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Abstract: Cancer is thought to be caused by a sequence of multiple genetic and epigenetic alterations which occur in one 

or more of the genes controlling cell cycle progression and signaling transduction. The complexity of carcinogenic 

mechanisms leads to heterogeneity in molecular phenotype, pathology, and prognosis of cancers.  

Genome-wide mutational analysis of cancer genes in individual tumors is the most direct way to elucidate the complex 

process of disease progression, although such high-throughput sequencing technologies are not yet fully developed. As a 

surrogate marker for pathway activation analysis, expression profiling using microarrays has been successfully applied for 

the classification of tumor types, stages of tumor progression, or in some cases, prediction of clinical outcomes. However, 

the biological implication of those gene expression signatures is often unclear.  

Systems biological approaches leverage the signature genes as a representation of changes in signaling pathways, instead 

of interpreting the relevance between each gene and phenotype. This approach, which can be achieved by comparing the 

gene set or the expression profile with those of reference experiments in which a defined pathway is modulated, will im-

prove our understanding of cancer classification, clinical outcome, and carcinogenesis. In this review, we will discuss re-

cent studies on the development of expression signatures to monitor signaling pathway activities and how these signatures 

can be used to improve the identification of responders to anticancer drugs. 
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INTRODUCTION 

 In human cancer development, the accumulation of ge-
netic mutations by DNA damage, cellular stress, and aging 
causes the deregulation of key molecules involved in cell 
signaling cascades, which leads to hyperactivate or inactivate 
signaling pathways. This deregulation results in accelerated 
and uncontrolled cell cycle progression triggering tumor 
initiation and growth [1]. 

 Somatic mutations in human cancers have been system-
atically surveyed in recent years by a high-throughput geno-
typing technique [2-5]. According to a study in which 13,000 
genes in human cancers were sequenced, each tumor accu-
mulated 90 mutations on average, although the majority of 
them are likely to be unrelated to cancer development [6]. 
Understanding pathway deregulation in cancer cells and the 
identification of biomarkers to monitor oncogenic signaling 
activity are essential for the development of targeted cancer 
therapy. 

 Although detecting mutations in all cancer genes is a 
straightforward approach to measure oncogenic pathway 
activities, current genotyping techniques are still not suitable 
for this purpose. In addition, multiple and complex mutations 
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of cancer-related genes across the several signaling pathways 
make it difficult for us to determine which pathway is acti-
vated and dominantly contributes to cancer progression. 
Considering that most cellular signaling pathways are regu-
lated at the protein level, such as by phosphorylation/dephos- 
phorylation, proteomics markers might more directly reflect 
the pathway status [7]. However, despite requiring simulta-
neous analyses of multiple proteins to accurately determine 
the activation status of an oncogenic pathway, current tech-
nology does not allow us to do multiplex assays, especially 
in clinical samples. Alternatively, the identification of a set 
of genes whose expression pattern represents the status of an 
oncogenic pathway can serve as a surrogate marker to moni-
tor their activity. Owing to microarray technology, which has 
become more sophisticated in the last ten years with higher 
sensitivity, selectivity, and reproducibility compared to other 
Omics technologies, various signaling pathway signatures 
have been developed. Moreover, since the activation of most 
oncogenic signaling results in the transactivation of genes 
mediated by a key transcription factor, it would be reason-
able to use an expression signature as a surrogate biomarker 
to monitor oncogenic pathway activation. 

GENE EXPRESSION SIGNATURE AS A PATHWAY 

MARKER 

 Recently, an increasing number of expression profiling 
studies in oncology have been performed in order to eluci-
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date signaling pathway activation mechanisms in cancer cells 
(Table 1). Activation or inactivation of signaling pathways 
affects gene expressions via downstream transcription fac-
tors and their regulatory genes, for example -catenin/TCF 
in the Wnt pathway and oncogenic Myc in the RAS path-
way. Thus, the pattern of gene expression changes observed 
in cancer cells is a reflection of intracellular signaling activi-
ties involved in carcinogenesis and/or drug sensitivity. 

