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Remyelination is a naturally occurring response to demyelination and has a central
role in the pathophysiology of multiple sclerosis and traumatic brain injury. Recently
we demonstrated that a novel MRI technique entitled Relaxation Along a Fictitious
Field (RAFF) in the rotating frame of rank n (RAFFn) achieved exceptional sensitivity
in detecting the demyelination processes induced by lysophosphatidylcholine (LPC)
in rat brain. In the present work, our aim was to test whether RAFF4, along with
magnetization transfer (MT) and diffusion tensor imaging (DTI), would be capable of
detecting the changes in the myelin content and microstructure caused by modifications
of myelin sheets around axons or by gliosis during the remyelination phase after LPC-
induced demyelination in the corpus callosum of rats. We collected MRI data with
RAFF4, MT and DTI at 3 days after injection (demyelination stage) and at 38 days
after injection (remyelination stage) of LPC (n = 12) or vehicle (n = 9). Cell density
and myelin content were assessed by histology. All MRI metrics detected differences
between LPC-injected and control groups of animals in the demyelination stage, on day
3. In the remyelination phase (day 38), RAFF4, MT parameters, fractional anisotropy,
and axial diffusivity detected signs of a partial recovery consistent with the remyelination
evident in histology. Radial diffusivity had undergone a further increase from day 3 to
38 and mean diffusivity revealed a complete recovery correlating with the histological
assessment of cell density attributed to gliosis. The combination of RAFF4, MT and DTI
has the potential to differentiate between normal, demyelinated and remyelinated axons
and gliosis and thus it may be able to provide a more detailed assessment of white
matter pathologies in several neurological diseases.

Keywords: myelin, demyelination, remyelination, MRI, diffusion, rotating frame relaxation

Abbreviations: MRI, magnetic resonance imaging; MR, magnetic resonance; DTI, diffusion tensor imaging;
MT, magnetization transfer; RAFF, relaxation along a fictitious field; MTR, magnetization transfer ratio; LPC,
lysophosphatidylcholine; MD, mean diffusivity; FA, fractional anisotropy; RD, radial diffusivity; AD, axial diffusivity;
FSL, FMRIB’s Software Library; ROI, region of interest; OD, optical density.
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INTRODUCTION

Myelin is essential for the proper functioning of the central
nervous system. It not only accelerates the propagation of
electrical impulses along myelinated fibers, but it also provides
protection and nutrients to neurons (Saab and Nave, 2017).
Disturbances in the integrity of myelin can cause a wide variety
of motor, sensory and cognitive symptoms, and demyelination,
e.g., damage or loss of myelin sheaths has been associated with
several diseases including multiple sclerosis (Noseworthy et al.,
2000), Alzheimer’s disease (Nasrabady et al., 2018), and traumatic
brain injury (Armstrong et al., 2016a).

Remyelination is a natural regenerative response to
demyelination. Both acquired and genetic demyelinations
are followed by remyelination, and this has been found to
play an important role especially in multiple sclerosis (Prineas
and Connell, 1979; Hirano, 1989) and traumatic brain injury
(Armstrong et al., 2016b). Oligodendrocytes create new myelin
sheaths that cover the demyelinated axons; however, the newly
formed myelin sheaths are typically thinner than the original
myelin sheaths and/or may have a different structure and
altered conduction properties (Zhao et al., 2005; Franklin and
Ffrench-Constant, 2008). Remyelination is a key step in the
patient’s recovery process, as electrical impulses propagate
too slowly along demyelinated axons to allow normal brain
function. Non-invasive quantitative imaging of changes
in myelin content and microstructure can provide critical
information about demyelination and remyelination processes
and be useful for monitoring the progression of diseases and
responses to treatment.

There are several methods available which can be used for
imaging of demyelination, however, MRI is able to map myelin
only indirectly (Heath et al., 2018). Direct detection of myelin
is difficult as the movement restriction of lipid chains in the
myelin bilayer causes a fast relaxation decay of the MR signal,
although it may become more feasible by adopting zero echo time
imaging approaches (Wilhelm et al., 2012; Seifert et al., 2017).
Diffusion MRI, in particular diffusion tensor imaging (DTI),
monitors the microscopic motion of water molecules that occur
in brain tissues as a part of the diffusion process. As myelin
sheaths restrict water diffusion, DTI can detect abnormalities in
the structure of white matter, although it is not specific for the
myelin compartment as many other cell structures contribute to
the restriction of diffusion in tissue. Magnetization transfer (MT)
MRI is an indirect method that was proposed many years ago
for the detection of demyelination (Wolff and Balaban, 1989).
This method utilizes the exchange of magnetization between
the hydrogen nuclei of semisolid macromolecules and hydrogen
protons in free water; as a consequence, semisolid tissue
components such as myelin structures can modulate the MR
image contrast. One limitation to the use of MT for monitoring
myelin is that other macromolecular tissue components, as well
as changes in the water content due to edema, also affect the MT
contrast. Multi-exponential T2 can serve as a potential indicator
of the myelin content in white matter. However, the relative size
of the short-T2 component around 8–50 ms is defined as myelin
associated water, and this has often been interpreted as the myelin

content (Dula et al., 2010). While the water fraction of myelin
has been found to correlate with the myelin content, the exact
relationship between the short T2 component and the myelin
content is not well understood (Tozer et al., 2005).

