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Abstract

Pain is a complex phenomenon that is served by neural oscillations and connectivity

involving different brain areas and frequencies. Here, we aimed to systematically and

comprehensively assess the pattern of neural oscillations and connectivity characteriz-

ing the state of tonic experimental pain in humans. To this end, we applied 10-min heat

pain stimuli consecutively to the right and left hand of 39 healthy participants and

recorded electroencephalography. We systematically analyzed global and local mea-

sures of oscillatory brain activity, connectivity, and graph theory-based network mea-

sures during tonic pain and compared them to a nonpainful control condition. Local

measures showed suppressions of oscillatory activity at alpha frequencies together with

stronger connectivity at alpha and beta frequencies in sensorimotor areas during tonic

pain. Furthermore, sensorimotor areas contralateral to stimulation showed significantly

increased connectivity to a common area in the medial prefrontal cortex at alpha fre-

quencies. Together, these observations indicate that the state of tonic experimental

pain is associated with a sensorimotor-prefrontal network connected at alpha frequen-

cies. These findings represent a step further toward understanding the brain mecha-

nisms underlying long-lasting pain states in health and disease.
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1 | INTRODUCTION

Pain is a complex phenomenon which serves to protect the body.

In contrast, ongoing pain in chronic pain syndromes does no longer

serve protective functions but represents a pathological condition

with detrimental effects on quality of life. In the brain, the experience

of pain is associated with the activation of an extended network of

brain areas (Baliki & Apkarian, 2015; Garcia-Larrea & Peyron, 2013).

This network yields pain-related neural oscillations at different fre-

quencies ranging from infra-slow oscillations below 0.1 Hz to theta

(4–8 Hz), alpha (8–13 Hz), beta (13–29 Hz), and gamma (30–100 Hz)

frequencies (Ploner, Sorg, & Gross, 2017). In addition, pain depends

on the communication between different brain areas, that is, on

functional connectivity (Apkarian & Chialvo, 2006; Kucyi & Davis,

2015; Mano & Seymour, 2015; Tracey, 2005). Functional connectiv-

ity can be observed at different frequencies, which are thought to

represent complementary, for example, short-range and long-range

or bottom-up and top-down, communication processes (Fries, 2015;

Ploner et al., 2017; Siegel, Donner, & Engel, 2012).

So far, most evidence on the cerebral processing of pain refers to

brief experimental pain stimuli whose brain mechanisms likely differ

from those of tonic pain states (Baliki & Apkarian, 2015; Kuner & Flor,
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2017). Comparatively few electroencephalography (EEG), magnetoen-

cephalography (MEG), and intracranial recordings have investigated

the brain processing of tonic experimental pain stimuli. They have

shown local suppressions of alpha and beta oscillations in sensorimo-

tor cortices (Colon, Liberati, & Mouraux, 2017; Giehl, Meyer-Brandis,

Kunz, & Lautenbacher, 2014; Huishi Zhang, Sohrabpour, Lu, &

He, 2016; Nickel, May, Tiemann, Schmidt, et al., 2017; Nir, Sinai,

Moont, Harari, & Yarnitsky, 2012; Peng, Hu, Zhang, & Hu, 2014;

Schulz et al., 2015) and insula (Liberati et al., 2019) as well as increases

of gamma oscillations in prefrontal areas (Nickel, May, Tiemann,

Schmidt, et al., 2017; Peng et al., 2014; Schulz et al., 2015). Some

studies revealed changes of the peak frequency of neural oscillations

(Furman et al., 2018; Nir, Sinai, Raz, Sprecher, & Yarnitsky, 2010).

Moreover, a few recent investigations have shown changes of func-

tional connectivity at alpha and beta frequencies during tonic pain

(Gram et al., 2017; Huishi Zhang et al., 2016; Levitt, Choo, Smith,

LeBlanc, & Saab, 2017; Martel et al., 2017). However, these studies

addressed either oscillatory brain activity or functional connectivity

and either global, that is, whole-brain summary measures, or local

measures. Thus, a comprehensive picture of local and global neural

oscillations and functional connectivity up to the whole-brain network

level associated with tonic experimental pain is lacking so far.

In the present study, we therefore aimed to comprehensively

characterize the pattern of neural oscillations and functional connec-

tivity reflecting the state of tonic experimental pain in humans.

To this end, we applied tonic heat pain stimuli to the hands of

39 healthy participants and recorded EEG. We systematically analyzed

global and local oscillatory brain activity and connectivity and graph

theory-based network measures during tonic pain and compared them

to a nonpainful control condition.

2 | METHODS

2.1 | Participants

Fifty-one healthy human participants (age 24.7 ± 5.6 years [mean ± SD],

24 female) participated in the study. All participants were right-handed

and gave written informed consent. Due to technical issues with the

stimulation device, data sets of 12 participants had to be excluded,

resulting in a final sample size of 39 participants (age 24.3 ± 5.6 years,

18 female). The study was approved by the ethics committee of the

TUM School of Medicine of the Technical University of Munich. Other

analyses of the same data set which addressed the instantaneous pain

intensity rather than the state of tonic pain have been published previ-

ously (Nickel, May, Tiemann, Postorino, et al., 2017; Nickel, May,

Tiemann, Schmidt, et al., 2017).

2.2 | Paradigm

The experiment consisted of two tonic pain conditions and two con-

trol conditions. In the pain conditions, painful heat stimuli with dura-

tion of 10 min were applied to the dorsum of the left (pain left) or the

right hand (pain right). Apart from the side of stimulation, the two pain

conditions were identical. Left- and right-hand stimulations were

performed to test the replicability of findings and to disentangle

stimulus location-dependent and stimulus location-independent

neural processes. In the control conditions, the temperature of the

stimulation device was set at 32�C, close to skin temperature. The

order of the two pain conditions was counterbalanced across partici-

pants and control conditions always followed the respective pain

condition. During all conditions, participants wore headphones

playing white noise to cancel out ambient noise.