 Although one of the intrinsic problems of microarray 
analysis is that a signature gene set contains some false posi-
tives by nature of high throughput, current advances in con-
trolling the false discovery rate have overcome this problem 
to some extent, solidifying the status of expression profiling 
as the gold standard among non-biased genome wide ap-
proaches [8]. However, discovering the biological connec-
tion between genes identified by microarray and their pheno-

Table 1. Examples of Pathway Signatures Developed by Various Methods 

Pathway Species Materials Method Reference 

E2F, Src, Myc, Ras, -catenin human cell line exogenous overexpression [36] 

EGFR human cell line EGFR inhibitors treatment [65] 

EGFR human cell line EGFR mutant vs. WT [25] 

PTEN human HEC-151 cells exogeneous expression [66] 

PTEN human breast cancer PTEN IHC positive vs. negative [21] 

PTEN human prostate cancer xenograft, glioblastoma PTEN loss vs. positive [22] 

PTEN mouse intestinal polyp conditional inactivation [67] 

AKT/mTOR mouse ventral prostate AKT1 transgenic + mTOR inhibitor treatment [38] 

Myc mouse, human prostate cancer Myc transgenic [68] 

-secretase human cell line -secretase inhibitor treatment [33, 69, 70] 

BRAF human cell line BRAF mutant vs. WT [17] 

BRAF, KRAS human colorectal cancer BRAF mutant vs. KRAS mutant [54] 

KRAS mouse lung cancer KRAS activation model vs. WT [29] 

RAS human cell line Ras Inhibitor treatment [82] 

MAPK human cell line exogeneous expression, EGF treatment [35] 

p53 human breast cancer p53 mutant vs. WT [20] 

p53 human cell line siRNA [31] 

RB mouse hepatocellular carcinoma carcinogen induced RB+ vs. RB- tumor [28] 

RB mouse fibroblast RB family null fibroblasts vs. WT [71] 

E2F human cell line exogeneous expression [72] 

E2F mouse cell line exogeneous expression [73] 

E2F rat cell line exogeneous expression [74] 

TGF  human cell line DACH1 expression [75] 

TGF  human cell line TGF  treatment [76] 

TCF human cell line exogeneous expression of TCFs [30] 

-catenin mouse skin exogeneous expression [77] 

-catenin mouse intestinal crypts KO vs. WT [78] 

GLI1, GLI2 human HeCaT keratinocyte exogeneous expression [79] 

p53, RelA, ATM human cell line siRNA [80] 

JNK human keratinocyte JNK inhibitor treatment [32] 

Interferon human peripheral blood cells Interferon treatment [81] 
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typic effect remains elusive. Several analytical tools have 
been developed to help us understand the biology of the sig-
nature, such as GoMiner [9] and the gene set enrichment 
analysis (GSEA) [10, 11], which are used to find which an-
notations are enriched in a set of genes. Pathway analysis 
tools, for example Ingenuity and MetaCore, are often used to 
identify relationships among the signature genes, such as 
activation, inhibition, and binding [12-14]. The problem with 
these types of analyses is that stand-alone analysis of mo-
lecular profiling does not give us information about which 
pathways are activated or inactivated under specific condi-
tions. 

 Accumulating data for pathway signatures is expected to 
address the issue on how to measure pathway activity by ex- 
pression profiling (Fig. 1). In this review, we define a path-
way signature as a set of genes whose expression changes 
are correlated with the activity of a signaling pathway. Ide-
ally, a pathway signature should be regulated by only one 
specific pathway. If such genes exist for each pathway, we 
can detect signaling perturbation in any samples regardless 
of tissue type and species. Practically, the expression of any 
given gene is affected by more than one pathway. Therefore, 
the development of signatures, which are robust in as many 

tissue types as possible, is preferable. In order to estimate 
pathway status, the expression pattern of the pathway signa-
ture in the query profile is tested for whether the anti-
correlation between up and down signatures is statistically 
significant or not. The advantage of using a pathway signa-
ture to predict pathway activation is that we will be able to 
identify functional defects in the signaling pathway, while 
genetic mutation does not necessarily lead to the functional 
deregulation. Another advantage of this approach is that we 
do not need to know the biological relevance of each signa-
ture gene to the pathway. Rather, statistically accurate pre-
dictions are more crucial to practically use the pathway sig-
nature. 

STRATEGY TO DEVELOP PATHWAY SIGNATURES 

Comparison of Expression Profiles between Mutant vs. 
Wild-Type Cells 

 Pathway signatures are commonly developed by compar-
ing gene expression levels between baseline samples and 
activated samples. Examples include the comparison be-
tween tumors harboring a gene mutation vs. those without 
the mutation, and cell lines with and without exogenous gene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Methods to develop pathway signatures. Gene expression regulated by signaling pathways can be detected by comparing pathway-
activated vs. quiescent cells or baseline-level vs. inactivated cells using gene expression microarrays (See text for detail).  
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expression. Many mutations are known to lead to deregu-
lated activation of one or more oncogenic pathways, fol-
lowed by the transactivation of downstream genes which will 
be identified as a pathway signature. For example, the so-
matic mutation V599E in BRAF, commonly observed in 
melanoma, is known to activate the MEK-ERK cascade con-
stitutively [15, 16]. Expression profiling of melanoma cell 
lines with or without the BRAF mutation revealed signature 
genes which allowed for the classification of cells as mutant 
or wild-type [17].  