A novel rotating frame relaxation method operating in non-
adiabatic regime, entitled Relaxation Along a Fictitious Field
(RAFF) (Liimatainen et al., 2010, 2011) in the rotating frame
of rank n (RAFFn) (Liimatainen et al., 2015), was recently
presented and shown to have excellent sensitivity for myelin
detection both in normal brain (Hakkarainen et al., 2016) and in
demyelinated lesions induced by lysophosphatidylcholine (LPC)
injections into the corpus callosum and in the dorsal tegmental
tract (Lehto et al., 2017) of the rat brain and in dysmyelination
(Satzer et al., 2015) in mouse brain. The correlation of relaxation
time constants detected with RAFF4 (TRAFF4) with the myelin
content obtained in a previous study (Lehto et al., 2017) was
ascribed to the increased sensitivity of RAFFn to slow/ultra-
slow motional regimes. These have correlation times of motion
in the ms range (Liimatainen et al., 2015; Satzer et al., 2015;
Hakkarainen et al., 2016), likely reflecting the exchange of
myelin associated water as well as the conformational dynamics
of methylene functional groups within myelin. The highest
correlation between relaxation time constants and the myelin
content was achieved with RAFF4 and RAFF5 techniques as
compared to T1, T2 and conventional spin-lock rotating frame
relaxation contrasts (Satzer et al., 2015; Hakkarainen et al.,
2016) in the rat brain. In addition, RAFFn provides the distinct
advantage of resulting in a substantially lower specific absorption
rate (SAR) as compared to conventional continuous wave (CW)
(Liimatainen et al., 2010, 2015).

While our previous work demonstrated the clear advantages
of RAFFn in the detection of demyelination (Lehto et al., 2017),
the process of remyelination was not assessed by multimodal
MRI. In the present work, we hypothesize that by combining
microstructural imaging, DTI, and methods specific to myelin
content, RAFFn and/or MT, it is possible to characterize both
the myelin content and the integrity of myelin sheaths during
remyelination. To test this hypothesis, we used LPC-induced
demyelination in the rat corpus callosum, and conducted a
longitudinal study using multiparametric MRI data during both
the acute demyelination and chronic remyelination phases and
compared the results with histological findings.

MATERIALS AND METHODS

Animal Model
A total of 26 adult male Sprague-Dawley rats (Charles River,
Germany; 300–350 g) were used in this study. Rats were
group housed with a 12 h light/12 h dark cycle and had
ad libitum access to food and water. All animal procedures
were approved by the Animal Ethics Committee of the
Provincial Government of Southern Finland and conducted in
accordance with the guidelines set by the European Commission
Directive 2010/63/EEC.

All surgical procedures were done under inhalation anesthesia
using 1.8–2.2% isoflurane in 30%/70% O2/N2O. To induce
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demyelinated lesions, stereotaxic injections of the LPC
solution (volume of 1.5 µl; concentration: 10 mg/ml; L-α-
lysophosphatidylcholine from egg yolk; L-4129 Sigma-Aldrich,
St. Louis, United States) were administered into the corpus
callosum of the rat brain with stereotactic coordinates of 0.4 mm
caudal from bregma, 1.4 mm left from bregma, and 2.6 mm from
the brain surface (n = 17). Control animals (n = 9) underwent the
identical protocol but were injected with 1.5 µl of vehicle solution
of 0.1 M sodium phosphate buffer solution instead of LPC.

Pilot Study
A pilot study was first performed to clarify the time course of the
demyelination/-remyelination process in the LPC model under
our experimental conditions. It has been previously described
that demyelination without an inflammatory reaction peaks at
day 3 after LPC injection (Waxman et al., 1979; Lehto et al., 2017).
However, it was our intention to determine the time course of
remyelination. In the pilot experiment, 5 LPC rats were imaged
at 7 T MRI (Bruker Pharmascan, Entlingen, Germany) with an
actively decoupled quadrature receiver rat head coil and volume
transmit coil pair every 2–3 days for 38 days using a high-
resolution T2-weighted fast spin-echo (FSE) sequence with the
following parameters: TR = 2.6 s, averages = 8, TEeff = 42.7 ms,
rare factor = 8, FOV = 25.6× 25.6 mm2, matrix size = 256× 256,
number of slices = 24 and slice thickness = 0.3 mm) with total
imaging time of 10 min 55 s. Immediately after the final scanning,
the animals were perfused for histology.

