
fnins-12-00392 June 6, 2018 Time: 16:19 # 1

REVIEW
published: 08 June 2018

doi: 10.3389/fnins.2018.00392

Edited by:
Gang Chen,

First Affiliated Hospital of Soochow
University, China

Reviewed by:
Yujie Chen,

Army Medical University, China
Zhen-Ni Guo,

First Hospital, Jilin University, China

*Correspondence:
Sheng Chen

saintchan@zju.edu.cn

†These authors have contributed
equally to this work.

Specialty section:
This article was submitted to

Neurodegeneration,
a section of the journal

Frontiers in Neuroscience

Received: 20 December 2017
Accepted: 22 May 2018

Published: 08 June 2018

Citation:
Che X, Fang Y, Si X, Wang J, Hu X,
Reis C and Chen S (2018) The Role
of Gaseous Molecules in Traumatic

Brain Injury: An Updated Review.
Front. Neurosci. 12:392.

doi: 10.3389/fnins.2018.00392

The Role of Gaseous Molecules in
Traumatic Brain Injury: An Updated
Review
Xiaoru Che1†, Yuanjian Fang2†, Xiaoli Si3, Jianfeng Wang4, Xiaoming Hu4, Cesar Reis5,6

and Sheng Chen2,4*

1 Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College,
Hangzhou, China, 2 Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China, 3 Department of Neurology, The Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China, 4 Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai,
China, 5 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States, 6 Department
of Preventive Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States

Traumatic brain injury (TBI) affects millions of people in China each year. TBI has
a high mortality and often times a serious prognosis. The causative mechanisms of
TBI during development and recovery from an injury remain vague, leaving challenges
for the medical community to provide treatment options that improve prognosis
and provide an optimal recovery. Biological gaseous molecules including nitric oxide
(NO), carbon monoxide (CO), hydrogen sulfide (H2S), and molecular hydrogen (H2)
have been found to play critical roles in physiological and pathological conditions in
mammals. Accumulating evidence has found that these gaseous molecules can execute
neuroprotection in many central nervous system (CNS) conditions due to their highly
permeable properties allowing them to enter the brain. Considering the complicated
mechanisms and the serious prognosis of TBI, effective and adequate therapeutic
approaches are urgently needed. These four gaseous molecules can be potential
attractive therapeutic intervention on TBI. In this review, we will present a comprehensive
overview on the role of these four biological gasses in the development of TBI and their
potential therapeutic applications.

Keywords: traumatic brain injury, gaseous molecules, neuroprotection, nitric oxide, carbon monoxide, hydrogen
sulfide, molecular hydrogen, central nervous system

INTRODUCTION

Traumatic brain injury (TBI) affects 3–4 million people in China every year and accounts for 87%
of deaths related to trauma. With its high mortality and serious prognosis, it is the fourth leading
cause of death in young people (Liu, 2015). In addition, the incidence of TBI in the elderly appears
to be increasing (Peeters et al., 2015). The causative mechanisms of TBI during development
and recovery from an injury remain poorly understood. This poses great challenges for medical
management following TBI, and leaves the medical community with challenges such as finding
new treatment options to improve recovery following TBI (Seule et al., 2015; An et al., 2016).

Currently, various gaseous molecules (such as air content gasses, volatile anesthetics, non-
volatile anesthetics, noble gasses) were thought to protect neural system in neurological diseases
(Deng et al., 2014). Biological gaseous molecules, also referred as gasotransmitters, including
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nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide
(H2S), and molecular hydrogen (H2), also serve critical
roles in mammals’ physiological and pathological conditions
(Zhou et al., 2012). They can easily cross the blood–brain
barrier (BBB) and spread through brain tissue due to their
smaller molecular weights compared with chemically formulated
drugs (Zhou et al., 2012; Deng et al., 2014). Accumulating
evidence has demonstrated that these gaseous molecules provide
neuroprotection in many diseases of the central nervous
system (CNS) through different mechanisms and administration
regimens (Ren et al., 2010; Charriaut-Marlangue et al., 2012;
Zhan et al., 2012; Otterbein, 2013).