 The signature discovery method based on mutation status 
can be applied not only to mutations which activate a spe-
cific pathway, but also to those which inactivate the path-
way. Mutations in the tumor suppressor gene p53 usually 
cause a defect in transactivating its regulatory genes in re-
sponse to cellular stress or DNA damage [18, 19]. By com-
paring the expression profiles of p53 mutant and wild-type 
breast cancers, 32 signature genes differentially regulated 
between the two groups were identified. It was shown that 
the p53 classifier outperformed DNA sequence based p53 
determination in predicting prognostic significance and drug 
response [20]. Instead of gene mutations, the detection of 
protein expression levels has also been used to measure 
pathway activity. Protein expression levels of key molecules 
in a pathway often regulate the overall pathway activity. Saal 
et al. determined PTEN (phosphatase and tensin homolog) 
signaling activity in breast cancers by immunmohistochemis-
try of the protein, and found a set of genes whose expression 
levels correlate with the protein level of PTEN as a 
PETN/PI3K pathway signature [21]. Another group inde-
pendently identified a classifier for the loss of the PTEN 
which is composed of nine genes using xenograft models. 
After the identification of this classifier, they also confirmed 
that the protein level of IGFBP2, which changed most sig-
nificantly among the nine signature genes, was inversely 
correlated with PTEN status and suggested that secreted 
plasma IGFBP2 could be a candidate biomarker for PI3K 
pathway activation [22]. 

 Instead of analyzing clinical tumor samples, cancer cell 
lines can be used to obtain expression profiles of mutant and 
wild-type cells, because there are several advantages to using 
cell culture over tumor samples. First, the quality of microar-
ray data of cell lines is generally higher than that of clinical 
tumor samples, because RNAs from tumor samples, which 
were often retrieved from formalin-fixed, paraffin-embedded 
specimens, are degraded to some extent. In addition, tumor 
samples used in profiling experiments may be contaminated 
with various types of normal cells [23] and possibly a mix-
ture of heterogeneous tumor cells. Third, the mutation status 
of major oncogenes and other genes involved in oncogenic 
signal transduction has been determined for commonly used 
cell lines, and our knowledge of mutations is rapidly accu-
mulating thanks to the Cancer Genome Project [24]. One 
prominent study to identify a pathway signature by leverag-
ing expression profiles of cell lines with or without onco-
genic mutations was conducted by Choi et al. in order to find 
a set of genes which represent EGFR mutation status. They 
analyzed the profiles of eight non-small cell lung carcinoma 
(NSCLC) cell lines with known EGFR mutation status to 
identify genes regulated by constitutive activation of the re-
ceptor [25]. Subsequently, they analyzed the expression pro-

file of NSCLC patients by using the EGFR signature as a 
probe, and found that a subset of the clinical samples showed 
a coherent expression pattern, indicating that the EGFR mu-
tation signature developed with cultured cell lines could po-
tentially predict the mutation status of clinical samples. 

 The discovery of signature genes by mining expression 
profiles of cancer cells is of great significance in that the 
signature genes can predict the activation/inactivation status 
of the cancer signaling pathway more accurately compared 
with just looking at single gene mutations. In general, a sig-
naling pathway is regulated by several key molecules in-
volved in the pathway. Therefore, the deregulation of any 
key molecule results in similar pathway hyperactivation/ 
inactivation. Differences in predicted pathway inactivation 
by the signature and real genetic status have been reported 
and discussed. Miller et al. reported that the accuracy of p53 
signature classifier genes in predicting the mutation status in 
human breast cancer was about 85%, which is statistically 
significant, but that 20 out of 251 tumors were consistently 
misclassified by different methods [20], suggesting that other 
genes affect the p53 pathway. Since some tumors overex-
press MDM2 or MDM4, negative regulators of p53 that ex-
hibit a similar phenotype to p53 mutant tumors, we could 
speculate that the p53 signature might classify those samples 
into p53 defective tumors. Another example showed that the 
PTEN loss signature, developed from the IHC of 105 breast 
tumors, classified 44% of PTEN positive tumors as PTEN 
negative when the signature was applied to test samples [21], 
suggesting that PI3K pathway activity is at least partially 
regulated by other mechanisms, which include gain-of-
function mutations in PI3KCA, and overexpression or hy-
perphosphorylation of PDK1, AKT1, and mTOR. Impor-
tantly, in both of these examples, signature genes show a 
better correlation with the prognosis of the patients than the 
mutation status, which means the expression pattern of sig-
natures probably represents pathway activation more accu-
rately than an analysis of genetic mutations. 

