisystem involvement.
However, for many of these diseases, pathological manifestations are more pronounced in specific
organs or tissues depending on the sites where the target substrate is highly synthesized or accumulated.
Although LSDs are individually rare, collectively they affect 1 in 5000 live births [5] and have significant
impacts on patients, their families, and national health care costs.

Enzyme replacement therapies (ERT) involve providing the patient with an infusion containing
the corrective enzyme, typically at 1- to 2-week intervals. ERTs are the treatment of choice for soluble
hydrolase deficiencies and at least 10 LSDs currently have approved ERTs [7]. Small-molecule therapies,
including substrate reduction and chaperone therapies are also approved for some LSDs. Gene therapy
and genome editing treatments have recently entered clinical trials for several lysosomal diseases [5].

Currently approved ERTs are manufactured as recombinant glycoproteins expressed in transfected
Chinese hamster ovary (CHO) cells, human fibroblasts, suspension-cultured plant cells, or egg whites
from genetically engineered hens, with the large majority being mammalian cell-derived products.
Cell uptake and lysosomal delivery of all these ERTs are orchestrated by binding to cell surface
receptors, either the mannose-6-phosphate receptors (M6PRs) or the high mannose receptor (MMR)
via M6P-terminated or mannose-terminated glycans present on the recombinant protein. With the
exception of ERTs for Gaucher Disease, all currently approved ERTs use M6PR receptors for lysosomal
delivery. The primary cellular role of M6PRs is to capture lysosomal enzymes within the Golgi and
ensure trafficking to pre-lysosomal endosomes to protect other compartments from their degradative
activities. Thus, M6PRs are found in the trans-Golgi network (TGN) and endosomes, with a small
amount (3–10%) localized at the plasma membrane to recover misdirected hydrolases [8]. There are
two types of M6PR: the cation-dependent CD-M6PR with a molecular mass of 46 kDa and the
cation-independent CI-M6PR with a molecular mass of 300kDa. They both play an important role not
only in sorting of lysosomal hydrolases but also in cell growth regulation, motility and other important
biological functions such as tumor suppression. Due to slightly alkaline extracellular environment
(pH 7.4), only CI-M6PR is capable of binding exogenous M6P-containing ligands and supporting
endocytosis [9]. CI-M6PR that has localized to the cell surface is, therefore, the receptor target exploited
by M6P-based ERT drugs to direct exogenous enzymes into cells and lysosomes. Other enzymes and
proteins can be sorted to lysosomes by M6P-independent receptors such as the lysosomal integral
protein LIMP-2, sortilin, and megalin [8,10]. It is possible that additional receptors might exist and be
involved in lysosomal sorting [8] which might expand the options for delivery strategies.

Like any other drug, efficacy of enzyme replacement strategies depends upon the delivery of the
therapeutic enzyme to the appropriate tissues and cells where the substrate accumulates to pathogenic
levels. Whereas ERTs have been very beneficial for patient care and quality of life, experience with
current ERT drugs has identified several organs, tissues and cell types that do not receive sufficient ERT
doses to correct or delay disease progression. These sites have been collectively termed “hard-to-treat”
tissues that include cells within brain and nervous system; joints, bone, cartilage, and myocytes of
the musculoskeletal system; and organs such as the eye. Delivery to these sites is challenging due
to presence of biological barriers that support them and the limited accessibility or absence of target
receptors in the endothelium of these organs. Out of all LSDs described up to date, the majority display
pathological manifestations in these hard-to-treat organs and treatment options using intravenous
administration of the enzyme has shown very limited success or failed to prevent these devastating
aspects of disease progression [11–13]. Even specialized cells within organs where the enzyme is
distributed can remain untreated, as is often the case for heart cardiomyocytes and podocytes of the
kidney [14]. Thus, DELIVERY and the ability to traverse specific biological barriers is paramount
in designing effective disease treatments. This is critical for many biologics but is also important for
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newly emerging technologies such as gene therapy, where the vectoring capsids fail to obtain a broad
distribution within the body and within key organs and cells.