MRI Protocol to Study Demyelination
and Remyelination
The remaining rats (n = 21) were imaged on day 3 after the
LPC (n = 12) or vehicle (n = 9) injection, when there was
already a significant demyelination without any inflammatory
reaction or any signs of remyelination (Waxman et al., 1979),
and again on day 38 after the injection when there should
be a marked remyelination according to our pilot study. All
MRI procedures were performed with the 7 T MRI system
described above. The location of injections was localized using
T2-weighted FSE acquisitions. The center of the imaging
slice for RAFF4, MT, and DTI (middle slice), on both day
3 and day 38, was positioned to align with the center of
the T2-weighted slice next (caudal) to the slice covering the
injection site to exclude any mechanical damage induced
by the injection.

For the relaxation and MT measurements, a FSE pulse
sequence was used as the readout portion of the sequence. The
parameters for the readout were TR = 4 s, TEeff = 8.3 ms, necho = 8,
FOV = 32.0 × 32.0 mm2, matrix size = 256 × 256, number of
slices = 1 and slice thickness = 0.5 mm with a total acquisition
time of 16 min for one relaxation time constant map.

The RAFFn method has been presented in detail previously
(Liimatainen et al., 2015). Here, we used RAFF4; to generate
RAFFn contrast, trains of RAFFn pulses assembled in P-packets
(PP−1 Pπ Pπ

−1) were used as described before (Liimatainen
et al., 2010). The duration of each RAFF4 pulse, defined
as Tp = 4π/(

√
2ω1

max), was set to 4.525 ms and the peak

RF amplitude was γB1 = 324 Hz. The RAFF4 pulse
train durations were 0, 109, 217, 326, and 434 ms. Separate
measurements were performed with and without an adiabatic full
passage (AFP) inversion pulse (hyperbolic secant (HS1) pulse,
Tp = 8 ms, γB1 = 2,500 Hz) preceding the RAFFn pulse trains
(Liimatainen et al., 2010).

RAFF4 was calculated by a non-linear least-squares fitting
approach simultaneously on data obtained with initial -z′ and+z′
magnetization orientations (Liimatainen et al., 2010). Equation
1 was used to model the observed exponential decay and the
approach to steady state,

S±Z(t) = S0,±Z e−Rt
− SSS(1− e−Rt) (1)

Here, S0 is the initial signal intensity (t = 0), R is the relaxation
rate constant describing the decay, and SSS is the steady-state
intensity at t→∞.

In acquiring MT metrics, we used the modified inversion
MT protocol with two consecutive acquisitions as described
previously (Mangia et al., 2011). Separate measurements were
performed with the magnetization initially aligned along the +z
axis during off-resonance irradiation, or -z axis to allow the
signal to recover, i.e., without or with initial global inversion
achieved by an adiabatic full passage (AFP) pulse, in analogy
to the acquisitions with RAFF4. A square saturation pulse with
γB1 = 200 Hz was placed at 8 kHz off-resonance with an
incremental duration (0.0, 0.3, 0.6, 0.9, 1.2 s). T1sat , MSS (steady
state magnetization) and M0 (fully relaxed magnetization in the
absence of RF), were calculated using pixel-by-pixel analysis, as
described by Mangia et al. (2011). MTR was also calculated as
MTR = 1–MSS/M0.

For DTI, segmented spin-echo EPI was used with TR = 1
s, TE = 31.8 ms, nshots = 2, number of averages = 48,
FOV = 21.3 × 14.4 mm2, matrix size = 170 × 115, number of
slices = 5, slice thickness = 0.5 mm, b = 2,000 s/mm2, diffusion
directions = 42 leading to a total acquisition time of 1 h 18 min.
Mean diffusivity (MD), fractional anisotropy (FA), and radial and
axial diffusivity (RD, AD) maps were calculated from DTI data.
DTI data were corrected for motion and eddy current-induced
image distortions using Explore DTI (Leemans et al., 2009).
Relaxation time constants and parametric maps from MT and
DTI were reconstructed from signal intensities using pixel-by-
pixel fitting in MATLAB (MathWorks, Natick, MA) and FMRIB’s
Software Library (FSL).