In the pain conditions, painful heat stimuli were applied using a the-

rmode (TSA-II, Medoc, Ramat Yishai, Israel). While the time course of

stimulation was the same for all participants, stimulus intensity varied

with a rate of 0.1�C/s between three individually adjusted temperature

levels (low, medium, and high) exceeding the individual pain threshold

temperature (see below) by 0.5, 0.8, or 1.1�C, respectively. The total

stimulation time course consisted of 9 plateaus of 40, 50, or 60 s dura-

tion with 3 plateaus for each temperature level. During stimulation, par-

ticipants continuously rated the perceived pain intensity on a visual

analogue scale ranging from no pain to worst tolerable pain (0–100)

using a custom-built finger-span device with the nonstimulated hand.

Data between the start of the first temperature plateau and the end of

the last decrease in stimulation temperature was included in the analy-

sis, resulting in an 8.2 min time window for analysis. To determine the

pain threshold temperature, participants were asked to adjust the stim-

ulation temperature over the course of 3 min to their individual pain

threshold before the first pain condition. The pain threshold was

defined as the average stimulation temperature during the last 10 s of

this procedure. The hand for which the threshold was assessed was

counterbalanced across subjects and the same threshold was used to

determine stimulus intensities for both hands. Mean pain threshold

temperature was 44.7 ± 1.1�C (mean ± SD), resulting in an average

stimulus intensity of 45.5 ± 1.1�C during the 8.2 min window of analy-

sis. Average pain ratings of the pain left and pain right condition were

53.3 ± 23.0 and 49.6 ± 23.4, respectively. In the two control conditions,

the thermode remained attached to the same hand as in the respective

pain condition, but at a neutral temperature of 32�C. In these condi-

tions, participants performed a rating procedure similar to the pain

conditions, tracking the visually displayed and temporally inverted pain

ratings of the respective pain conditions with the finger-span device.

For further details of the procedure please refer to Nickel, May,

Tiemann, Schmidt, et al. (2017).

Stimulus presentation and timing was controlled using MATLAB

(Mathworks, Natick, MA) and the Psychophysics Toolbox (http://

psychtoolbox.org/).

2.3 | Recordings and preprocessing

EEG data were recorded using an electrode montage of 64 electrodes

consisting of all 10–20 system electrodes and the additional elec-

trodes Fpz, CPz, POz, Oz, Iz, AF3/4, F5/6, FC1/2/3/4/5/6,

FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5/6, TP7/8/9/10, P5/6, and

PO1/2/9/10, plus two electrodes below the outer canthus of each

eye (Easycap, Herrsching, Germany) and BrainAmp MR plus amplifiers
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(Brain Products, Munich, Germany). All electrodes were referenced to

FCz and grounded at AFz. The EEG was sampled at 1000 Hz (0.1 μV

resolution) and band-pass filtered between 0.016 and 250 Hz. Imped-

ances were kept below 20 kΩ.

Preprocessing was performed using BrainVision Analyzer software

(Brain Products). EEG data were downsampled to 500 Hz. To detect

artifacts and to compute independent component (IC) weights, a 1 Hz

high-pass filter and a 50 Hz notch filter removing line noise were

applied. IC analysis was applied to the filtered EEG data after

concatenation of all conditions and ICs representing eye move-

ments and muscle artifacts were identified (Jung et al., 2000).

Data segments of 400 ms around data points with amplitudes

exceeding ±100 μV and data jumps exceeding 50 μV were marked

for rejection. Subsequently, the identified ICs were subtracted from

the unfiltered EEG and all electrodes were re-referenced to the

average reference. Remaining artifacts were identified by visual

inspection and manually marked for rejection. No significant differ-

ences in relative portions of rejected data were found between

conditions (pain left/right, 5.7 ± 3.9%, 5.2 ± 4.8%, control left/right,

5.0 ± 3.6%, 5.9 ± 5.1%, one-way repeated measures ANOVA,

F[2, 86] = 0.95, p > .4, Greenhouse–Geisser corrected).

All further analysis steps were performed in MATLAB using the

FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011), the

Brain connectivity toolbox (Rubinov & Sporns, 2010), and custom-

written scripts. In FieldTrip, previously marked artifacts were rejected

and data were downsampled to 250 Hz to accelerate further analysis.

The continuous EEG data were segmented into 2 s epochs with 50%

overlap which served as basis for all following analyses except for the

peak frequency analysis, in which case 5 s epochs with 50% overlap

were used to increase frequency resolution. All data were analyzed sep-

arately for each condition. Frequency bands were defined as follows:

theta, 4–8 Hz; alpha, 8–13 Hz; beta, 14–30 Hz; gamma, 60–100 Hz.

For the gamma band, frequencies between 60 and 100 Hz were chosen

as previous studies (Nickel, May, Tiemann, Schmidt, et al., 2017; Peng

et al., 2014; Schulz et al., 2015) showed strongest effects related to

tonic pain at these frequencies.

2.4 | Analysis—Overview

Figure 1 gives an overview of the analysis, which comprised assessments

of oscillatory brain activity and functional connectivity. For both, we

define two categories of analyses, global and local analyses. Global ana-

lyses include analyses which average or summarize across electrodes or

voxels, such as power spectra, peak frequency, and all global graph mea-

sures. Hence, global analyses are spatially unspecific. In contrast, local

analyses comprise the comparison of topographies of power, strength of

connectivity, and degree as local graph measure on electrode and source

level. Thus, these analyses are spatially specific.