Treatment of LSDs by replacing or expressing functional versions of the enzyme encounters
another important issue: the development of antibodies against the newly presented protein. These
anti-drug antibody responses (ADA) hinder treatment efficacy of the majority of ERTs available to
patients by altering catalytic activity, cell uptake, and biodistribution [15–17]. Over 90% of the patients
with Hurler (MPS I), MPS VI, Pompe and Fabry develop antibodies to their ERT drug [16]. Infants
and children are most affected, as patients with early onset forms typically have no residual enzyme
(i.e., are cross-reactive immunological material negative; CRIM-) and quickly develop neutralizing
antibodies that abrogate therapeutic correction and can precipitate severe adverse clinical effects.
Impacts on Pompe patients are often cited as the most dramatic example, where children show
significant improvement in motor milestones in response to ERT only to have these effects rapidly
reversed upon induction of neutralizing antibodies, leading eventually to patient death [16,18,19].
Tolerization protocols have been tested for patients where ERT efficacy is blocked by immune responses
but these treatments might not be efficacious [20], are intensive for patients, and pose significant risks
of infection or malignancy [16]. Gene therapy approaches are currently under development for LSDs
as an alternative to ERTs. However, therapeutic enzymes produced via gene therapy also lead to ADA
responses in CRIM- patients and animal models of the diseases [21], underscoring the need to develop
new approaches to address challenges imposed by immune responses to therapeutic proteins.

4. Lectin-Mediated Delivery: RTB as a Protein Carrier

Lectins are a very diverse group of proteins that reversibly bind carbohydrates with high specificity
to the chemical structure of the glycan but have no catalytic activity [22]. Lectins are proteins expressed
in multiple organisms including virus, bacteria, algae, fungi, plants, and animals. They play many
different biological roles including defense, signaling, agglutination, and transport.

Most cell surface proteins and many lipids in cell membranes are glycosylated. These glycans are
binding sites for lectins and depending on the lectin structure or sugar-specificity, this interaction can
direct transport to the cytosol, organelles or transcytosis, typically by vesicular trafficking [23]. Affinity
of the proteins for cell surface glycans has been studied for many years to exploit drug delivery to the
gastrointestinal track, mucosal surfaces, lungs, eyes, and brain [23,24]. A recent example of this is the
delivery of the AAV9 vector across the blood–brain barrier, which take place by interactions of the
viral capsid with galactose residues on the endothelium surface [25,26].

Delivery of macromolecules to the brain using lectin wheat germ agglutinin (WGA) was reported
by Broadwell in 1989. WGA conjugated with horseradish peroxidase (HRP) was used as an enzymatic
tracer within tissues. WGA binds to cell surface sialic acid and N-acetyl-glucosamine for entry to cells
by adsorptive-mediated endocytosis. In this work, intravenously administered WGA-HRP in rats and
mice was detected in the parenchyma of the neurohypophysis and that of the anterior pituitary lobe
after one hour. At 24 h, the protein reached the dura matter. Pericytes were labeled with WGA-HRP
between 6 and 24 h after the injection. These results provided the first direct evidence of delivery of
blood-borne molecules through the BBB into the brain using lectin-mediated uptake. Plant lectin RTB,
naturally present in castor bean seeds (Ricinus communis), mediates endocytic uptake into mammalian
cells, transcytosis, and trafficking to lysosomes or endoplasmic reticulum (ER) of associated proteins.
RTB is the non-toxic domain of the ricin toxin. Ricin is a Type II ribosome-inactivating protein that
contains two structures. One sub-unit (RTA) is a ribosome-inactivating protein known to be cytotoxic.
In contrast, the RTB component mediates binding to the target cell surfaces and promotes uptake
but has no intrinsic toxicity or catalytic function [27]. When ricin is synthetized by plant cells, the
molecule is directed to the vacuole where it gets processed into two sub-units that are linked by a
disulfide bond. Under reducing conditions, these sub-units can be separated, and both retain their
bioactivity. However, in the absence of RTB, the cytotoxicity of RTA is significantly reduced due
to its inability to reach the intracellular space [28,29]. Ricin has been widely studied for decades to
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understand its cellular sorting, physiological impacts, and strategies to develop antidotes [30]. It
served as a valuable tool for the discovery and delineation of selective endocytic routes, mechanisms,
and subsequent vesicular trafficking within mammalian cells [31,32]. These efforts have provided
important information regarding its uptake, immunogenicity, and trafficking within mammalian cells,
serving as the foundation for the development of RTB as a unique and promising delivery platform
technology [32].