Region-of-Interest (ROI) Analysis
All the images from both time points were co-registered to the
RAFF4 images from day 3 using Advanced Normalization Tools
(ANTs)1. Two ROIs in the corpus callosum, one contralateral
and one ipsilateral to the injection site, were manually drawn
on T2-weighted images in every animal and transferred to the
co-registered stack of parametric maps using the Aedes software
package2 When drawing the ROIs, we chose one slice caudally
to the injection site based on the day 3 images and we used the

1http://stnava.github.io/ANTs/
2http://aedes.uef.fi
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same location on day 38. Mean values from each ROIs from
every map were used in the statistical analysis. In the vehicle
injected animals, the ROIs were drawn at the vehicle injection
site similarly as conducted for the LPC- injected animals.

Histological Procedures and Analysis
After the last MRI session, all animals were transcranially
perfused first with 0.9% NaCl (30 ml/min, 2 min, 4◦C) followed
by 4% paraformaldehyde solution in 0.1 M phosphate buffer
(pH 7.4) (30 ml/min, 25 min, 4◦C). After perfusion, the brains
were removed from the skull, and post-fixed for 4 h in 4%
paraformaldehyde solution. Then, the brains were cryoprotected
in 20% glycerol in 0.02 M potassium phosphate-buffered saline
(pH 7.4) for 36 h, and frozen in dry ice, and stored at –70◦C
until sectioning.

The brains were sectioned into five series of 30 µm thick
coronal sections using a sliding microtome. The first series
was stored in 10% formalin at room temperature, and second
to fifth series were stored in a cryoprotectant tissue-collecting
solution (30% ethyleneglycol, 25% glycerol in 0.05 M PBS) at
–20◦C until staining.

Selected sections from the first series of sections were stained
with Nissl (thionin) to assess changes in the cytoarchitecture
of the corpus callosum. We stained up to 10 sections covering
and exceeding the lesioned area as revealed in MRI on day
3. Consecutive sections from the second series were stained
with gold chloride to assess the myeloarchitecture of the corpus
callosum (Laitinen et al., 2010).

The optical density of Nissl- and myelin-stained sections
was quantified in locations corresponding to the ROIs in the
MRI analysis. Three consecutive sections were selected based
on the MRI images where the ROI was drawn for analysis.
The histological sections were selected based on anatomical
landmarks, and the ROIs for optical density were drawn in
the same anatomical location as in the MRI images in the
ipsi- and contralateral corpus callosum. The three consecutive
sections represent 450 µm in the rostral-caudal direction, which
provides good coverage of the slice thickness of 500 µm in MRI.
High-resolution photomicrographs of both Nissl- and myelin-
stained sections of the corpus callosum were obtained using
a light microscope (Zeiss Axio Imager2, White Plains, NY,
United States) equipped with a digital camera (Zeiss Axiocam
color 506). The whole corpus callosum area was imaged in
each section by using the tile mode with an objective of 20×.
Acquisition, alignment and format conversion were performed
with Zen software (Blue edition, v2.6, Carl Zeiss Microscopy
GmbH, United States).

The optical density (OD) on Nissl- and myelin-stained
sections was quantified using ImageJ software (version 1.47,
http://rsb.info.nih.gov/ij/, NIH, United States). First, the color
photomicrographs were converted into 16-bit gray scale images,
and then the gray scale was inverted to facilitate the interpretation
of intensity values in the image to the intensities observed in
the myelin-stained sections. We obtained the intensity values
from each ROI from Nissl and myelin-stained sections. In order
to correct for possible staining differences between sections and
brains, the intensity values were corrected against the background

intensity with no cell/myelin as in the cortical areas. OD was
estimated as (Iref – Icc)/Iref, and for each ROI, the OD value
was the average of the three consecutive sections. The estimation
of the area of demyelination was conducted on the myelin-
stained sections by selecting the area with a low content of
myelin ipsi- and/or contralaterally. This selection was limited
to the area of demyelination included in the previously drawn
ROI for intensity.

Statistical Analysis
Data were analyzed using GraphPad Prism software (version 5.03
for Windows, La Jolla, CA, United States). Numerical results
are represented as mean and standard deviation. Differences
between vehicle- and LPC-injected rats were assessed using the
two-sample t-test, and differences between ipsi- and contralateral
corpus callosum within the same brain using the paired t-test.
The contribution of myelinated axons and cell density to the
MRI metrics was assessed using Pearson’s linear correlation
of the ROI analysis results from MRI and OD of myelin-
and Nissl-stained sections. The change of the MRI parameters
between days 3 and 38 was assessed using paired-samples
t-test separately for ipsi- and contralateral ROIs of vehicle-
and LPC-injected rats. The Benjamini-Hochberg false discovery
rate method was used for multiple comparison corrections, and
FDR-threshold q < 0.05 was chosen for statistical significance
(Benjamini and Hochberg, 1995).