 One of the potential issues regarding the development of 
signature genes utilizing cell lines or clinical tumors with 
naturally occurring genetic mutations is the mutually exclu-
sive relationship between mutations. For example, EGFR 
and KRAS mutations are reported to be mutually exclusive 
in non-small cell lung carcinoma [26], which means that 
genes selected by their correlation with EGFR mutation 
status may be not regulated by EGFR, but instead regulated 
by KRAS. In the case of EGFR and KRAS, both regulating 
the RAF-MEK-ERK pathway, it is difficult to discriminate 
genes specific to KRAS and those controlled by both KRAS 
and EGFR. When developing pathway signatures using het-
erogeneous samples, the effects of other mutations should be 
removed as much as possible. One of the methods to address 
these issues is to make use of genetically engineered mouse 
(GEM) models. Advances in sophisticated transgenic or 
knockout techniques have enabled the development of tumor 
models which are useful for studying the mechanisms of 
tumorigenesis and metastasis, and have been utilized as can-
cer models which mimic human clinical tumors [27]. Liver-
specific knockout of the RB gene led to the identification of 
genes up-regulated in RB-deficient hepatocellular carcinoma 
(HCC) but not in RB-positive HCC [28]. The expression 
differences of the signature developed with the GEM model 
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were purely derived from differences in the genetic status of 
RB, since they possess an isogenic genetic background. 
Whether or not the GEM models recapitulate human cancers 
is not clear, but oncogenic signaling is regulated similarly 
between mouse models and human cancer according to 
mRNA profiling analysis, as shown by Sweet-Cordeo et al. 
A comparison of a mouse lung cancer model with K-ras mu-
tations and human lung cancer with KRAS mutations re-
vealed that mouse signature genes were also consistently 
regulated in humans [29]. The GEM can provide the signa-
ture gene for the signaling pathway, which excludes the po-
tential problem of mutually exclusive mutations, which are 
an intrinsic issue when using human cancer cells. 

Transient Regulation of Signaling Pathways by Exoge-

nous Expression or Suppression 

 An intracellular signaling pathway can be transiently 
regulated by extracellular stimuli, exogenous gene activation 
or suppression, or the inhibition of proteins. Thus, the major-
ity of pathway signature studies have employed transient 
perturbation of signal transduction by various methods. Ex-
ogenous gene expression is particularly suitable for monitor-
ing pathways regulated by transcription factors or other pro-
teins directly affecting the mRNA levels of target genes. Wnt 
signaling is canonically mediated by -catenin and TCF 
transcription factors. Overexpression of dominant negative 
TCFs in a colorectal cell line, where the Wnt pathway is 
constitutively active, has identified TCF/ -catenin target 
genes which can be utilized as signature genes to represent 
the activity of the Wnt/ -catenin pathway. The significance 
of these genes is supported by the fact that the majority of 
them are upregulated in colon adenoma or carcinoma [30]. 

 Small interfering RNAs (siRNAs), which are commonly 
used to silence the gene of interest, are also useful in path-
way signature development. When p53-dependent expres-
sion was studied using human mammary epithelial cells and 
p53 positive breast cancer cell lines treated with p53 short 
hairpin RNA, the expression pattern of the resultant signa-
ture clearly correlated with the p53 status of breast tumors 
[31]. Small molecule compounds, which inhibit or activate 
specific target proteins, also provide opportunities to develop 
pathway signatures, such as EGFR inhibitor or HER2 inhibi-
tor for growth factor signaling, and gamma-secretase inhibi-
tor for the Notch pathway [32, 33]. 

 Finally, for pathways stimulated by extracellular ligands, 
treatment of cells with the ligands is a simple but reliable 
method to detect expression changes. Discovering signatures 
with this method could reduce the number of false positive 
signature genes, while other pathway regulating modalities 
such as siRNAs or small molecule compounds may induce 
off-target effects and may cause artificial aberrant expression 
patterns which will not be observed in vivo. Examples of this 
type of study include identification of transforming growth 
factor-  (TGF- ) responsive genes and epidermal growth 
factor (EGF) signatures [34, 35]. 