2.5 | Analysis of oscillatory brain activity

All analyses of oscillatory brain activity were performed on elec-

trode level. We first assessed global measures of oscillatory brain

activity at frequencies between 1 and 100 Hz. To calculate global

power spectra, a power spectrum with a frequency resolution of

0.5 Hz was computed using a fast Fourier transformation and

Slepian multitapers with ±1 Hz frequency smoothing for each

epoch and electrode. To suppress line noise, a band-stop filter of

48–52 Hz was applied. Subsequently, the power spectra were aver-

aged across epochs and electrodes, resulting in a global power

spectrum for each condition and participant. Furthermore, we com-

puted relative power spectra by dividing the absolute power spec-

tra by the summed power across the whole frequency range

(1–100 Hz) for each participant in order to enhance sensitivity with

respect to frequency band-specific changes in oscillatory brain

activity. To determine global peak frequencies of oscillatory brain

activity, a frequency analysis similar to the global absolute power

spectra but with 0.2 Hz frequency resolution was performed in an

extended alpha band range (6–14 Hz) (Bazanova & Vernon, 2014).

Peak frequencies were determined for each epoch by detecting the

frequency between 6 and 14 Hz which showed a maximum in

power and subsequently averaged across epochs for each condition

and participant to avoid a bias toward epochs with high alpha

power (Furman et al., 2018).

To assess local measures of oscillatory brain activity, we calculated

topographies of absolute and relative power for theta, alpha, beta,

and gamma frequency bands for each condition and participant.

Topographies of relative power were computed by dividing the abso-

lute power spectra by the summed power across the whole frequency

range (1–100 Hz) for each electrode and participant. Relative power

spectra were averaged across the respective frequency ranges to

obtain the relative power of each frequency band.

F IGURE 1 Analysis outline. EEG data were analyzed with respect
to oscillatory brain activity and functional connectivity, as measured
by phase locking value (Lachaux, Rodriguez, Martinerie, & Varela,
1999) and debiased weighted phase lag index (Vinck, Oostenveld, van
Wingerden, Battaglia, & Pennartz, 2011). For both phenomena, global
and local measures were computed. EEG, electroencephalography
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2.6 | Analysis of functional connectivity

Functional connectivity was assessed using the phase locking value

(PLV) (Lachaux et al., 1999), which is defined as

PLV=
1
N

XN

j=1

expi Φx jð Þ−Φy jð Þð Þ
�����

�����:

Φx( j) − Φy( j) indicates the phase difference between two sites

x and y of epoch j. N signifies the number of epochs across time. The

PLV is well-established, highly sensitive and captures zero-phase lag

and nonzero-phase lag connectivity. In addition, we calculated the

debiased weighted phase lag index (dwPLI) (Vinck et al., 2011), which

is defined between two sites x and y as

dwPLI =

PN

j=1

P
k 6¼j

Im Sxyj
� �

Im Sxyk
� �

PN

j=1

P
k 6¼j

Im Sxyj
� �

Im Sxyk
� ��� ��

:

Im{Sxyj} and Im{Sxyk} indicate the imaginary part of the cross-

spectral density S of epochs j and k, respectively. N signifies the num-

ber of 2 s epochs across time. The dwPLI captures nonzero-phase lag

connectivity only. Therefore, the dwPLI is not susceptible to volume

conduction but has a reduced sensitivity, since real synchrony at zero-

phase lag is also discarded.

All connectivity analyses were performed in source space as con-

trasts between tonic pain and respective control conditions which

reduces possible confounds by volume conduction and field spread

(Schoffelen & Gross, 2009). We used linearly constrained minimum var-

iance beamforming (Van Veen, van Drongelen, Yuchtman, & Suzuki,

1997) to project band-pass filtered EEG data from electrode into

source space. EEG data were band-pass filtered in the predefined fre-

quency bands using a fourth-order Butterworth filter (forward and

backward). Spatial filters were computed based on the covariance

matrices of the band-pass filtered data for each frequency band and a

lead field matrix. A three-dimensional grid with a 1 cm resolution cover-

ing the brain was defined. The lead field was constructed for each voxel

using a realistically shaped three-shell boundary-element volume con-

duction model based on the template Montreal Neurological Institute

(MNI) brain. We used a regularization parameter of 5% of the covari-

ance matrix and chose the dipole orientation of most variance using

singular value decomposition. Finally, the preprocessed, band-pass fil-

tered EEG data were projected through the spatial filter to extract the

time series of neuronal activity of each frequency band at each voxel.

For global connectivity analyses, the connectivity between every

pair of voxels was computed resulting in a 2020 × 2020 voxels con-

nectivity matrix representing the strength of connection for each pair

of voxels over the complete 8.2 min analysis window. To describe

brain networks, we applied a graph theory-based approach. Graph

theory is a valuable framework to better understand the characteris-

tics of complex systems, including brain networks, as it allows to

describe and quantify key features of such systems in a few measures.

A graph is a mathematical construct consisting of nodes and edges

connecting the nodes to each other. Here, nodes were defined as

voxels and edges as connectivity between voxels. To reduce the com-

putational load, the adjacency matrix, which defines all edges between

the nodes, was thresholded to the 10% strongest connections and

binarized (Mano et al., 2018; Mansour et al., 2016), resulting in an

unweighted and undirected graph.

In principle, graph measures can characterize either complete net-

works or single nodes of the network. Three complementary mea-

sures of the complete network were included in the analysis: the

global clustering coefficient, global efficiency, and small-worldness.