Considering the complicated mechanisms and the serious
prognosis of TBI, effective and adequate therapeutic approaches
are urgently needed. A better understanding of the physiological
function and alterations of gaseous molecules in pathological
conditions may provide a potentially attractive therapeutic
intervention for TBI. In our review, we will present a
comprehensive overview of the role of these four biological
gasses in the development of TBI and their potential therapeutic
applications.

NITRIC OXIDE

Nitric Oxide is the most recognized endogenous gasotransmitter
in mammalian biology. It is mainly synthesized during L-arginine
conversion with the assistance of three NO synthases (NOS):
neuronal (n) NOS, inducible (i) NOS, and endothelial (e)
NOS (Forstermann and Sessa, 2012). Despite nNOS being the
predominant NO producer in CNS, iNOS, and eNOS can also
be expressed in neurons and endothelial cells in the brain
(Galea et al., 1992; Olivenza et al., 2000). NOS alteration
leads to cerebral NO level changes and was found to be
associated with TBI occurrence and secondary damage after
TBI (Stover et al., 2014; Villalba et al., 2017). In addition, NO
participates in the regulation of many biological process such as
neurogenesis, cerebral blood flow (CBF) maintenance, oxidative
stress reactions, and neuronal cell death (Uchiyama et al., 2002;
Packer et al., 2003; Toda et al., 2009). Whether or not it has a
protective or destructive role in the CNS remains controversial
(Ockelford et al., 2016).

During pathophysiological processes in TBI, NO homeostasis
is mainly mediated by NOS isoform activity (Cherian et al., 2004).
eNOS and nNOS are constitutively expressed in the brain via
induction of Ca++, while iNOS becomes unregulated during
brain damage or injury (Bredt and Snyder, 1990). Though the
pathogenesis of TBI is driven by complex mechanisms, it was
widely accepted that the inflammatory reaction is the main
reason a response is elicited to brain injury (Corps et al., 2015).
Inflammatory cascades promote expression of constitutive NOS
isoforms and up-regulation of iNOS levels after TBI occurs
(Olmos and Llado, 2014).

After TBI, the widespread brain injury may induce cell
depolarization, such as rising extracellular potassium and
intracellular Ca++ (Faden et al., 1989; Bezzi et al., 1998;
Folkersma et al., 2011). Currently, studies suggest Ca++

accumulation can be mediated by the glutamate wave that follows
TBI (Kawamata et al., 1992; Chamoun et al., 2010). Following
inflammatory stimuli, extracellular glutamate concentrations
in the brain tissue are markedly increased (Bezzi et al.,
1998; Folkersma et al., 2011). These elevated glutamate levels
were reported to be related to Ca++ influx and cytotoxicity
during TBI (Chamoun et al., 2010). With the assistance of
receptors such as NMDA receptors, the increased intracellular
Ca++ consequently reacts with calmodulin and promotes the
expression of constitutive NOS (Southam et al., 1991; Zur Nieden
and Deitmer, 2006). This process appears in the early time
period (30 min) of TBI sequela and contributes to the first
NO peak (Marletta, 1994; Wada et al., 1998a). In addition, the
NO produced by different constitutive NOS synthases may each
contribute uniquely to the outcome. Activation of nNOS induces
toxic effects that produce excitotoxicity and oxygen free radicals,
such as Peroxynitrite (ONOO−) to cause cell death (Wada et al.,
1998a; Gahm et al., 2002). nNOS-derived NO is also involved in
synaptic plasticity and neuronal signaling after TBI (Garthwaite,
1991). The function of eNOS-derived NO works against the toxic
effect of nNOS-derived NO (Gahm et al., 2002). It participates in
cerebrovascular responses by dilating blood vessels to maintain
CBF (Goadsby et al., 1992; White et al., 2000). The expression of
constitutive NOS isoforms also leads to transient hypertension
surge through massive sympathetic discharge (Rosner et al.,
1984).

