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ABSTRACT

Introduction: Acute traumatic intraparenchy-
mal hematoma (tICH) expansion is a major
cause of clinical deterioration after brain con-
tusion. Here, an accurate prediction tool for
acute tICH expansion is proposed.
Methods: A multicenter hospital-based study
for multivariable prediction model was con-
ducted among patients (889 patients in a
development dataset and 264 individuals in an
external validation dataset) with initial and
follow-up computed tomography (CT) imaging
for tICH volume evaluation. Semi-automated

software was employed to assess tICH expan-
sion. Two multivariate predictive models for
acute tICH expansion were developed and
externally validated.
Results: A total of 198 (22.27%) individuals
had remarkable acute tICH expansion. The
novel Traumatic Parenchymatous Hematoma
Expansion Aid (TPHEA) model retained several
variables, including age, coagulopathy, baseline
tICH volume, time to baseline CT time, subdu-
ral hemorrhage, a novel imaging marker of
multihematoma fuzzy sign, and an inflamma-
tory index of monocyte-to-lymphocyte ratio.
Compared with multihematoma fuzzy sign,
monocyte-to-lymphocyte ratio, and the basic
model, the TPHEA model exhibited optimal
discrimination, calibration, and clinical net
benefits for patients with acute tICH expansion.
A TPHEA nomogram was subsequently intro-
duced from this model to facilitate clinical
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application. In an external dataset, this device
showed good predicting performance for acute
tICH expansion.
Conclusions: The main predictive factors in the
TPHEA nomogram are the monocyte-to-lym-
phocyte ratio, baseline tICH volume, and mul-
tihematoma fuzzy sign. This user-friendly tool
can estimate acute tICH expansion and opti-
mize personalized treatments for individuals
with brain contusion.

Keywords: Cerebral contusion; Hematoma
expansion; Nomogram; Multihematoma fuzzy
sign; Monocyte-to-lymphocyte ratio

Key Summary Points

Why carry out this study?

Acute traumatic intraparenchymal
hematoma (tICH) expansion after brain
contusion is an important and common
secondary injury leading to subsequent
clinical deterioration.

Although some clinical studies have
attempted to predict hematoma
expansion using various methods, a
clinically accurate and robust predictive
tool for acute traumatic intraparenchymal
hematoma expansion is still lacking.

What was learned from the study?

The novel Traumatic Parenchymatous
Hematoma Expansion Aid (TPHEA)
nomogram exhibited optimal
discrimination and calibration for acute
traumatic intraparenchymal hematoma
expansion. In an external validation
dataset, this tool showed a robust
performance across an extensive spectrum
of individuals with brain contusion.

The nomogram provides a clinically
accurate and user-friendly prediction tool
for tICH expansion in individuals with
brain contusion. The TPHEA nomogram
will optimize the personalized
management and treatment of individuals
with brain contusion.

INTRODUCTION

Traumatic brain injury (TBI) is an important
cause of global mortality and disability in the
youth population and has shown no substantial
decrease over the last 30 years [1]. One impor-
tant reason is its heterogeneity that includes a
range of pathological features from axonal to
hemorrhagic injuries [2]. Hemorrhagic par-
enchyma contusion is a serious type of TBI that
constitutes 20–30% of all TBI cases [3]. In par-
ticular, acute traumatic intraparenchymal
hematoma (tICH) expansion after brain contu-
sion is an important and common secondary
injury that leads to subsequent clinical deteri-
oration [1, 4–7]. Approximately 16–75% of
brain contusions exhibit significant expansion
on follow-up imaging [8–11]. In the majority of
patients, acute tICH expansion occurs within
the first 24 h and rarely progresses after 3–4 days
[1, 5]. Identifying patients who are at high risk
of acute tICH expansion is crucial because of
their need for surgical intervention and/or
intubation, ventilation, and neuromonitoring.
Therefore, a timely prediction of tICH expan-
sion will aid in the classification and individu-
alized management of patients with brain
contusion.