RESULTS

The time course of the relative signal changes in T2-
weighted images after LPC injection is shown in Figure 1.
This pilot experiment showed that a clear lesion could be
detected on day 3 in the corpus callosum, followed by a
gradual recovery of the T2-weighted signal intensity in the
subsequent time points (Figure 1G). This is consistent with
the demyelination/remyelination process described for the LPC
model in white matter (Woodruff and Franklin, 1999). Based
on this experiment, we chose day 3 as the time point for
demyelination and day 38 for remyelination.

On day 3, all the LPC animals exhibited a lesion in the
MRI maps with the lesion mainly in the ipsilateral corpus
callosum, but also extending to the contralateral side (Figure 2).
The group-wise results and comparisons in absolute units are
shown in Figure 3, while Table 1 shows relative differences
and q-values (FDR corrected p-values) facilitating a comparison
between modalities. The relative differences were calculated
as (LPC-Vehicle)/Vehicle)∗100%. All MRI metrics revealed the
significant and robust effect of demyelination following LPC-
injected animals in the ipsilateral site (Figure 3). The largest
relative differences were detected by RAFF4, FA and AD (48,
–50, –54%, respectively), while MTR, T1sat and RD showed
more modest (–18, 21, 26%) but still very clear changes between
the demyelinated ipsilateral area and a similar area in vehicle
treated animals (Table 1). The contralateral side also showed
statistically significant but smaller changes between LPC and
vehicle injected animals. Diffusion parameters, especially AD,
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FIGURE 1 | T2 weighted images showing the lesion in the corpus callosum (white arrow) and its development from day 3 to day 38 (A–F). The graph represents the
signal intensity ratio between lesioned and normal tissue on individual days (G).

FA and RD (–16, –22, 18%) were most sensitive at detecting
the contralateral changes; these were caused most likely by the
diffusion of LPC from the ipsilateral side to the contralateral side.

On day 38, all the LPC-injected animals revealed at least
a partial recovery of the lesion in the MRI maps (Figure 4).
Nonetheless, significant differences were still observed on day
38 between LPC and vehicle injected animals in the ipsilateral
side in all other MRI metrics except the MD (Figure 5). When
comparing MRI outcomes on day 3 (demyelination) to day 38
(remyelination), significant differences were detected in all MRI
metrics (Table 1). In particular, the recovery toward normal
values on the ipsilateral side of the LPC injected animals was
detected with RAFF4 (from 48 to 17%, difference in ipsilateral
side of LPC rats, from day 3 to day 38), MTR (from –18 to –7%),
T1sat (from 21 to 10%), MD (from –31 to 1%), FA (from –51
to –22%), AD (from –54 to –16%). Furthermore, RD displayed a
further robust increase (from 26 to 45%) from days 3 to 38.

Figure 6 shows the quantitative assessment of the histological
results as well as representative examples of myelin- and
Nissl-stained sections from vehicle- and LPC-injected animals.

On day 38, the optical density (OD) analysis on myelin-
stained sections revealed a small but significant decrease in
the myelin content when comparing the ipsi- and contralateral
ROIs in the corpus callosum in the LPC-injected brains
(q = 0.02) (Figure 6A). We found a significant increase
of the demyelinated area in animals after LPC injection in
comparison to vehicle animals, ipsilaterally (q = 0.0085) but
not contralaterally (q = 0.11) (Figure 6B). The demyelinated
area was small as compared to the total area of the ROI
analyzed in the OD analysis; these results demonstrate that the
remyelination was well advanced but not completed at 38 days
after the injection (Figures 6D–G). Additionally, we found that
myelin alterations were taking place along the corpus callosum
structure, which may be an indication of ongoing remyelinating
processes (Figure 6F).

The analysis on Nissl-stained sections revealed increased
cell density, which can be attributed to gliosis. The OD
analysis on Nissl-stained sections showed that values in
both ipsi- (q = 0.0032) and contralateral (q = 0.0085)
ROIs of the corpus callosum significantly increased when

Frontiers in Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 625167

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-625167 July 8, 2021 Time: 15:19 # 6

Holikova et al. Remyelination Probed by Using RAFF4

comparing vehicle and LPC animals (Figure 6C). The
increased cell density area overlapped with the demyelinated
area (Figures 6G,K) and myelin alterations (Figures 6F,J)
observed in myelin staining. These results demonstrate

FIGURE 2 | Quantitative MRI maps in the demyelination phase, on day 3:
RAFF4 (A), magnetization transfer ratio, MTR (B), T1sat (C), mean diffusivity,
MD (D), fractional anisotropy, FA (E), axial diffusivity, AD (F), radial diffusivity,
RD (G), T2w image with lesion (H) and representative example of ROIs for
analyzing the lesion on a grayscale RAFF4 map (I). White arrow points to the
lesion in the corpus callosum.

that the persistent demyelination was accompanied by
inflammatory processes which were still ongoing at 38 days
after the LPC infection.