In the later response phase, the inflammatory reaction
following TBI induces the expression of iNOS (Minc-Golomb
et al., 1994; Heneka and Feinstein, 2001). Normally, the response
can be divided into two parts (Cherian et al., 2004). The first
iNOS response starts 4 to 6 h after trauma, and peaks 8 to 23 h
after TBI (Gahm et al., 2002; Ucal et al., 2017). iNOS expression
may be associated with the increased amount of neutrophils and
microglia during this response (Royo et al., 1999; Bayir et al.,
2005). The second iNOS response starts 72 h after trauma and
is related to the immunoreactivity of microglia and macrophages
(Orihara et al., 2001). The waves of iNOS response peak 7 days
following TBI (Wada et al., 1998b; Jin et al., 2012). The role
of iNOS remains controversial, but many studies suggest that
the NO released by iNOS can react with superoxide radicals
and generate more deleterious reactive species, causing neuronal
death and worsening neurological outcome (Sinz et al., 1999;
Gorlach et al., 2000; Berka et al., 2014). In contrast to these
detrimental effects, iNOS-derived NO also has the ability to
attenuate oxidative stress reactions by preventing mitochondrial
damage from reactive oxygen species (ROS) and decreasing redox
iron activity (Bayir et al., 2005; Dungel et al., 2015).

Currently, the application of inhaled NO in TBI models is
being investigated. Using closed head mild TBI mouse models, a
study found that mild TBI induced a short-term memory loss and
strong inflammatory reaction in the first 24 h after mild TBI. This
injury only lasts for 2–3 days. Treatment with a low concentration
and short duration (less than 8 h) of inhaled NO could prevent
the adverse effects of mild TBI including acute and transient
cognitive deficits and inflammation. Whereas, the group treated
with a higher concentration of NO for 24 h showed no benefit in
memory (Liu et al., 2013). Additionally, inhaled NO was shown
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to significantly improve CBF and reduce intracranial pressure
after TBI in mice. Long duration (24 h) inhalation reduced
brain injury and improved neurological function (Terpolilli et al.,
2013). Further investigation is warranted for the potential use
of inhaled NO after TBI, particularly with regard to dosage and
timing of administration (Figure 1).

CARBON MONOXIDE

Carbon Monoxide, traditionally thought of as a toxic gas, also
acts as a gasotransmitter in both the extracellular and intracellular
spaces. However, its biological function remains controversial
(Coburn et al., 1963; Tenhunen et al., 1968). Heme oxygenase
(HO) enzymes, including HO-1 and HO-2 are used in the
process of heme degeneration and CO generation (Ewing and
Maines, 1993; Li and Clark, 2000). HO-1, also named heat shock
protein 32, is an inducible protein upregulated predominantly in
numerous conditions of cellular stress. It was found to be up-
regulated and play a cytoprotective role against oxidative stress
after pediatric TBI (Cousar et al., 2006). In contrast, HO-2 is
constitutively expressed in neural tissues (Geddes et al., 1996).
While it was proved that HO-2 can prevent cellular injury after
TBI via inhibition of oxidative stress (Chang et al., 2003). Despite
this pathophysiological understanding, the role of CO remains
poorly understood in the process of HO metabolism.

The measurement of CO fluctuation and cellular distribution
after TBI has been recently studied. Accumulating evidence
shows that HO can successfully increase CO production and
response to cellular stress (Carratu et al., 2003; Chang et al., 2003;
Kanu et al., 2006). CO production rapidly increases in the brain
following induction of various pathophysiological conditions
in the brain, including acute hypotension, hypoxia, glutamate
metabolism, and glutamatergic seizures (Parfenova and Leffler,
2008). Additionally, CO was found to have different therapeutic
functions in different brain pathologies.