 One of the fundamental questions we have to keep in 
mind when developing a pathway signature is what the dif-
ference between gene mutation signatures and those identi-
fied by transient up- or downregulation of the pathway 
("transient signature" hereafter) is. In some cases, transient 

signatures show a consistent pattern with gene mutation or 
amplification status [31, 35]; however, expression changes 
of transient signatures may not be stable in cells over the 
time-course of exogenous gene expression, because the 
changes induced by transient expression change again due to 
positive and negative feedback loops of the signaling path-
way. Accordingly, a common problem in transient regulation 
is to find the appropriate time to measure expression. Cur-
rently, transient signatures have not yet been well applied to 
in vivo studies. Oncogenic pathway signatures developed 
from transient overexpression experiments have been corre-
lated with sensitivity to chemotherapeutic drugs in cell lines 
[36, 37], but further studies will be required to confirm cor-
relations between the signatures and the pathway status in 
vivo. 

 Some studies have combined more than one method to 
obtain reliable signatures which are not affected by differ-
ences in species or development methods. The profiling of 
AKT1 transgenic and wild-type mice, with or without 
mTOR inhibitor treatment, identified genes regulated by 
AKT1 expression and reversely regulated by the mTOR in-
hibitor rapamycin [38]. Meta-analysis which further com-
bined the AKT1/rapamycin data with publicly available 
breast tumor data sets revealed that a subset of the AKT1-
regulated genes, upregulated by AKT1 and decreased by 
rapamycin, were co-regulated in human tumors and were 
associated with ER negative status and poor prognosis, but 
the other subset downregulated by AKT1 was not [39], indi-
cating that a combination of different methods produces a 
biologically more relevant gene set. 

STATISTICAL PREDICTION OF PATHWAY ACTIV-

ITY BY SIGNTAURE GENE EXPRESSION 

 Practical issues in pathway signatures include how to 
select genes from tens of thousands of genes on a microarray 
and how to predict the activation status in new samples from 
expression data of the signature genes with appropriate sta-
tistical methods. An expression signature usually consists of 
up- and downregulated genes, similar to a classification, 
prognosis, or drug sensitivity signature. Thus, statistical 
methods used for gene selection and prediction are common 
to those used in the other types of signature analysis. For 
mutation status prediction, a variety of classification meth-
ods can be used, such as linear discriminant analysis, k-
nearest neighbors, and support vector machine [20]. As for 
intracellular signaling activity, which is usually not a cate-
gorical variable like ON or OFF but rather a metric variable, 
scoring or p-values calculated from expression levels of all 
signature genes are used as a prediction parameter. As pa-
rameters, average or sum of log ratio measures and nearest 
centroid classifiers were found to be useful in several reports 
[21, 28, 40]. The KRAS expression signature, developed 
from a mouse tumor model, was shown to be significantly 
enriched in KRAS mutated human lung adenocarcinoma 
data sets by a rank order-based statistical test to detect subtle 
but significant similarity hidden in genome-scale profiles 
[29]. Bayesian regression with singular value composition 
was shown to be useful, given that signatures developed 
from transient expression experiments in cell lines predicted 
the pathway status of non-treated cell lines by this method 
[36, 41]. 
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POSITIVE AND NEGATIVE FEEDBACK LOOPS OF 

THE PATHWAY 

 The complexity of signaling network regulation is mainly 
derived from positive and negative feedback regulation of 
upstream components of the pathway by downstream effec-
tors, and from cross-talk between pathways. In developing 
pathway signatures using perturbagens, negative feedback by 
the target or by downstream components can be problematic, 
because it can reverse the expression change of the signa-
tures. For example, reversible Myc transgenic mice showed 
that many of the genes induced within 24 hr after Myc acti-
vation were repressed after 21 days [42], which means the 
signature at 24 hr is not suitable to predict constitutively ac-
tive Myc signaling. 

 Negative feedback also exists in PI3K and MAPK path-
ways. It is known that p70S6K1, a phosphorylation target of 
mTOR, phosphorylates and inactivates IRS, leading to AKT 
activation. In accordance with this, mTOR inhibition induces 
AKT activation [43], probably due to negative feedback by 
p70S6K1. In the MAPK pathway, RSK inhibits ERK, which 
is a downstream kinase of RSK in the RAS pathway during 
Drosophila development [44]. 

 The mechanism of transcriptional negative feedback in 
EGF signaling has been analyzed in depth by time-course 
experiments [45]. After twenty minutes of EGF stimulation, 
HeLa cells began to express immediately early genes (IEGs) 
such as transcription factors FOS, JUN, and EGR1, followed 
by the expression of "delayed early genes" (DEGs) between 
20 to 240 minutes after stimulation. Transcription factors in 
DEGs repress the activity of AP-1 and EGR1 to attenuate 
their own transcription as a negative feedback.  