The global clustering coefficient is the average of the local clustering

coefficients of all nodes, that is, the fraction of the node's neighbors

which are also connected to each other (Watts & Strogatz, 1998). It cap-

tures the prevalence of clustered connections around single nodes in a

network. This is commonly interpreted as a measure of functional segre-

gation, indicating specialized subregions of the brain which are densely

connected (Rubinov & Sporns, 2010). Global efficiency is the inverse of

the average shortest path length, that is, the minimum number of edges

necessary to connect any pair of nodes in a network. It reflects long-

range connections which play a pivotal role for the global integration of a

network (Stam, 2014). Small-worldness describes the ratio of clustering

coefficient and global efficiency in comparison to random networks

(Rubinov & Sporns, 2010). Brain networks characteristically show small-

world properties, that is, clustered local connectivity with relatively few

long-range connections which renders the network efficient and mini-

mizes wiring costs (Achard & Bullmore, 2007; Bullmore & Sporns, 2012).

To assess local connectivity, we first determined the average con-

nectivity of each voxel to all other voxels, that is, the strength of con-

nectivity. Second, we investigated the graph measure degree. The

degree quantifies the number of nodes connected to an individual

node by edges and thus, reflects the importance and the connection

strength of a node in a network (Rubinov & Sporns, 2010). In the pre-

sent study, edges were defined as the 10% strongest connections.

Third, we analyzed to which brain regions selected brain areas, which

show increased connectivity during tonic pain, are connected to in a

seed-based approach. As we found increased connectivity and degree

in the contralateral sensorimotor area in both pain conditions and

in light of previous findings (Nickel, May, Tiemann, Schmidt, et al.,

2017; Schulz et al., 2015), we defined one voxel located in the

primary somatosensory cortex (S1) contralateral to the stimulation

(MNIxyz = [30/−30, −30, 60] mm [Bradley, Bastuji, & Garcia-Larrea,

2017]) as seed voxel and computed the seed-based strength of con-

nectivity. Moreover, we computed the individual mean and group

mean phase differences in the alpha band between oscillatory activity

in contralateral S1-voxels and a region-of-interest in the medial fron-

tal cortex (MNIxyz = [0, −10, 60]) obtained as the result of the con-

junction analysis with maximal t value (see below). Finally, to establish

the dominant directionality of the seed-based connectivity, we calcu-

lated partial directed coherence (PDC) (Baccala & Sameshima, 2001)

in the alpha band as a measure of directed connectivity between the

aforementioned seed voxels in the contralateral S1 and the region-of-

interest in the medial frontal cortex.
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2.7 | Statistical analysis

Statistical analysis was carried out using FieldTrip (Oostenveld et al., 2011)

and custom-writtenMATLAB scripts. We used cluster-based permutation

tests with 10,000 permutations to compare each pain condition to the

respective control condition (Maris & Oostenveld, 2007), either clustering

across frequencies for the power spectra as part of the global analysis or

clustering across space (electrodes or voxels) for all local analyses.We con-

trasted pain and control conditions using dependent-samples t tests for

every frequency/electrode/voxel and applied a cluster-threshold at

p < .05. Neighboring t values which exceeded this p value were summed

up. Subsequently, single-subject data were randomly assigned to the pain

and control conditions and the aforementioned procedure was repeated.

For each of the 10,000 permutations, the maximum summed t value was

kept building the distribution under the null hypothesis that pain and con-

trol conditions did not differ. Statistical significance was tested with an

alpha level of .05 for one- and two-tailed testing. One-tailed testing was

used for local power and the seed-based analyses only, as directed

hypotheses existed, such as a decrease in contralateral alpha activity when

heat pain was applied. Except for the power spectra, all global measures

were compared using a nonparametric permutation test permuting single-

subject values 10,000 times between pain conditions and the respective

control conditions, computing a dependent-samples t test and obtaining a

null distribution of t values to which the t value of the original data was

compared. The alpha level was also set to .05 (two-tailed). Bonferroni cor-

rections were performed across the four frequency bands. With regard to

the seed-based analysis, we additionally performed a conjunction analysis

(Nichols, Brett, Andersson, Wager, & Poline, 2005) of left and right-hand

stimulations to assess brain areas whose connectivity are consistently

changed during tonic pain regardless of stimulation side. Phase differences

between voxels in the contralateral S1 (MNIxyz = [30/−30, −30, 60]) and

medial frontal cortex (MNIxyz = [0, −10, 60]) were statistically compared

against zero using the circ_mtest.m function of the CircStat toolbox for cir-

cular statistics (Berens, 2009). Moreover, we compared PLV-based con-

nectivity between these voxels while controlling for alpha power at

central electrodes C1/C3 and C2/C4 contralateral to stimulation to test

whether the connectivity effect can be explained by alpha power.We per-

formed repeated measures analyses of covariance (rmANCOVAs) includ-

ing the factor condition (pain vs. control condition), the covariate alpha

power and the dependent variable connectivity. Separate rmANCOVAs

were calculated for the pain left and pain right contrasts. For this analysis,

connectivity and power values were z-transformed across pain left and

control left conditions and across pain right and control right conditions.

Finally, to test the dominant directionality of seed-based connectivity, we

contrasted the PDC between both directions (S1 to medial frontal cortex

and medial frontal cortex to S1) for each pain condition separately using a

nonparametric permutation test permuting single-subject values 10,000

times between both connectivity directions.