RTB is a galactose-specific lectin comprised of 262 amino acids with an approximate size of 34
kDa. The crystal structure of ricin has been determined (PDB entry 2AAI) [33] and indicates that RTB
contains two lobes, each of which binds sugars. Both sites bind to galactose in an independent manner
and both must be simultaneously modified to abolish lectin activity. The 2γ domain is demonstrated
to also bind to N-acetylgalactosamines [34]. A single human cell contains millions of galactose binding
sites on its surfaces [35–37] and this promiscuous binding to many different cell surface components
enables exploitation of multiple intracellular trafficking pathways following endocytosis [28].

The RTB lectin has been shown to use all of the endocytotic routes described to date and to enter
and carry associated cargo into all cell types tested [32,38–41]. RTB enters cell partially from coated
pits, but mostly is internalized by clathrin-independent endocytosis (CIE) [37,42], which is responsible
for approximately 70% of fluid uptake into cells [43]. In contrast to coated pits, CIE provides a high
degree of versatility and speed by coordinating membrane retrieval with exocytosis rates [44]. Some
of them can use dynamin (e.g., caveolae; RhoA/Rac1; toxin-induced tubules with endophilin A2;
fast endophilin A2-dependent endocytosis (FEME) or use small GTPases instead of dynamin for the
vesicle scission at the plasma membrane (Cdc42/Graf1; CtBP/BARS, micropinocytosis) [31,44]. For
example, ricin (RTB delivered RTA) is equally efficiently internalized in both dynamin-dependent and
dynamin-independent endocytic pathways, although the majority traffics by dynamin-independent
routes to reach the lysosomes [45].

Upon endocytosis, RTB shuffles to early endosomes where the majority traffics to lysosomes
or can be transported back to the cell surface facilitating transcytosis and translocation across cell
layers [37,41,46]. Transcytosis occurs when the proteins avoid the lysosomal degradation pathway
presumably due to the type of glycosylated targets and endocytic route of the vesicles to which the
lectin has bound. This transcytotic route is fundamental for the penetration of cargo through tissues.
The ability of RTB to deliver across mucosal surfaces is well established, with evidence of toxin delivery
via ingestion, inhalation, nasal and subcutaneous routes leading to delivery into the circulatory system
for broad distribution [47,48]. The transmucosal transport of RTB has been explored for protective
antigen delivery in oral vaccine development [23,49,50]. What is less well described is the ability of
RTB to transport cargo across the BBB and other protective barriers that define the “hard-to-treat”
organs, tissues, and cells. Initial support of RTB’s ability to access these tissues is evidence of ricin
penetration in brain and myocardium [48,51].