 We have to carefully design experiments with feedback 
loops in mind when a pathway signature is developed. For 
example, although transient exogenous gene expression 
might clearly highlight expression changes with wider a dy-
namic range or larger fold-change, it might be reasonable to 
apply the methods only to genes such as p53 which work 
transiently even in cancers, the expression of which is regu-
lated in response to DNA damage or cellular stress. For con-
stitutively activated or inactivated genes such as Myc or 
PTEN, the power of transient perturbation might be limited 
due to the strong feedback effect of the pathway. 

APPLICATION OF PATHWAY SIGNATURES TO 

CANCER THERAPY 

Predicting Responses to Pathway Inhibitors by Signa-
tures 

 The basic idea of a pathway signature is that the expres-
sion pattern of the signature for a certain oncogenic pathway 
can monitor the activity of the aberrant pathway even though 
its deregulation is caused by different types of genetic muta-
tions in the same pathway. For instance, a pathway signature 
developed for PI3K might detect each instance of pathway 
activation caused by AKT, PTEN, or mTOR, which are lo-
cated in the singular pathway. When there are two or more 
genes whose mutations affect the signaling, genes commonly 
regulated by those mutations are considered to be a pathway 
signature. Estimating the pathway activation level by the 

pathway signature will allow us to select responder patients 
and predict the efficacy of pathway inhibitors (Fig. 2). 

 In practice, however, the effects of two different muta-
tions in one pathway on expression profiles are usually not 
exactly same because of branches, convergences, or feed-
back loops. In anti-cancer drug development, it is of signifi-
cant importance for patient stratification and the prediction 
of drug responses to decipher which genes are responsible 
for oncogenic pathway activations, and also important for 
developing various sets of pathway signatures fine-tuned for 
individual mutations in the same pathway.  

 Receptor tyrosine kinases transduce extracellular signals 
into intracellular responses via PI3K and MAPK pathways, 
components of which are thought to be drug targets. Tumor 
cells whose growth depends on constitutive kinase activity of 
EGFR caused by mutation are sensitive to EGFR inhibitors, 
such as gefitinib and erlotinib, whereas those with the wild-
type gene do not respond to the drugs [46, 47]. On the other 
hand, activating mutations in KRAS, which converts signals 
from EGFR into MAPK and PI3K pathways in normal cells, 
predict resistance to EGFR inhibitor [48, 49], because mu-
tant KRAS can activate downstream pathways and lead to 
cell growth in a ligand-independent manner (Fig. 3). Simi-
larly, HER2-overexpressing breast cancer patients with 
PIK3CA mutation or low PTEN expression, both of which 
result in PI3K pathway activation, are resistant to Herceptin, 
a HER2 inhibitor [50]. In contrast, PTEN-deficient tumors 
and AKT1-induced prostate intraepithelial neoplasia are sen-
sitive to inhibition of mTOR, which is a downstream effector 
of the PI3K/AKT pathway [38, 51]. 

 These observations indicate that as a rule, inhibition of 
signaling downstream of the pathway activator results in 
increased sensitivity, whereas inhibition upstream of the ac-
tivator does not. Therefore, activation of the pathway up-
stream of the target molecule predicts the response to the 
inhibitor. Based on these concepts, it is crucial to develop 
biomarkers which discriminate various deregulations in a 
single signaling pathway, or "step-specific markers", to real-
ize personalized medicine. 

 There are several examples of identifying signatures 
which discriminate different activation mechanisms in a sin-
gle signaling pathway. Activating mutations in RAS family 
and RAF family genes cause various cancers [52, 53]. Be-
cause KRAS and BRAF mutations are mutually exclusive in 
cancer, Kim et al. explored the difference in gene expression 
between the two mutant groups in colorectal cancer cell lines 
[54], which would be useful to classify responder/non-
responders for RAS or BRAF inhibitors. Creighton et al. 
identified genes commonly regulated by overexpression of 
EGFR, or constitutively active HER2, RAF, or MEK in 
breast cell lines as a "MAPK signature", which showed hy-
peractivation of the MAPK pathway in estrogen receptor 
(ER) negative breast cancers [35]. Furthermore, they identi-
fied the expression signatures specific to EGFR or HER2 
activation. Although both of the receptors stimulate down-
stream EGF signaling, the receptor-specific signatures re-
vealed that the MAPK pathway is activated by either EGFR 
or HER2, rather than both, and that EGFR is the main driver 
of MAPK signaling in ER negative breast cancers. Even  
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though the aforementioned molecules work in the same 
EGFR/RAS/MAPK signaling cascade, the consequent ex-
pression changes caused by the deregulation of each mole-
cule differ from each other. Further elucidation and devel-
opment of pathway signatures leads us to understand more 
about the similarities and differences of the functional effects 
of the mutations in cancer-related genes, which will enable 
the selection of the right drugs for the right patients. 