Some clinical studies have attempted to
predict hematoma expansion using various
imaging variables. Baseline tICH volume, sub-
dural hemorrhage, subarachnoid hemorrhage,
and multiple hematomas are potential predic-
tors for tICH expansion [10, 12, 13]. Certain
clinical variables, such as age and coagulation
disorders, may also be associated with acute
tICH expansion [11, 14, 15]. However, none of
these individual variables can provide an accu-
rate prediction for tICH expansion.

Several small retrospective studies have
attempted to develop comprehensive models
for tICH expansion based on clinical and
imaging variables [11, 15, 16]. However, some
crucial predictors were not considered, includ-
ing baseline tICH volume, a novel imaging
marker of multihematoma fuzzy sign, and an
inflammatory marker of monocyte-to-lympho-
cyte ratio (MLR) [17, 18]. In addition, the pre-
dictive value of these models must
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be verified in a large multicenter sample size.
These deficiencies may limit their clinical
applicability. Hence, an accurate and robust
predictive model for tICH expansion is still
urgently needed.

In this multicenter hospital-based study, a
novel comprehensive Traumatic Parenchyma-
tous Hematoma Expansion Aid (TPHEA) model
that combines several crucial and novel clinical
and imaging variables on admission was devel-
oped. On the basis of this model, a TPHEA
nomogram was introduced and externally vali-
dated to provide an easy-to-use and robust tool
for predicting acute tICH expansion.

METHODS

Study Design and Patients

This multicenter hospital-based study for mul-
tivariable prediction model was carried out
from May 2012 to June 2019. Between May
2012 and June 2018, consecutive patients with
primary brain contusion at three grade A
teaching hospitals in eastern Guangdong pro-
vince, China, the First and Second Affiliated
Hospital of Shantou University Medical College,
and the Affiliated Jieyang Hospital of Sun Yat-
sen University, were retrospectively included in
the development dataset. Between March 2014
and June 2019, patients with primary brain
contusion at fourth grade A teaching hospital,
the Affiliated East Hospital of Xiamen Univer-
sity in Fujian province, China, were retrospec-
tively included in an external validation
dataset.

This study was approved by the ethics com-
mittees of the First Affiliated Hospital of Shan-
tou University Medical College, the Second
Affiliated Hospital of Shantou University Medi-
cal College, the Affiliated Jieyang Hospital of
Sun Yat-sen University, and the Affiliated East
Hospital of Xiamen University. This approval
covered the necessary ethics approval for all the
study sites. The ethics approval reference num-
ber (No.: 2020-042) applies to all the above
ethics committees. Data from the retrospective
datasets are anonymous; hence, the require-
ment for informed consent was waived. This

work was performed in accordance with the
1964 Declaration of Helsinki and its later
amendments.

Inclusion and Exclusion Criteria

Consecutive patients with mild, moderate, or
severe brain contusion were included in the
analysis. Inclusion criteria were: (1) baseline
computed tomography (CT) showing intra-
parenchymal bleeding and (2) record of a base-
line CT scan and a follow-up CT after primary
brain contusion. Exclusion criteria were: (1) less
than 18 years old; (2) a documentation of the
baseline CT scan over 6 h or a follow-up CT
undertaken within 48 h following brain injury;
(3) underwent surgery prior to the follow-up CT
scan; (4) initial blood evaluation test over 24 h
of occurrence of the injury; (5) history of head
trauma, stroke, or brain tumor; and (6) history
of anticoagulant use prior to cerebral contusion
(Fig. 1).

Clinical Data

Demographic and clinical variables including
sex, age, severity of injury mechanism, level on
Glasgow Coma Scale score, mean arterial pres-
sure, hypertension, diabetes, and coagulation
function were acquired from the electronic
medical record system of the hospitals. Venous
puncture to collect venous blood samples was
performed at admission into the hospital. Rou-
tine blood testing was conducted to determine
white blood cell count (reference range of
3.5–9.5 9 109 cells/L), monocyte count (refer-
ence range, 0.1–0.6 9 109 cells/L), neutrophil
count (normal range, 1.8–6.4 9 109 cells/L), and
lymphocyte count (normal range, 1.1–3.2 9 109

cells/L). MLR was computed as the ratio of the
absolute monocyte count to the lymphocytes
count.