As with NO, a very low concentration of CO can function
as a vasodilator and a neurotransmitter in the brain (Zakhary
et al., 1996; Leffler et al., 2006). Low concentrations of inhaled
CO can prevent cerebral hypoxia and ischemia in occlusive
cerebrovascular disease (Wang et al., 2011; Cai et al., 2017).
Carbon monoxide-releasing molecules (CORMs)-A1 can reduce
the inflammatory reaction in neuronal degenerative diseases
(Chora et al., 2007). While in a mouse model of TBI, a recent
study found that treatment with CORM-3 prevented the death
of pericytes, thereby rescuing neural stem cells and ameliorating
neurological impairment (Choi et al., 2016). The protective effect
of CO appears to be related to the activation of sGC and NOS,
namely cGMP and NO. However, a detailed mechanism was not
described in these studies (Vieira et al., 2008; Queiroga et al.,
2012; Schallner et al., 2013). In addition, CO inhibits oxidative
apoptosis in the early phase following TBI by suppressing

FIGURE 1 | Role of nitric oxide (NO) in the pathological changing after Traumatic brain injury (TBI). The activity of NO produced by different NO synthases (NOSs)
function various effects in TBI. The deleterious effects of NO mainly resulted by the oxygen free radicals waves which subsequently caused cell death; the protective
effects of NO may include vasodilatation and antioxidant effect.
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potassium influx, caspases activation, and cytochrome c release
(Dallas et al., 2011). CO can also increase the interaction between
Nrf2 and HO-1, effectively promoting HO-1 expression and
increased antioxidant responses (Wang et al., 2011; Figure 2).

In conclusion, the mechanisms of vasodilation, anti-
inflammation, anti-apoptosis, anti-proliferation, and
anti-oxidant effects of CO need to be further investigated
in the TBI model as they are potential targets for therapeutic
intervention in TBI. Inhaled CO was rarely applied in past
studies since the inhaled form is not tissue specific and the
unnecessary CO can bring partial systemic hypoxia and toxicity.
These complications make CORMs potential donors of CO
(Queiroga et al., 2015). Meanwhile, CO administration should be
further investigated in the future pre-clinical or clinical studies.

HYDROGEN SULFIDE

Hydrogen Sulfide is another toxic gas that has important
functions in physiological signal transduction (Liu H. et al.,
2016). It can easily cross the cell membrane and enter intracellular
compartments due to its high solubility in lipophilic solvents
(Reiffenstein et al., 1992; Wang, 2002). H2S is produced
from the cysteine degradation process by two pyridoxal-5′-
phosphate (PLP)-dependent enzymes, namely cystathionine
β-synthase (CBS) and cystathionine γ-lyase (CSE). CBS is
expressed primarily in the nervous system, liver and kidney.
While CSE is expressed in the cardiovascular system and
liver (Lowicka and Beltowski, 2007). In addition, brain H2S
was also found to be generated from cysteine with the

assistance of 3-mercaptopyruvate sulfur transferase and cysteine
amino transferase (Shibuya et al., 2009). It is involved in
various biological functions after TBI including cerebrovascular
regulation, oxidative stress reactions, inflammation, glutamate-
mediated excitotoxicity, and apoptosis (Wang et al., 2014).

Recent studies demonstrated that the CBS and H2S levels in
the brain were decreased during the early phase (12–24 h) and
increased in the late phase (3–7 days) after TBI (Jiang et al.,
2013; Zhang et al., 2013). These changes were closely related
to levels of oxidative stress and the pathogenesis of TBI (Scheff
et al., 2013). CBS activity was found to be up-regulated via
the Calcium/calmodulin pathway and enhanced H2S production
was found in response to glutamate (Eto and Kimura, 2002).
However, CSE activity was less reported in the literature.