From Single Gene Expression Profiling to Pathway Pro-

filing 

 Our knowledge about gene expression changes for vari-
ous pathways is increasing as expression profile data are 
accumulating. With signatures for oncogenic and cancer re-

lated pathways, we will be able to classify tumors in terms of 
intracellular signaling and better understand the mechanisms 
of tumorigenesis, invasion, and metastasis, according to 
pathway activation patterns. Oncogenic pathway activities 
predicted by signatures, which have been developed by ex-
ogenous expression of Myc, Src, Ras, E2F3, and -catenin, 
revealed that cancer cell lines showed different pathway ac-
tivation patterns [36]. This type of pathway profiling analy-
sis, which monitors various cancer-related pathways in paral-
lel, is expected to be more reliable in predicting pathway 
activity than by using only one set of genes. With pathway 
profiling that deals with multiple signaling pathways simul-
taneously, we will be able to classify tumors based on the 
activation/inactivation score of each cancer-related pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Expected application of pathway signatures to personalized medicine. In many diseases including cancer, the disorder is caused by 

deregulation of cellular signaling. Pathway signatures can be a novel tool to assess signaling statuses. The pathway activation/inactivation 

status in each patient will be monitored by the expression profile and a set of pathway signatures. Identification of the causative pathway 
allows us to select the "right" drug to inhibit the pathway.  
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INTEGRATION OF PATHWAY SIGNATURES WITH 

OTHER –OMICS  

Chemogenomics 

 Other than pathway signatures, there are other types of 
genome-wide pathway analyses. Among them, expression 
profiling of cell lines treated with diverse drugs, often called 
chemical genomics or chemogenomics, can be potentially 
integrated with and is complementary to pathway regulation 
profiles. A chemical genomics study to link gene expression 
to drug sensitivity was first published in 2000, when more 
than 70,000 compounds were tested against an NCI60 cell 
line panel and the pre-dose mRNA profiles were determined 
[55]. More recently, this approach was expanded to post-
dose profiles for 164 perturbagens, to identify target path-
ways of the drugs [56-58]. By searching a "Connectivity 
Map", we can identify compounds by which the pathway is 
up- or downregulated, using a pathway signature of interest 
as a query. Or conversely, new pathway signatures can be 
built from the data and applied to other profiles to see 
whether the pathway is regulated or not. Another advantage 
to using a Connectivity Map is that we can understand the 
signaling pathways for bioactive target-unknown com-
pounds. After identifying the compound of interest with the 
required phenotype, we analyze the expression profile of 
samples treated with the compound. The expression pattern 
is used as a query against the vast majority of profiling data 
treated with compounds containing pathway specific inhibi-
tors or the pathway signature developed for each pathway. 
This scheme will allow us to identify the involved pathway 
of target-unknown bioactive compounds. 

Proteomics 

 Proteomics technology also has identified a set of pro-
teins which distinguish activated and inactivated signaling 
pathways. Goss et al. performed a phosphoproteomics analy-
sis to identify phosphoproteins highly expressed in chronic 
myeloid leukemia with BCR-ABL protein [59]. The phos-
phoprotein signature for BCR-ABL could serve as novel 
disease biomarker or responsive-marker. Compared with the 
gene expression signature, protein markers are more proxi-
mal to the causative mutated genes. Therefore, a biological 
interpretation of the phosphoprotein signature is more feasi-
ble. In addition, the generality of the protein signature re-
gardless the tissue type and cell type is expected to be high 
since the observed phospho-changes in the pathway are more 
proximal to the causative mutative genes.  