Routine coagulative function examinations
were also performed at admission. A patient was
considered having coagulopathy upon satisfy-
ing any one of the following indicators: inter-
national normalized ratio[1.2, activated
partial thromboplastin time C 36 s, or platelet
count\120 9 109 platelets/L at admission [19].
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Imaging Data

Imaging variables including time to baseline
CT, time from baseline CT to follow-up CT,
intraventricular hemorrhage, subarachnoid
hemorrhage, subdural hemorrhage, extradural
hemorrhage, location of contusion, multihe-
matoma fuzzy sign, baseline tICH volume, and
follow-up tICH volume were acquired from the
electronic medical record system of the
hospitals.

Two readers (D.Z. and S.C.) blinded to the
other clinical data read the CT images with
5-mm slice thickness at admission (baseline)
and follow-up. Hematoma volumes at baseline
and follow-up were computed from the CT
images through Semi-automated Computer
Aided Volumetric Analysis (General Electric,
USA) [20, 21]. First, the area of interest was
manually selected, and software was then
employed to separate this region from the

environment on the basis of a fixed cut-off in
Hounsfield units (HU). Visual inspection was
conducted on the isolated regions, and manual
adjustment was subsequently performed to
visualize the hemorrhage in all three projec-
tions [20, 21]. The same two investigators par-
ticipated in the manual selection and
adjustment. An automatic summary of the
neighboring voxels was provided to measure
the volume of the hematoma by using a cut-off
value of differentiating hematomas from the
neighboring brain tissue. A fixed window set at
110 and 50 HU was employed to assess the CT
images. Overall volume was computed when
numerous intraparenchymal hematomas
occurred in the contusion site.

The latest noncontrast computed tomogra-
phy (NCCT) marker for acute tICH expansion,
namely, multihematoma fuzzy sign [9], was also
introduced and is defined as: (1) three or more
hematomas occurring next to each other in the

Fig. 1 Flowchart illustrating the selection of patients
based on the inclusion and exclusion criteria. a Patients in
the development dataset were selected from the First
Affiliated Hospital of Shantou University Medical College,
the Second Affiliated Hospital of Shantou University
Medical College, and the Affiliated Jieyang Hospital of

Sun Yat-sen University between May 2012 and June 2018.
b Patients in the external validation dataset were selected
from the Affiliated East Hospital of Xiamen University
between March 2014 and June 2019. CT non-contrast
computed tomography
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contusion site was a manifestation of multiple
hyperdense hematomas, with the maximum
separation distance between hematomas before
being regarded as unrelated equivalent to the
diameter of the largest hematoma; (2) the fuzzy
signal of the relative hypodense for the area
flanked by hyperdense hematomas could be
considered as hyperdense hematomas burring;
and (3) the hypodense fuzzy area and the
hyperdense hematomas are different by C 20
HU. Multiple adjacent hematomas in the con-
tusion regions must meet all three criteria
mentioned above to be defined as a multihe-
matoma fuzzy sign. Notably, multiple hyper-
dense hematomas separated by relatively
hypodense gray/white matter must not be
considered a multihematoma fuzzy sign.

Acute tICH Expansion Definition

Compared with that in previous studies [20, 21],
a more stringent definition of tICH expansion
was developed to further improve the correla-
tion between acute tICH expansion and clinical
deterioration. Acute tICH expansion was
defined as no less than a 33% increase and no
less than a 5-mL increase in absolute hematoma
volume from the baseline CT. Patients must
meet both of these criteria to be recognized as
having an acute tICH expansion. Examples of
acute tICH expansion in two patients with brain
contusion are shown in Fig. 2.

Statistical Analyses

Continuous variables were presented as means
(standard deviations) or medians (interquartile
ranges). Categorical variables were shown as
counts (percentages). Distribution of the data
was tested using quantile–quantile plots and the
Shapiro–Wilk test for normal or non-normal
distribution. Except for age and mean arterial
pressure, the remaining continuous variables
were nonnormally distributed. Comparison of
characteristics was conducted between individ-
uals with and without tICH expansion. The chi-
squared test was used for categorical data, the
two-tailed Student’s t test was employed for
normally distributed variables, and

nonparametric data were examined by the
Mann–Whitney U test. Intraclass correlation
efficient (ICC) was applied to estimate the
consistency of the machine and the investiga-
tors for tICH volume.