3 | RESULTS

3.1 | Oscillatory brain activity during the tonic pain
state

We first assessed global changes of oscillatory brain activity during

tonic pain. To this end, we compared global power spectra and peak

frequencies between pain and control conditions (Figure 2). We did

not observe significant differences of absolute power spectra

F IGURE 2 Global measures of oscillatory brain activity. (a) Absolute power spectra of pain (red) and control conditions (blue) for stimulation
of the left and right hand. Individual power spectra were log-transformed and averaged for visualization. The red and the blue shading indicate
the SD across subjects. Cluster-based permutation tests showed no significant differences between pain and respective control conditions.
(b) Violin plots of the dominant peak frequencies of pain (red) and control (blue) conditions. Peak frequencies between 6 and 14 Hz were
determined on single-trial level to avoid a bias toward trials with high alpha power. Subsequently, single-trial peak frequencies were averaged for
each participant and condition. Black lines indicate the grand average of dominant peak frequencies across participants. Nonparametric
permutation tests showed no significant differences between pain and control conditions
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(pmin > .08) or relative power spectra (pmin > .07) between pain and

control conditions. Similarly, peak frequencies did not differ between

pain left and control left (9.29 ± 1.10 Hz and 9.38 ± 0.99 Hz, respec-

tively, p > .32) or between pain right and control right (9.30 ± 1.09 Hz

and 9.41 ± 0.99 Hz, respectively, p > .14).

We next analyzed local changes of oscillatory brain activity during

tonic pain. We calculated topographies of absolute and relative power

for pain and control conditions at theta, alpha, beta, and gamma

frequency bands. Topographies of absolute power did not differ

between pain and control conditions (Figure 3a; pmin > .06, Bonferroni-

corrected; see also Figure S1a). Topographies of relative power showed

a significant decrease in alpha power over bilateral central electrodes

covering the sensorimotor areas in pain left and pain right conditions

(Figure 3b; left, p = .026, Cohen's d [d] = −0.31; right, p = .044,

d = −0.42; Bonferroni-corrected; see also Figure S1b). Relative theta

power at frontal and central electrodes was significantly reduced in

the pain left condition (p = .018, d = −0.40, Bonferroni-corrected).

However, we found no significant changes of relative theta power in

the pain right condition (p > .21). No other significant changes in rela-

tive power were observed (pmin > .12, Bonferroni-corrected).

3.2 | Functional connectivity during the tonic pain
state

To investigate global changes of functional connectivity at theta,

alpha, beta, and gamma frequencies during tonic pain, we performed

graph theory-based network analysis and contrasted different global

graph measures between pain and control conditions. Using the PLV

as connectivity measure, the global clustering coefficient (gCC), global

efficiency (gEff), and small-worldness (S) did not significantly differ

between pain and control conditions in any frequency band (Figure 4a;

gCC, pmin > .5; gEff, pmin > .7; S, pmin > .1, Bonferroni-corrected). Using

the dwPLI as connectivity measure (Figure 4b), the gCC in the alpha

frequency band was significantly increased in both pain conditions

(gCC, left, p = .0016, d = 0.58; right, p = .029, d = 0.45; other fre-

quency bands, pmin > .7). Furthermore, small-worldness in the alpha

frequency was significantly enhanced in the pain left condition

(S, left, p = .007, d = 0.51, Bonferroni-corrected), but not in the pain

right condition (S, right, p > .1, other frequency bands, p > .5,

Bonferroni-corrected), thus, not consistent across pain conditions.

No significant differences in gEff were observed (gEff, pmin > .2,

Bonferroni-corrected).

We next assessed local changes of functional connectivity. We

first calculated the strength of connectivity by averaging the connec-

tivity of each voxel to all other voxels. Using the PLV, we observed

an increase in connectivity in the beta frequency band predomi-

nantly contralateral to the stimulated hand in both pain conditions

(Figure 5a; left, p = .0056, d = 0.89; right, p = .0056, d = 0.74,

Bonferroni-corrected; see also Figure S2a). No effect was observed in

any other frequency band (pmin > .27, Bonferroni-corrected). Using

the dwPLI, which excludes zero-phase lag connectivity, we did not

observe any significant differences (pmin > .07, Bonferroni-corrected;

data not shown). To further investigate local changes in connectivity,

we next computed the local graph measure degree and compared it

between pain and control conditions. The degree of a node is the num-

ber of connections to other nodes after thresholding to the 10%

strongest connections and therefore, conceptually related to the

strength of connectivity. As shown by Figure 5b (see also Figure S2b),

we found an increased degree, based on the PLV, in sensorimotor

areas contralateral to the stimulation in alpha (left, p = .025, d = 0.62;

right, p = .013, d = 0.98, Bonferroni-corrected) and beta frequency

bands (left, p < .001, d = 1.06; right, p < .001, d = 0.79, Bonferroni-

corrected) in both pain conditions. In the theta frequency band, we

observed an increase in degree predominantly in the bilateral prefron-

tal cortices (left, p = .0048, d = 0.75; right, p = .026, d = 0.79,

Bonferroni-corrected). Moreover, significant negative occipital clus-

ters were revealed in the alpha (right, p = .038, d = −0.65) and beta

(left, p < .001, d = −0.87; right, p = .0016, d = −0.81) frequency bands,

indicating fewer strong connections in the visual cortex during tonic

pain as compared to the control condition. We found no significant

F IGURE 3 Local measures of oscillatory brain activity. (a) T-maps
of absolute power contrasts. Warm and cold colors indicate increased
and decreased power in the pain condition as compared to the control
condition, respectively. No significant differences in absolute power
were revealed by cluster-based permutation tests after Bonferroni
correction. (b) T-maps of relative power contrasts. Warm and cold

colors indicate increased and decreased relative power in the pain
condition as compared to the control condition, respectively. With
regard to relative alpha power, cluster-based permutation tests
revealed significant decreases over the sensorimotor area
(Bonferroni-corrected) in both pain conditions. Moreover, a significant
decrease in the theta frequency band was observed at fronto-central
and fronto-lateral electrodes in the pain left condition. Topographies
without significant cluster are presented with reduced opacity
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differences at gamma frequencies (pmin > .41, Bonferroni-corrected)

or for the degree based on the dwPLI (pmin > .37, Bonferroni-

corrected; data not shown).