None of the MRI parameters correlated with the OD of myelin
staining in the lesion area in the remyelination phase, however,
RD, FA and AD correlated with the OD assessed with Nissl
staining (q < 0.05) (Table 2).

DISCUSSION

In the present work, we investigated the capabilities of
quantitative RAFF4, MTR, T1sat and DTI metrics to detect LPC-
induced demyelination and remyelination in rat brain corpus
callosum. We confirmed the previously demonstrated high
sensitivity of RAFF4, MTR, and DTI for detecting demyelination
(Lehto et al., 2017). This is the first time when RAFF4 was tested
for investigating the myelination status during the remyelination
phase. Our main finding was that the remyelination phase was
associated with a partial recovery of RAFF4, MTR, and T1sat,
FA and AD, while RD remained abnormally high and MD
showed a complete recovery on day 38 after LPC injection, i.e.,
a time point when there was histological evidence of marked
remyelination and gliosis.

Our results confirmed the sensitivity of RAFF4 and MTR
to detect demyelination at 3 days after the LPC injection into
the corpus callosum when only mild gliosis was present (Lehto
et al., 2017). The demyelination phase was also associated with
a distinct pattern in the DTI metric’s changes, namely decreases
in FA, AD, and MD, and an increase in RD. In our previous
study, the LPC induced demyelination in the corpus callosum was
characterized by a clearly decreased myelin content as detected
by myelin staining. However, in that study we also observed

FIGURE 3 | Region of interest analysis of MRI parameters in the demyelination phase, on day 3: RAFF4 (A), magnetization transfer ratio, MTR (B), T1sat (C), mean
diffusivity MD (D), fractional anisotropy, FA (E) and axial and radial diffusivity, AD (F), and RD (G). Values obtained from the ipsilateral and contralateral sides of LPC
injected (n = 12) rats and from the corresponding ROI in the vehicle injected (n = 9) rats. Mean ± SD, paired (+) or unpaired (*) t-test, FDR corrected p-values:
*<0.05, ** or ++<0.01, *** or +++<0.001.
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TABLE 1 | Relative differences with statistical significances in the MRI metrics.

RAFF4 MTR T1sat MD FA AD RD

Day 3 Ipsi % 48.01 –18.16 21.33 –31.18 –50.51 –53.55 26.24

t 9.53 –12.57 9.44 –10.29 –15.89 –18.11 4.86

q 6.12e–08 1.10e–09 6.12e–08 2.33e–08 2.77e–11 5.35e–12 0.00017

Contra % 4.86 4.13 –3.92 –11.43 –17.80 –23.14 17.84

t 1.88 –3.21 2.71 –4.41 –5.51 –6.39 4.25

q 0.088 0.0061 0.018 0.00044 6.86e–05 1.58e–05 0.00061

Day 38 Ipsi % 17.02 –7.06 9.99 1.27 –22.33 –15.91 44.67

t 6.03 –4.88 5.49 1.03 –5.39 –5.11 5.81

q 2.94e–05 0.00017 6.86e–05 0.33 7.89e–05 0.00012 4.23e–05

Contra % 0.68 –1.11 2.78 –3.02 –17.54 –16.39 30.48

t 0.40 –1.282 2.52 –1.85 –5.18 –5.30 4.98

q 0.70 0.23 0.025 0.089 0.00011 8.71e–05 0.00015

Day 38 - Day 3 LPC Ipsi % –22.90 15.81 –12.07 42.14 60.16 75.64 12.02

t –7.18 10.22 –7.11 12.33 6.96 12.70 1.85

q 9.16e–05 5.57e–06 9.16e–05 1.24e–06 9.54e–05 1.24e–06 0.12

LPC Contra % –7.86 5.00 –4.72 6.78 1.33 7.19 7.41

t –4.65 4.67 –3.69 2.07 0.077 1.19 2.05

q 0.0016 0.0016 0.0077 0.095 0.97 0.33 0.095

Vehicle Ipsi % –3.30 1.85 –3.21 –4.53 –0.32 –4.94 –2.31

t –6.58 2.81 –5.79 –3.48 –0.23 –2.06 –0.68

q 0.00060 0.043 0.0013 0.017 0.89 0.10 0.58

Vehicle Contra % –4.27 1.92 –3.58 –3.12 0.13 –2.81 –2.83

t –9.84 2.72 –5.63 –2.36 –0.0051 –1.02 –0.74

q 6.69e–05 0.046 0.0014 0.075 1.00 0.41 0.56

*Percentage on day 3 and day 38: ((LPC-Vehicle)/Vehicle)*100%. q value is the p-value that has been adjusted for the false discovery rate. Percentage on day 38 vs. day
3: ((day 38 - day 3)/day 3)*100 LPC and vehicle ipsi- and contralaterally. q-value on day 38 vs. day 3: (value on day 38-value on day 3) vs. zero.