Hard-to treat organs, such as brain, need to obtain a significant number of macromolecules that
they cannot synthesize for themselves but must import from the vascular system. This requires specific
mechanisms to cross the various protective barriers. The endothelial cells that make up the BBB have
a paucity of receptors (e.g., very low MMR and M6PR levels) and significantly reduced vesicular
trafficking. The transport of transferrin, insulin, and other critical macromolecules is facilitated by the
expression of selective receptors for these molecules in the apical surface of membranes. In efforts
to exploit these receptors for ERTs, lysosomal enzymes have been linked to antibodies or antibody
fragments that target the transferrin or insulin receptors for trans-BBB delivery to address CNS
pathologies. Use of the antibodies to the human insulin receptor, known as the “Trojan Horse” strategy,
has shown success in delivering enzyme and other large cargos across the BBB including delivering
iduronidase to the brains of MPS I mice and primates [52,53]. This approach exploits receptor-mediated
endocytosis and transcytosis mechanism (RMT), which are dependent upon receptor abundance,
receptor cycling efficiency, and intracellular vesicular trafficking route into and across the BBB as
discussed above. Lectin-mediated transcytosis provides distinct advantages for trans-BBB delivery
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supporting non-specific binding, affinity for many targets (even on brain capillary endothelial cells)
and consequent low uptake saturability. The RTB lectin-delivery module is not limited by binding to
a specific receptor. Instead, it binds to any glycoprotein (including receptors) or glycolipid having
exposed galactose/galactosamine, triggering endocytosis/transcytosis by either adsorptive-mediated
(AMT) or receptor-mediated (RMT) processes (see Figure 1).
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 Figure 1. Pathways utilized by RTB lectin across the blood–brain barrier. Blood-borne lectin:cargo fusion
product reaches the cerebral endothelial membrane or blood–brain barrier (BBB) when administered
intravenously. BBB is a capillary endothelial layer formed by specialized cells with highly selective
expression of receptors and transporters designed to maintain the integrity of the chemical environment
within the brain. These cells are glued together with tight junctions that restrict the penetration of
water-soluble compounds. RTB lectin binds to any glycoprotein or glycolipids with exposed galactose
residues, which are highly abundant on the apical surface of cell membranes, triggering endocytosis
and transcytosis. This typically takes the form of adsorptive-mediated transcytosis (AMT). However,
because RTB also binds to the glycan component of an existing surface receptor, RTB can exploit
receptor-mediated endocytosis/transcytosis (RMT) mechanisms to deliver cargo across the BBB.

The ability of RTB to internalize large molecules several times its size is remarkable.
When streptavidin-coupled Quantum dots were coupled to biotinylated RTB (RTB:QGs hydrodynamic
diam = 30nm), they were endocytosed by dynamin-dependent and macropinocytosis-like pathways [54].
RTB even directs endocytosis into cells when its cargo enzyme is bound with enzyme-specific polyclonal
antibodies, each having a mass five times greater than RTB (further described below) [55–57]. Thus, the
RTB lectin offers numerous mechanistic features, summarized in Table 1, that may be highly beneficial
for delivery of therapeutic cargo such as replacement enzyme for lysosomal storage diseases.
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Table 1. Uptake and trafficking characteristics of lysosomal enzymes as directed by the RTB lectin
carrier versus M6P-based mechanisms (as referenced in text).

Feature RTB-Mediated Delivery M6P-Mediated Delivery
Cell Uptake

Surface binding target Glycoproteins/glycolipids Cation-independent M6P receptor
(M6PR)

Target distribution Common on all cell types Restricted to cells having surface
M6PR

Uptake mechanisms Adsorption- and
receptor-mediated endocytosis Receptor-mediated endocytosis

Uptake capacity Abundant & promiscuous targets -
low saturability

Limited by number and cycling of
M6PR

Anti-drug antibody interference RTB supports uptake in presence
of ADA

ADA to M6P-ERT can block
uptake & alter biodistribution

Intracellular Vesicular Trafficking

Endosome to lysosome pathway Significant: 30–70% depending on
cell type

Dominant route–M6P is key
lysosomal delivery signal

Transcytosis pathway Significant: 30–60% depending on
cell type Minimal route

Retrograde pathway to
endoplasmic reticulum Minimal route (generally <5%) Minimal route