Furthermore, we investigated to which regions brain areas with

increased connectivity strength were connected during tonic pain. To

this end, we used the contralateral sensorimotor area as a seed region

and compared seed-based connectivity assessed by PLV between pain

and control conditions. We observed increased connectivity to the

medial prefrontal cortex and the frontal cortex contralateral to the

stimulation side in the alpha frequency band (Figure 6). These effects

were consistent across stimulation sides (left, p = .030, d = 0.65; right,

p < .001, d = 0.80, Bonferroni-corrected). In addition, we found

increased connectivity to the frontal cortex in the beta frequency

band (p = .0044, d = 1.11, Bonferroni-corrected) in the pain left but

not in the pain right condition. No difference was detected at any

other frequency band (pmin > .05, Bonferroni-corrected). To determine

whether the sensorimotor cortex of both hemispheres connects to a

common brain area independent of stimulation side, we applied a con-

junction analysis of seed-based connectivity from both sensorimotor

areas. The results revealed that both sensorimotor areas connected to

the medial prefrontal cortex in the alpha frequency band during tonic

pain (Figure 6, tmax = 4.7, MNIxyz = [0, −10, 60]). The analysis of phase

differences showed that they did not or only marginally differ from

zero (pain right, 3.3 ± 15.3�, mean ± SD, p > .07; pain left, 4.6 ± 11.2�,

F IGURE 4 Global measures of functional connectivity. Radar charts depict global graph measures clustering coefficient, global efficiency, and
small-worldness (S) for all conditions and frequency bands. Red lines indicate pain conditions and blue lines indicate control conditions. Error bars
represent the SD for the pain conditions (red, inward oriented) and control conditions (blue, outward oriented). (a) PLV-based global graph
measures are shown with a scale ranging from 0.4 (center point) to 0.8 in steps of 0.1. For visualization purposes, small-worldness was scaled by a
factor of 1/7. None of the PLV-based graph measures differed significantly between pain and control conditions for any of the investigated
frequency bands. (b) dwPLI-based global graph measures are shown with a scale ranging from 0.2 (center point) to 0.6 in steps of 0.1. For
visualization purposes, small-worldness was scaled by a factor of 1/7. The global clustering coefficient in the alpha band was significantly
increased in both pain conditions. Furthermore, small-worldness was increased in the pain left condition. *p < .05, **p < .01. dwPLI, debiased
weighted phase lag index; PLV, phase locking value
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p = .017). Using the center frequency of 10.5 Hz of the alpha band

(8–13 Hz), the phase differences equaled time lags of 0.9 and 1.2 ms,

respectively, indicating that connectivity was essentially observed

with a phase lag close to zero.

We further investigated whether these connectivity changes

between S1 and medial frontal cortex could be explained by power

changes contralateral to stimulation. We therefore calculated repeated

measures analysis of covariance including the factor condition, the

covariate alpha power and the dependent variable connectivity. The

analyses revealed significantly enhanced functional connectivity in pain

left compared to control left (F[1, 36] = 26.3, p < .001, partial η2 = 0.42)

and in pain right compared to control right (F[1, 36] = 30.9, p < .001, par-

tial η2 = 0.46) independent of alpha power.

Finally, to investigate if the increased seed-based connectivity in

the alpha band assessed by PLV predominantly reflects bottom-up or

top-down processes, we compared PDC as a measure of directed con-

nectivity from S1 to the medial frontal cortex to the reverse direction

in both pain conditions. We observed significantly increased PDC

from S1 to the medial frontal cortex (pain left, p < .001, d = 0.76, pain

right, p < .001, d = 1.28).

3.3 | Summary

Taken together, we found a decrease of oscillatory brain activity at

alpha frequencies associated with an increase of functional connectiv-

ity at alpha and beta frequencies in the contralateral sensorimotor

F IGURE 5 Local measures of functional connectivity. (a) T-maps of functional connectivity contrasts between pain and control conditions.
Strength of connectivity of each voxel was computed by averaging the connectivity, as measured by the PLV, of each voxel to all other voxels.
Warm and cold colors indicate increased and decreased strength of connectivity in the pain condition as compared to the control condition,
respectively. In the beta frequency band, connectivity was increased in both pain conditions predominantly contralateral to the stimulated hand
(Bonferroni-corrected). (b) T-maps of degree contrasts between pain and control conditions. The degree of an individual node is defined by the
number of nodes connected to it after thresholding to the 10% strongest connections. Warm colors indicate an enhanced degree in the pain
condition whereas cold colors indicate lower degree in the pain condition as compared to the control condition. The contrasts revealed a higher
degree in the sensorimotor cortex contralateral to the stimulation in the alpha and beta frequency bands in both pain conditions (Bonferroni-
corrected). In the theta frequency band, we observed an increase in degree predominantly in bilateral prefrontal cortices. Moreover, we observed
a lower degree in occipital cortices at alpha and beta frequencies in both pain conditions (Bonferroni-corrected). Topographies without significant
cluster are presented with reduced opacity. PLV, phase locking value
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cortex during tonic pain compared to the control condition. Further-

more, we found that the contralateral sensorimotor cortex showed a

stronger connection to the medial prefrontal cortex during tonic pain

than during the control condition at alpha frequencies.