some remaining disorganized pockets in the myelin sheaths
with myelin debris being evident in electron microscopy (Lehto
et al., 2017). In the present experiments, the pattern of changes
in DTI metrics in demyelination phase, was mostly consistent
with our previous work, however, now we did find increased
RD, a parameter which was unchanged in our previous study.
The present finding is in agreement with the general view that
increased RD is an indication of demyelination (Song et al.,
2005). The difference to the previous study may originate from
differences in LPC patches leading to more severe demyelination.
This is also consistent with the somewhat relatively larger changes
in RAFF4 and MTR observed in the present study as compared to
those reported by Lehto et al. (2017).

The remyelination phase was characterized by a close-
to-normal myelin content as confirmed by OD analysis of
myelin-stained histological sections. Unlike on day 3, when
only very mild gliosis was present, on day 38 increased
cellular density was detected in Nissl staining, likely due to
gliosis. As increased cellularity affects relaxation, MT and
diffusion, this makes the interpretation of the results more
complicated, resembling more realistically the human pathology
where myelin damage typically triggers gliosis, and thus these
pathological features overlap. At the late time point, we
observed a recovery of RAFF4 toward the normal values
measured in the healthy tissue, which is consistent with

remyelination. It has been shown that RAFF4 is sensitive to
the correlation time regime in the ms-range (Satzer et al., 2015;
Hakkarainen et al., 2016), which likely corresponds to exchange
and dipolar interactions of myelin and water as well as
dipolar interaction with methylene groups. Therefore, the high
sensitivity of RAFF4 to myelin, also during the remyelination
phase, was expected.

MT showed a similar recovery toward baseline as RAFF4.
However, the relative difference to controls was smaller than in
RAFF4, reflecting its lower sensitivity to myelination changes
in the demyelination phase. Previously, RAFF4 had been
shown to correlate with myelin density to a greater extent
than MT in normal brain (Hakkarainen et al., 2016) and
in LPC-induced demyelinated lesions in dorsal tegmental
tract (dtg) of the rat brain (Lehto et al., 2017). It should
be emphasized, however, that there is a distinct difference
between relaxation mechanisms during RAFF4 and MT. RAFF4
is a rotating frame method operating in the rotating frame
of rank 4, and thus has contributions from longitudinal,
T1r, and transverse, T2r, relaxation pathways (Liimatainen
et al., 2015). In addition to anisochronous and isochronous
exchange and dipolar interactions contributing to RAFF4,
RAFF4 share cross-relaxation pathways with MT (van
Zijl et al., 2018). Therefore, these two techniques provide
only partially overlapping information when characterizing
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tissue integrity. This substantial distinction in the relaxation
mechanisms contributing to RAFF4 and MT is reflected in
the differential sensitivity of RAFF4 and MT to demyelination,

FIGURE 4 | Quantitative MRI maps in the remyelination phase, on day 38.
Relaxation time constant map of RAFF4 (A), magnetization transfer ratio, MTR
(B), T1sat (C), mean diffusivity, MD (D), fractional anisotropy, FA (E), axial
diffusivity, AD (F), radial diffusivity, RD (G), T2w image with the lesion (H) and a
representative example of ROIs for analyzing lesion on a grayscale RAFF4
map (I). White arrow points to the lesion in the corpus callosum.

dismyelination and remyelination processes in the brain
(Satzer et al., 2015). It is also worth noting that RAFFn
offers the possibility of achieving the desired fictitious field
by making use of a frequency swept pulse which improves
the flexibility in handling SAR issues in human applications
(Liimatainen et al., 2015).

The pattern of changes detected in DTI metrics in the
remyelination phase was likely conveying information from
multiple factors including the thickness and microstructure of the
myelin sheaths as well as the cell density. The partial recoveries of
FA and AD are similar to those detected with RAFF4 and may
reflect the rebuilding of myelin sheaths and the clearance of the
myelin debris. The increase in RD is consistent with the fact that
the remyelinated sheaths are structurally different from intact
myelin sheaths (Raine, 1984; Oluich et al., 2012; Podbielska et al.,
2013; Pfeiffer et al., 2019), i.e., they are likely more permeable
to water. MD was the only MRI parameter that returned to the
normal level on day 38. It is well known from cancer studies
that MD inversely correlates with the cellularity of the tissue
(Chenevert et al., 2000) and therefore the increased cellularity
due to gliosis likely contributes to the pseudo-normalization of
MD. The extension to more complex diffusion MRI models has
the potential to extract more specific information related to these
processes (Luo et al., 2019).