 Protein microarray is also applicable to studying signal-
ing pathways; it detects the interaction of proteins with pro-
teins, nucleic acids, or other types of molecules [60-62]. 
EGFR receptors, when activated, phosphorylate each other at 
tyrosine residues, which in turn interact with SH2 or PTB 
domains of downstream proteins to transduce extracellular 
signals. In order to identify proteins which interact with each 
phosphorylated site of four EGF receptors, protein microar-
rays consisting of almost all of the SH2 and PTB domains in 
the human genome were tested against each phosphorylated 
site in EGFRs, and not only identified many new interac-
tions, but unexpectedly revealed that EGFR and HER2 
showed a more promiscuous pattern of interactions than 
HER3 as the affinity thresholds were lowered, suggesting a 
reason for why EGFR and HER2 are frequently overex-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Response to pathway inhibitors of tumor cells depends on the mechanism of pathway activation. (a) Tumor cells with EGFR muta-

tion are sensitive to EGFR inhibitor gefitinib or erlotinib, whereas those with RAS mutation are resistant to the same drug, because RAF-

MEK-ERK signaling is not inhibited by the drugs. (b) When the PI3K pathway is hyperactivated by PI3K mutation or by PTEN loss, tumor 

cells are sensitive to rapamycin, which inhibits mTOR downstream of the pathway. However, the HER2 inhibitor Herceptin cannot stop the 
deregulated signal, because it does not inhibit hyperactivation downstream. 
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pressed in cancers whereas HER3 is not [63]. Protein mi-
croarrays could highlight the distinctive role of receptor pro-
teins, and monitoring the downstream protein-protein inter-
action or resultant protein modifications would allow us to 
determine the activation level of a cancer-related pathway. 

Computer Simulation 

 As we have discussed so far, protein or phosphoprotein 
signatures are proximal to the causative mutation which in-
dicates the advantage of potential generality of the protein 
signature. However, the measurement of protein signatures 
consisting of multiplex protein markers might not be feasible 
for monitoring pathway activity in clinical samples. In con-
trast, gene signatures are somewhat distal from genetic muta-
tions; however, multiplex measurement of signature genes 
will be possible (theoretically genome-wide analysis is fea-
sible), which will generate robust prediction accuracy. 

 It is expected that mathematical modeling of signaling 
pathways will become increasingly important as genome 
level data increases. To understand the dynamics of 
EGF/nerve growth factor (NGF)-dependent ERK signaling 
networks, a simulation model was developed by integrating 
kinetics data from the literature and additional data from 
experiments. The simulation program predicted that a rapid 
increase of EGF or NGF causes transient ERK activation, 
whereas the final concentration of the growth factors deter-
mines the sustained activation level of the intracellular sig-
naling pathway; subsequently the predicted patterns were 
validated experimentally, demonstrating the power of using 
simulations to leverage both mathematical theory and ex-
perimental results [64]. This study indicates the importance 
of quantitatively predicting the response of cells to the sig-
nal. Moreover, considering that the activation of ERK leads 
to phosphorylation of transcription factors and subsequent 
transactivation of target genes, the integration of gene ex-
pression, protein expression/phosphorylation, and mathe-
matical modeling will be required to understand the entire 
mechanism from growth factor signal to cell proliferation 
control. Systems biology leveraging of computer simulations 
developed with a myriad of proteomics data and molecular 
profiling might allow us not only to select responder tu-
mors/patients, but also reveal the dynamic intracellular mo-
lecular events from the initial drug-protein interaction to the 
subsequent cellular catastrophic events caused by the drugs. 

CONCLUSION 

 Systems biology is an attempt to understand the living 
cells as systems, rather than a collection of individual genes 
and proteins. The rapid accumulation of transcriptomics, 
proteomics, metabolomics, and other –omics data resulting 
from the advent of large-scale technologies has provided 
investigators an opportunity to study the cell and its signal-
ing pathways as a system. 

 Deregulation of inter- and intracellular signaling path-
ways by genetic and epigenetic alterations plays a critical 
role in cancer initiation and progression. In the post-genome 
era, the complexity of the pathways is expected to be re-
solved by a systems biological approach instead of by study-
ing the functions of individual genes or proteins. Pathway 
signatures provide us with a novel approach to understanding 

the mechanisms of tumorigenesis, invasion, and metastasis, 
and are also promising biomarkers for drug sensitivity pre-
dictions. Accumulating evidence shows that a pathway in-
hibitor is effective when growth of the tumor cells depends 
on activation of the target protein or on activation upstream 
of the pathway. Therefore, identification of the responsible 
protein is a critical issue for delivering anti-cancer drugs to 
appropriate patients. 

 In the near future, it is expected that cellular signaling 
pathways will be reconstructed as a mathematical models for 
practical use. A protein interaction study using proteomics 
arrays showed that quantitative measurement of the kinetics 
parameters for each component is important for network 
modeling [64]. Time-course experiments using DNA and 
protein microarrays will help develop more reliable network 
models which include negative feedback loops and cross-talk 
between pathways [45]. 
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