4 | DISCUSSION

In the present study, we systematically and comprehensively investi-

gated the pattern of neural oscillations and connectivity characterizing

the state of tonic experimental pain in healthy human participants.

We observed local suppressions of oscillatory brain activity at alpha

frequencies over the sensorimotor cortices during tonic pain. These

suppressions were associated with increases of functional connectiv-

ity at alpha frequencies between sensorimotor cortices contralateral

to the stimulated hand and the medial prefrontal cortex. Directed con-

nectivity analysis suggests bottom-up signaling of nociceptive infor-

mation in the alpha frequency band from somatosensory areas to the

medial prefrontal cortex. Together, these findings indicate that tonic

pain is associated with local changes in oscillations and increased con-

nectivity in a sensorimotor-prefrontal network synchronized at alpha

frequencies.

The absence of global changes of oscillatory brain activity

reported here contrasts with previous studies reporting an increase

(Nir et al., 2010) or a decrease (Furman et al., 2018) of the peak alpha

frequency during tonic pain. Instead, our results suggest that tonic

pain is more closely related to local changes of alpha oscillations over

the sensorimotor cortex (see below) than to changes of global brain

activity. Besides, the discrepancies might also be due to differences in

control conditions. The previous studies used passive control conditions

whereas we used an active control condition. As cognitive load can influ-

ence the peak alpha frequency (Haegens, Cousijn, Wallis, Harrison, &

Nobre, 2014; Mierau, Klimesch, & Lefebvre, 2017), a comparison of pain

to different control conditions can yield different results. In the present

study, we chose an active control condition whose cognitive load was

intended to match that of the pain condition.

Furthermore, we did not find global changes of functional connec-

tivity captured by PLV-based graph theory-based network measures

during tonic pain. This is in accordance with previous studies showing

that, in healthy human participants, functional connectivity networks

assessed by EEG are stable across time (Chu et al., 2012; Kramer

et al., 2011). We, however, found an increased dwPLI-based global

clustering coefficient in the alpha frequency band, showing an

increased functional segregation during tonic pain. Such significant

changes of electrophysiological global network measures have been

observed in different neurological and psychiatric disorders such as

Alzheimer's disease (Stam, Jones, Nolte, Breakspear, & Scheltens, 2007;

Yu et al., 2017), multiple sclerosis, and epilepsy (Stam, 2014). Although

such changes have not directly been shown in chronic pain so far, fMRI

studies reporting a global reorganization of the brain in chronic pain

(Mano et al., 2018; Mansour et al., 2016) suggest that global changes of

functional connectivity networks might also manifest in electrophysio-

logical recordings. The present findings indicate that 10 min of experi-

mental pain only induce changes in the dwPLI-based global clustering

coefficient. However, we only analyzed a subset of important

F IGURE 6 Seed-based connectivity analysis. Functional connectivity, as measured by the PLV, was computed using voxels in the
contralateral primary somatosensory cortices as seeds (MNIxyz = [30/−30, −30, 60] [Bradley et al., 2017]). T-maps of the seed-based connectivity
contrasts between pain and control conditions are depicted (left and right side). Warm and cold colors indicate enhanced and reduced functional
connectivity in the pain condition as compared to the control condition, respectively. In both pain conditions, we observed increased connectivity
between the somatosensory seed voxel and the medial prefrontal cortex and the frontal cortex contralateral to the stimulation side in the alpha
frequency band. Moreover, a positive effect at beta frequencies was revealed in the pain left condition. As shown by the conjunction analysis
(middle), increased alpha connectivity overlapped in the medial prefrontal cortex which indicates its involvement in the processing of tonic pain
independent of the stimulation side. Topographies without significant cluster are presented with reduced opacity. PLV, phase locking value
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complementary graph measures based on selected connectivity mea-

sures. Differences in other graph and connectivity measures can there-

fore not be ruled out.

The observation of a local suppression of alpha oscillations in

sensorimotor cortices during tonic pain is in good accordance with

previous studies (Colon et al., 2017; Giehl et al., 2014; Gram,

Graversen, Olesen, & Drewes, 2015; Huishi Zhang et al., 2016; Nir

et al., 2012; Peng et al., 2014; Schulz et al., 2015). These suppressions

likely indicate activation and increased excitability (Klimesch, 2012) of

the sensorimotor cortex during the processing of tonic pain. Intrigu-

ingly, our findings revealed that these local suppressions of alpha

oscillations are associated with local increases of functional connectiv-

ity in the same brain areas and at the same frequencies. Compared to

the small effect sizes of the changes in oscillatory brain activity,

medium to large effect sizes of connectivity changes, as shown in the

present study, support that connectivity plays a crucial role in the

cerebral processing of pain (Apkarian & Chialvo, 2006; Kucyi & Davis,

2015; Mano & Seymour, 2015; Tracey, 2005).

The present findings further revealed that the sensorimotor cortex

more strongly connected to the medial prefrontal cortex at alpha

frequencies during tonic pain compared to the control condition. In

light of previous findings (Nickel, May, Tiemann, Schmidt, et al., 2017),

this suggests that the stimulation side-dependent representation of

stimulus intensity in sensorimotor cortex connects to a stimulation

side-independent representation of pain intensity in the medial pre-

frontal cortex by synchronizing at alpha frequencies. Synchrony at

alpha and beta frequencies has been suggested to serve long-range

communication in the brain (Donner & Siegel, 2011). Although these

frequencies have been implicated in the top-down signaling of predic-

tions (Fries, 2015; Michalareas et al., 2016; Ploner et al., 2017), the

present findings indicate that the alpha connectivity between sensori-

motor and prefrontal cortex might reflect increased bottom-up rather

than top-down signaling of potentially nociceptive information as our

recent work suggests (Nickel, May, Tiemann, Schmidt, et al., 2017).