Zymogen Processing in Lysosomes

Removal of targeting component RTB cleaved from enzyme and
rapidly degraded

Phosphate group removed
enzymatically from M6P

Proteolytic “activation” Hydrolase processed to mature
forms

Hydrolase processed to mature
forms

5. RTB for Delivery of Lysosomal Enzymes

To determine whether RTB can direct broad systemic distribution including delivery to the
CNS, the RTB lectin has been genetically fused to several human lysosomal enzymes, essentially
replacing the RTA subunit with a specific enzyme at the N-terminal region of the lectin (enzyme:RTB).
Enzymes for three diseases in which the enzymatic deficiency leads to progressive and potentially
severe brain pathologies have been studied. These enzymes include α-L-iduronidase (IDUA:RTB) for
MPS I - Hurler, N-sulfoglucosamine sulfohydrolase (SGSH:RTB) for MPS IIIA, and β-galactosidase
(β-gal:RTB) for GM1 gangliosidosis. The RTB:enzyme fusions were synthesized in a plant-based
bioproduction system [58–60], which supports N-linked glycosylation for both the RTB carrier (2 sites)
and its human glycoprotein cargo. While plants synthesize both complex and mannose-terminated
glycans, they do not produce M6P-glycans. Biochemical analyses demonstrated that the fusion
proteins retained both RTB-lectin binding specificity and the respective lysosomal enzyme activity.
In vitro uptake studies using human patient fibroblasts confirmed efficient cell uptake and lysosomal
delivery by a mechanism independent of MMR and M6PR. However, adding lactose to the culture
media inhibited the uptake of fusion protein by 99%, confirming that the RTB’s lectin activity is the
main uptake driver [58–60]. Uptake kinetics of recombinant enzymes can be measured on cultured
cells by measuring intracellular activity after incubation with increasing concentrations of protein.
Maximal uptake capacity, calculated using Michaelis-Menten analysis (Vmax), is defined as the maximal
intracellular activity achieved after saturation of the system. As expected based on mechanisms of
adsorptive-mediated endocytosis, the enzyme:RTB products showed much lower uptake saturability
and higher uptake capacity compared to the analogous mammalian-cell-derived human enzymes that
depend on the M6P receptor to mediate endocytosis (e.g 20-fold higher IDUA intracellular activity
on IDUA-/- fibroblast) [58–60]. Upon delivery of the enzyme:RTB product to lysosomes, the RTB
lectin component is rapidly cleaved and degraded; the respective enzyme precursors are processed to
their typical mature forms. The efficient removal of RTB in the lysosome presumably minimizes the
potential of the “carrier” to interfere with protein-protein and protein-substrate interactions important
for processing, stability, and function of the lysosomal hydrolase. The removal of RTB and correct
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processing of the cargo enzyme have been seen in either N- or C-terminal lectin fusions, generating
equivalent intracellular activity from the mature enzyme [60].

Because RTB exploits multiple endocytic mechanisms (see above), it participates in a diversity of
intracellular vesicular trafficking pathways supporting directional transcytosis as well as lysosomal
delivery. Transcytosis efficiencies of β-Gal:RTB have been compared to M6PR-delivered β-Gal in vitro
using multi-cell layer transwell assays comprising a tight polarized β-gal-/- human endothelial cell
layer in the transwell insert and β-gal-/- patient fibroblast cells as the recipient cell layer. Up to 60%
of the β-Gal:RTB added to the apical surface was transported across the endothelial layer based
on β-Gal activity and GM1 ganglioside reduction in the distal fibroblast cells, with RTB delivering
4–20 times more β-galactosidase enzyme activity compared to M6PR-delivered enzyme [61]. Overall,
these in vitro studies support the hypothesis that the RTB delivery module will provide unique and
advantageous pharmacological characteristics compared to ERTs currently approved (see Table 1) or in
development that are dependent on (and limited by) receptor-mediated mechanisms.