Using Sodium hydrosulfide (NaHS) as the H2S source, a study
found a significant difference between TBI and NaHS-treated
TBI mice in measures of neuronal morphology and the density
of the hippocampus (Zhang et al., 2013). 90 or 180 µmol/kg of
NaHS treatment can significantly reduce loss of the brain tissue
and protect against the neuron damage. It suggested that H2S
is also a neuroprotective gas for TBI treatment (Zhang et al.,
2013). In addition, another study demonstrated that low dose
NaHS (3 mg/kg) decreased the elevated BBB permeability, brain
edema, and lesion volume in rats post-TBI. These effects were
related to the activation of mitoKATP channels and reduction of
oxidative stress. However, a higher dose of NaHS (10 mg/kg)
gave a worse outcome in this study, which draws attention to
the importance of dosage of H2S supplement (Jiang et al., 2013).
Furthermore, H2S was proved able to exert neuroprotection via
inhibiting microglia activation following inflammatory effects

FIGURE 2 | Mechanisms involved in the cytoprotective effect of carbon monoxide (CO) after TBI. The CO produced by heme oxygenase (HO) isozymes participated
in the process of antioxidantien, anti-inflammation, anti-apoptosis, and vasodilatation.
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FIGURE 3 | Mechanisms involved in the cytoprotective effect of hydrogen sulfide (H2S) after TBI. The H2S produced by cystathionine γ-lyase (CSE) and
cystathionine β-synthase (CBS) isozymes participated in the process of antioxidantien, anti-inflammation, anti-apoptosis, anti-autophagy, and vasodilatation.

FIGURE 4 | The cytoprotective effect of H2 in the pathological changing after TBI. hydrogen (H2) acts essential role in the antioxidant, anti-inflammation,
anti-apoptosis, and vasodilatation. It also can relieve the brain edema and blood–brain barrier (BBB) disruption after TBI.

and counteracts neurotoxicity. iNOS, NF-B, ERK, and p38 MAPK
signaling pathways were inhibited in this process (Zhang Q.
et al., 2014). Systemic administration of H2S has also been shown
to significantly reduce brain edema and behavioral symptoms
by anti-apoptosis and anti-autophagy effects. H2S reversed TBI-
induced caspase-3 cleavage and Bcl-2 decline and prevented an

increase in the Beclin-1/Bcl-2 ratio (Zhang M. et al., 2014; Fang
et al., 2017).

In addition, low concentrations of H2S may dilate cerebral
vessels and protect against ischemia and hypoxia in the brain
(Qu et al., 2006; Li et al., 2011). This effect is more likely led by
CSE activation rather than CBS (Leffler et al., 2011). H2S activates
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KATP channels containing SUR2 subunits and acts on smooth
muscle cells to promote vasodilation and subsequently maintain
the CBF (Liang et al., 2011). However, fewer studies have
investigated this effect in TBI models. The current understanding
of the molecular mechanisms and biological roles of endogenous
and exogenous H2S remains poor. Also, the study investigating
the role of H2S-producing enzyme systems in TBI is unclear.
This may be an area of focus in future H2S studies after TBI.
Additionally, the use of NaHS and H2S in the clinical application
requires optimal and safe concentration recommendations and
strategy. Even a very low concentration (50 ppm) of inhaled
H2S could lead to intense damage due to its high solubility.
Thus, direct inhalation of H2S is not available (Qu et al., 2008;
Figure 3).