MRI changes were also detected on the contralateral side
of the injection between LPC and vehicle injected animals.
This is likely attributable to diffusion of LPC along axons in
corpus callosum such that LPC reached also the contralateral
side. Interestingly, changes in cell density in Nissl, attributed
to gliosis, were pronounced on the contralateral side on day
38, probably explaining the higher sensitivity of diffusion

FIGURE 5 | Region of interest analysis of MRI parameters in the remyelinization phase, on day 38: RAFF4 (A), magnetization transfer ratio, MTR (B), T1sat (C),
mean diffusivity MD (D), fractional anisotropy, FA (E) and axial and radial diffusivity, AD (F) and RD (G). Values obtained from the ipsilateral and contralateral side of
LPC injected (n = 12) rats and from the corresponding ROI in the vehicle injected (n = 9) rats. Mean ± SD, paired (+) or unpaired (*) t-test, FDR corrected p-values: +
< 0.05, *** or +++<0.001.
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FIGURE 6 | Histologic assessment of the myelin and Nissl stainings at 38 days after vehicle or LPC injection. OD (A) and demyelinated area (B) analyses of the
myelin-stained sections, and OD analysis of the Nissl-stained (C) sections. Values were obtained from the ipsi- and contralateral corpus callosum of vehicle- (n = 9)
and LPC-injected (n = 12) rats. Results are shown as mean ± SD. The unpaired t-test compared the same hemispheres between vehicle- and LPC-injected rats
(**p < 0.01), and the paired t-test ipsi- and contralateral hemispheres within the same animals (++p < 0.01). Photomicrographs of vehicle- and LPC-injected animals
in myelin (D–G) and Nissl (H–K) stains of representative rats. The white arrow points to the ongoing demyelinated area and the presence of gliosis, and the asterisk
indicates the area with ongoing myelin alterations accompanied by gliosis. Scale bar: 1 mm (D,E,H,I) and 200 µm (F,G,J,K).

TABLE 2 | Correlation between MRI metrics and the OD of myelin- and
Nissl-stained sections.

Myelin OD Nissl OD

R p R p

AD −0.18086 0.25171 −0.63062 7.5945e–06

FA −0.14081 0.37376 −0.67323 1.0335e–06

RD 0.13148 0.40656 0.64884 3.3607e–06

MD −0.13111 0.40787 −0.071477 0.65284

MTR 0.014335 0.92821 −0.29864 0.054724

RAFF4 0.036727 0.81738 0.2594 0.097141

T1SAT 0.086483 0.58604 0.36175 0.018572

Critical p-value (q < 0.05): 7.5945e–06.

changes than were evident with RAFF4 or MT. None of the
MRI parameters correlated significantly with optical density
of myelin staining in the remyelination phase. This is likely
because the optical densities were close to normal in the

lesioned area and therefore there was a narrow range of
values both for MRI and optical density. This, together with
confounding effect of gliosis on MRI parameters, explains the
non-significant correlation values between MRI parameters and
myelin density in the remyelination phase, even though there
was an evident recovery of MRI parameters, especially RAFF4
and MTR, from demyelination values. The influence of gliosis
on diffusion metrics is consistent with the earlier reports of
Budde et al. (2011). Consistently, we observed a correlation
between cellularity in Nissl staining and diffusion parameters
but not with RAFF4 or MT parameters, further emphasizing the
different sensitivities of these techniques to detect myelination
and cellularity.

One limitation of our study is that in spite of careful manual
alignment of histology with MRI by an expert in the field, the
partial volume effect and the challenge of selecting the same
ROIs in MRI and histology could have influenced our results. In
addition, the limited sampling in histology vs. the slice thickness
in MRI may have affected our assessments of the correlations.
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CONCLUSION

Our data confirms the sensitivity of RAFF4 and MT for detecting
the myelin content in demyelinated lesions, but now reveals
that remyelination is associated with a recovery of RAFF4 and
MT toward normal values. DTI metrics displayed a distinct
pattern of changes in the remyelination phase, likely reflecting
on-going changes not only in the myelin content but also in
the architecture of the myelin sheaths as well as the presence
of gliosis. The combination of RAFF4, MT and DTI has
the potential to differentiate between normal, demyelinated
and remyelinated axonal bundles and gliosis, thus making
possible a unique non-invasive characterization of white matter
pathologies in several neurological diseases. Further studies will
be required to evaluate the sensitivity of multiple MRI modalities
to detect remyelination in areas with more isotropic fiber
distributions, where RAFF4 has demonstrated its superiority over
DTI (Lehto et al., 2017).
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