Preclinical animal studies of enzyme:RTB fusions using the correspondent enzyme-deficient mouse
models have provided evidence of broad systemic biodistribution of the cargo molecules to all organs
tested including the central nervous system. The first indication of lysosomal enzyme delivery to the
CNS by RTB lectin was evidenced in a collaboration of BioStrategies LC with Dr. Alessandra d’Azzo of
St. Jude Children’s Research Hospital in the GM1 gangliosidosis mouse model. After intravenous
administration of 150ug/mouse (6–7.5 mg/kg) β-Gal:RTB fusion, β-galactosidase enzyme activity was
detected in the CNS and mature forms of β-galactosidase were immunodetected in homogenates of
cerebellum and spinal cord demonstrating trans-BBB delivery of the enzyme and correct processing
within the lysosomes of the brain cells [62]. Significant increase in enzyme activity has been also
demonstrated in cerebrum, cerebellum and spinal cord of SGSH-/- (MPS IIIA) and IDUA-/- (MPS I)
mouse models after injection of the corrective enzyme fused to RTB lectin at 12 mg/kg and 2mg/kg
respectively [63,64]. Brain disease correction has been demonstrated by long-term administration of
the fusion product. In a trial subcontracted to the University of Minnesota by BioStrategies, MPS I
mice, treated weekly with iduronidase fused to RTB (IDUA:RTB) for 8 weeks, showed normalization of
substrate levels in the brain. Treatment of CNS pathologies was further demonstrated by correction of
learning and memory deficits of the mouse model [63,65]. Among these three disease models, mouse
studies have consistently shown elevated enzyme activity, evidence of lysosomal delivery and enzyme
distribution in all tissues tested including CNS (manuscripts in preparation).

Direct demonstration of lectin-mediated delivery of IDUA to the brain has recently been verified by
fluorescence imaging studies (Figure 2; unpublished results). In order to compare RTB-mediated versus
M6P-mediated delivery of IDUA, eight weeks old heterozygous IDUA+/- mice were intravenously
injected with 2mg/kg of fluorescently labelled (IRDye® 800CW) IDUA:RTB or mammalian-cell-derived
IDUA (mcd-IDUA, R&D Systems). An age-matched untreated animal was used as a negative control.
Mice were analyzed at 24 h, a time previously demonstrated to have no residual enzyme activity
in serum after IDUA:RTB infusion at this dose, [65]. At harvest, animals were perfused with saline,
and the three cerebrums were imaged together for fluorescence in the near-infrared (NIR) spectrum
using a Li-Cor® imager. As shown in Figure 2A, dorsal and ventral images of the brains from
mice treated with IDUA:RTB show a significant increase in the florescence compared to brains from
non-treated animals and animals treated with fluorescently labeled mcd-IDUA. While midbrain and
interbrain localization may account for most of the fluorescence intensity, increased IDUA:RTB product
accumulation is evidenced throughout comparative regions of the brain including cerebral cortex.
In a second experiment, eight weeks old IDUA-/- mice were treated intravenously with 2mg/kg of
IDUA:RTB or phosphate buffer saline (PBS; negative control) and imaged by fluorescence-based
immuno-histochemistry. Four hours post-injection the mice were perfused with PBS, and the brains
harvested. Cryo-sliced brain sections were immuno-stained with rabbit polyclonal anti-RTB antibodies
and anti-rabbit CY7 antibodies. Hippocampus and cerebellum regions were selected for imaging
as shown in Figure 2B,D. RTB protein staining was associated with multiple cell types supporting
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trans-BBB delivery and efficient penetration of the molecule into different regions within brain. Image
statistics analysis demonstrated significant differences in the means of intensity values of RTB staining
in hippocampus (B:2835 ± 1.15 C:1283 ± 0.19) and cerebellum (D:2183 ± 1.22 E:1481 ± 1.53) for both
regions; p < 0.0001 by t-test. These studies validate the delivery of therapeutics to the CNS and
demonstrate broad distribution of the enzyme across different cell types within the brain tissue.
They also corroborate the therapeutic outcomes of the long-term treatment in the MPS I mouse model
that demonstrated reduction of disease substrate within the CNS and normalization of learning and
memory impacts [65].
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Figure 2. Delivery of IDUA:RTB to CNS. (A) Comparative imaging of brains following treatment
with labeled product. Brains of mice harvested 24 h after intravenous administration of 2mg/kg of
IRDye® 800CW-labelled IDUA:RTB or mammalian-cell-derived IDUA (mcd-IDUA, R&D Systems)
were analyzed by infrared fluorescence (800nm) imaging. A non-treated mouse was processed in
parallel as control. (B–E). Immunostaining of brain using anti-RTB antibodies. Brain slices from IDUA-/-
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mice treated intravenously with 2mg/kg of IDUA:RTB or PBS were stained with anti-RTB antibodies
(Green) and counterstained with DAPI (Blue). Images were acquired and processed using identical
settings. RTB protein was detected in hippocampus (B) and cerebellum (D) of treated animals. Sections
from PBS treated animals were carried in parallel as controls (C,E).