These results are in line with previous findings showing that directed

functional connectivity is enhanced between somatosensory and

medial frontal cortex during pain (Huishi Zhang et al., 2016). More-

over, the findings are in accordance with mounting evidence for an

important role of the medial prefrontal cortex for the encoding of

chronic (Baliki et al., 2006; Hashmi et al., 2013; Vachon-Presseau

et al., 2016) and tonic experimental pain (Nickel, May, Tiemann,

Schmidt, et al., 2017; Schulz et al., 2015). Hub-like properties of the

medial frontal cortex with representations of pain, cognitive control,

and negative emotion (Kragel et al., 2018) render it suitable for

the integration of sensory and contextual information into a coherent

percept and appropriate behavioral responses. The comparison of

the topography of the connectivity effects in the prefrontal cortex in

the present study (Figure 6) with the topography of pain-specific fMRI

activations in a recent cross-study approach (Kragel et al., 2018)

reveals an intriguing similarity of these effects. Anatomically, func-

tional connectivity between sensorimotor and medial prefrontal

cortex might be subserved by structural connections between the

sensorimotor cortex and the orbital/medial prefrontal cortex as

revealed by retrograde tracing studies in macaque monkeys

(Carmichael & Price, 1995; Price, 2007).

Moreover, increases in connectivity were also observed in dor-

solateral prefrontal cortex (DLPFC) which plays an important role

in pain processing (Seminowicz & Moayedi, 2017). The DLPFC is

involved in many cognitive and regulatory functions and connected

to different functional brain networks (Seminowicz & Moayedi,

2017). Regarding tonic experimental pain, modulatory effects of

the DLPFC on the excitability of the sensorimotor cortex were

reported (De Martino, Seminowicz, Schabrun, Petrini, & Graven-

Nielsen, 2018). The present observation of increased connectivity

between sensorimotor and lateral prefrontal cortex would be,

in principle, well compatible with these observations of an impor-

tant role of dorsolateral prefrontal-sensorimotor connectivity in

tonic pain.

Some limitations apply to the present findings and their interpreta-

tion. EEG-based connectivity analyses using the PLV can be influenced

by volume conduction and field spread effects complicating the dis-

tinction between artifactual and true connectivity effects. This particu-

larly applies to zero-phase lag connectivity. However, experimental

(Roelfsema, Engel, Konig, & Singer, 1997; Vicente, Gollo, Mirasso,

Fischer, & Pipa, 2008) and modeling (Gollo, Mirasso, Sporns, &

Breakspear, 2014; Viriyopase, Bojak, Zeitler, & Gielen, 2012) evidence

has indicated that physiological long-range connectivity can occur with

zero-phase lag. Moreover, several arguments indicate that the present

findings reflect physiological rather than spurious connectivity

(Bastos & Schoffelen, 2016; Cohen, 2014; Palva & Palva, 2012;

Schoffelen & Gross, 2009). First, we performed all connectivity ana-

lyses in source space which reduces volume conduction confounds.

Second, the present results are based on contrasts between pain and

control conditions which diminishes the risk of volume conduction

effects (see, however, below for limitations of the control condi-

tion). Third, connectivity between sensorimotor and prefrontal cor-

tex significantly differed between pain and control conditions even

when controlling for power changes indicating that connectivity

effects cannot be fully explained by power effects. Nevertheless,

we cannot completely rule out alternative explanations for this

connectivity pattern that might involve common input by one or

more additional sources in combination with volume conduction

effects, an inherent confound and limitation of connectivity ana-

lyses of scalp EEG recordings. Another limitation is that the control

condition does not perfectly control for all possible confounds. In

particular, pain and control conditions differ in attentional focus

(body-centered vs. object-centered), somatosensory stimulation

and salience. Hence, it is impossible to unequivocally disentangle

effects of tonic pain on the one hand and attentional focus, somato-

sensory stimulation, and salience on the other hand (Legrain,

Iannetti, Plaghki, & Mouraux, 2011). Furthermore, in the pain condi-

tion finger movements may have a stronger self-initiated component

than in the control condition in which subjects are asked to track the

visually displayed pain ratings of the respective pain conditions. As

such differences in self-initiation can influence alpha and beta oscil-

lations in sensorimotor cortex and the coherence between bilateral
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sensorimotor cortices (Wang et al., 2017), a confound by differences

in self-initiation cannot be ultimately ruled out.

5 | CONCLUSIONS

In summary, the present findings show that tonic pain is associated

with decreases of local oscillations and increases of connectivity at

alpha frequencies in the sensorimotor cortex. These stimulation side-

specific changes of oscillations and connectivity occur along with

increased connectivity at alpha frequencies to a stimulation side-

independent representation in the medial prefrontal cortex. Although

inherent limitations in the interpretation of scalp EEG-based connec-

tivity analyses remain to be resolved, these findings suggest a core

network for the processing of tonic pain which includes sensorimotor

and medial prefrontal cortex and their synchronization at alpha fre-

quencies. This network might be associated with the transformation

of objective stimulus information into the subjective experience of

pain. Together, these observations represent a step further toward

understanding the cerebral representation of long-lasting pain states

and might help to identify targets for novel chronic pain treatment

approaches such as noninvasive brain stimulation and neurofeedback

(Jensen, Day, & Miro, 2014; Polania, Nitsche, & Ruff, 2018).
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