HYDROGEN

Hydrogen (H2) provides potential protective roles in neural
diseases such as ischemic or hemorrhagic stroke (Cai et al., 2008;
Zhan et al., 2012), TBI (Ji et al., 2010), CO poisoning (Sun
et al., 2011), and neurodegenerative diseases (Fu et al., 2009).
The underlying mechanisms may involve anti-oxygenation, anti-
inflammation, anti-apoptosis effects, and BBB protection (Deng
et al., 2014; Liu C.L. et al., 2016). The solubility of H2 is low in
the normal environment, and no/few endogenous cells produce
H2 in the mammalian CNS (Levitt, 1969; Sahakian et al., 2010).
The therapeutic use of exogenous H2 in neural diseases is under
investigation. The main donor of exogenous H2 in past research
includes intravenous fluid of hydrogen-rich saline (Ono et al.,
2011), potable H2 water (Ishibashi et al., 2012), and inhaled H2
gas (Nakao et al., 2010).

Inhalation of 2% H2 from 5 min to 5 h after TBI
was shown to attenuate BBB damage, brain edema, lesion
volume, and improved neurological outcome. The potential
mechanism might be associated with decreasing oxidative
products (8-iso-PGF2α and MDA) and promotion of endogenous
antioxidant enzymatic activity (SOD and CAT) (Ji et al.,
2010). Similarly, another study found that 2.9% H2 inhalation
showed similar effects in brain tissues after surgery. However,
this treatment failed to present the anti-oxidative or anti-
inflammatory effects (Eckermann et al., 2011). In addition,
hydrogen-rich saline facilitated synaptic plasticity and improved
cognition after mild TBI. The hydrogen-rich saline protected
TBI rat model through inhibition of oxidative damage and
maintaining energy homeostasis (Hou et al., 2012). Recently,
molecular hydrogen given in drinking water (mHW) was
shown to relieve the acute alterations and neurodegenerative
changes after TBI in a controlled cortical impact (CCI)
model. The mHW alleviated brain edema, BBB disruption,
and maintained normal brain interstitial fluid circulation. In
addition, mHW increased ATP and nucleotide binding after
TBI and inhibited pathological gene expressions that regulate
oxidation/carbohydrate metabolism and suppressed cytokine
activation (Dohi et al., 2014). In another study, pro-inflammatory
cytokines (TNF-α, IL-1β, and HMGB1), inflammatory cell
numbers (Iba1), and inflammatory metabolites (Cho) were

attenuated, and anti-inflammatory cytokine (IL-10) was elevated
after hydrogen-rich water therapy (Tian et al., 2016). In addition,
H2-rich water can also up-regulate the expression of Nrf2 which
prevents oxidative damage in TBI-challenged rats (Yuan et al.,
2015).

Based on the neuroprotective effects of H2 published in the
past, H2 could be a promising therapy for clinical application
(Figure 4). However, the adverse effects have not been well
investigated. Researchers reported that some biological enzymes
would decline upon ingestion of a certain concentration of
H2which may bring a potential toxicity. The intervention
strategies and concentrations of H2 used also differed among
previous studies. Future studies should also focus on interactions
between the anti-oxygenation, anti-inflammation, and anti-
apoptosis effects induced by H2 therapy.

CONCLUSION AND PROSPECTS

Biological gasses have smaller molecular weights compared to
chemically formulated drugs. Thus, they can easily cross the
BBB and diffuse to the brain tissues. Increasing evidence has
demonstrated the potential clinical value of neuroprotective
gasses in the treatment of neural diseases, including TBI.
Endogenous gaseous are up-regulated during the pathological
changes occurring after TBI, including redox reactions,
inflammation, apoptosis, and excitotoxicity. Understanding
the roles of endogenous gaseous molecules in different stages
after TBI and determining an appropriate application strategy
for exogenous gaseous molecules might provide us with more
treatment options and significantly improve post TBI symptoms
and outcome. However, the interaction between gasses and
pathology is not well understood, and the application paradigms
differ among published studies. The administration differences
include in the gas source and gas ingestion methods, as well as
the ideal concentrations needed for optimal results. In addition,
safety and toxicity remain to be fully understood. Studies in this
topic of TBI treatment could also focus on complicated aspects
not studied or not elucidated in the current literature to help
with the transition from current pre-clinical studies into future
clinical studies.
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