6. Immunogenicity of RTB-Mediated Treatment

Many patients, especially CRIM- individuals, develop anti-drug antibodies to their ERT drugs
that can alter uptake and biodistribution. Thus it is of interest to assess the immunogenicity of the
enzyme:RTB fusions in treated animals. In long-term administration trials with RTB-enzyme fusions,
anti-RTB and anti-cargo enzyme immunoglobulin levels in terminal serum have been measured by
ELISA. Consistent with data for infusions with recombinant mammalian-cell-derived enzyme [66–68],
elevated levels of total IgGs reacting against the cargo were detected in the respective KO mice treated
with enzyme:RTB. In contrast, ELISA using recombinant RTB as a capture molecule shows no antibody
response against the RTB lectin carrier [63,69]. This lack of immunogenicity of RTB is intriguing
and has significant implications for lectin platform technology [70]. Low immunogenicity to RTB
(as opposed to RTA) has been noted previously in ongoing efforts by public health and biodefense
investigators to develop a protective vaccine against ricin toxin [71,72]. Efforts to use RTB alone as a
protective antigen have been unsuccessful and it has been reported that out of the few identified RTB
antibodies, only a very small proportion are capable of neutralizing the toxin uptake [57]. The two
carbohydrate recognition domains of RTB are separated by approximately 75Å [73], making it difficult
for a single antibody to occlude both domains simultaneously [55]. Rapid RTB degradation within
lysosomes may also contribute to low immunogenicity [59,63,70]. Of significance for ERT strategies,
the presence of ADA directed against the cargo protein did not block RTB-mediated uptake of the fusion
protein (in contrast to mcd-enzyme) into patient fibroblasts or in enzyme-immunized KO mice [64].
Analogous corrective doses of the enzyme were delivered by RTB to all organs tested, including the
CNS, in enzyme-immunized KO mice [64,70]. These promising preliminary data suggest that RTB
may mitigate impacts of ADA in chronically treated patients and maintain critical biodistribution and
treatment efficacy of its enzyme cargo with long-term use.

7. Summary

The RTB lectin displays significant promise as a carrier module for enzyme replacement therapeutics
and other macromolecular drugs requiring broad biodistribution throughout the body, intracellular
delivery, transport across multiple cell layers, and access to hard-to-treat tissues such as the brain.
In addition to its potential to treat the key cells of the CNS and musculoskeletal systems, RTB has
other beneficial features including a large payload capacity, distinct receptor-independent tissue
biodistribution, rapid degradation upon lysosomal delivery, and low immunogenicity. Considering the
overall pharmaceutical market, small molecules have been traditionally used for drug development.
Research and development efforts have not traditionally favored proteins as therapeutics candidates
due to delivery constraints, especially in pathologies with orthopedic, cardiovascular, neurological,
and ocular manifestations. Lectin-mediated delivery technology could provide a novel platform for
the development of treatments using molecules that had thus far been considered improbable for
therapy. LSD therapies encounter different obstacles due to a variety of diseases with different organ
system involvement [74] and current treatment options suffer from this pathological heterogeneity.
The majority of LSD remains without an effective therapy, particularly those with CNS involvement [5].
Thus, the societal burden of these and thousands of other rare diseases that have no present treatment
options could potentially be benefited by this platform technology. Scientifically, this lectin-based
macromolecule delivery system also opens a whole new avenue of possibilities for research in studying
the function of the brain and central nervous system. In the future, a diverse array of experimental
proteins, nucleic acids, and other large molecules could be delivered to the brain as therapeutics or as
probes in studies directed towards understanding how the brain functions.
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