Missing Data
Data on the following variables were missing
from the datasets: severity of injury mechanism
(with 22.86% missing data), coagulation func-
tion parameters (with 18.86% missing data),
MLR (with 12.27% missing data), hypertension
(with 3.74% missing data), diabetes (with 2.67%
missing data), and Glasgow Coma Scale (GCS)
level (with 0.62% missing data). For all the
variables with missing data, less than 25% of
data points were unavailable. Missing values
were imputed through multiple imputation by
chained equations to preserve the sample size
while limiting the selection bias [22].

Admission Predictor Selection
Logistic regression analysis was adopted to train
a multivariate estimation model for tICH
expansion. In univariate regression analyses,
variables with P\0.20 were incorporated in the
multivariate analysis [23]. In multivariate
regression, stepwise selection with the Akaike
information criterion was adopted to select the
independent risk factors of acute tICH expan-
sion. Some important risk factors previously
reported such as coagulopathy were also inclu-
ded in multivariate regression. Collinearity was
assessed via the variance inflation factor (VIF),
and features with VIF values[10 were excluded
[24]. Variables for inclusion were carefully cho-
sen to ensure the parsimony of the final model.
In the final multivariate logistic regression,
baseline tICH volume (\5, 5–10, or[10 mL),
and time to baseline CT (\3 vs. C 3 h) were
included as categorical variables.

Construction of Predictive Models
After multivariate logistic regression, the fol-
lowing two predictive models for acute tICH
expansion were established: a basic model with
predictors of age, baseline tICH volume, time
from the occurrence of brain trauma to the time
of the initial CT (time to baseline CT), subdural
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hemorrhage, and coagulopathy and the TPHEA)
model constituting all the predictors in the
basic model together with multihematoma
fuzzy sign and MLR. Their performance was
assessed by the receiver operator characteristic
(ROC) curve, calibration curve, and clinical
decision curve (DCA) in the development
dataset [25, 26]. The area under the ROC curve
(AUC) was used to examine the model dis-
crimination, which is equivalent to c statistics
[27]. Calibration was evaluated with a graphical
calibration plot of actual versus predicted

probabilities with 1000 bootstrap samples to
decrease the overfit bias [28]. DCA was also
employed to evaluate the clinical utility of the
models [26]. This tool gives insights into the
scope of estimated risks for which the model
possesses a high net benefit, rather than simply
either categorizing all patients as having acute
tICH expansion or no patient as having acute
tICH expansion [29]. DCA can also be adopted
to compare the net benefit of models.

Fig. 2 Acute tICH expansion, showing two representative intraparenchymal hematomas after brain contusion (a, c) and
their respective acute hematoma progressions (b, d)
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Construction of TPHEA Nomogram
A TPHEA nomogram was subsequently con-
structed from the TPHEA model. Here, each
regression coefficient in multivariate logistic
regression model is proportionally converted to
a 0- to 100-point scale. The effect of the variable
with the highest b coefficient (absolute value) is
assigned 100 points. These points are added
across independent variables to derive the total
points, which are then converted to predicted
probabilities [30]. ROC and calibration curves
were used to evaluate the performance of the
TPHEA nomogram in the external dataset.

All remarkable tests were two-tailed, with
P\0.05 signifying statistical significance. SPSS
v.22 (IMB, Armonk, NY, USA) and R statistical
software (v3.5.1; http://www.r-project.org) with
associated packages were used for all the anal-
yses [31–33]. Multiple imputations for missing
data were performed through the ‘‘MICE’’
package. Nomogram and calibration curves
were plotted with the ‘‘rms’’ package. ROC
curves were plotted by using the ‘‘ROCR’’
package. The Delong test was carried out to
assess differences in the AUCs of various mod-
els. The Hosmer–Lemeshow test was used to
examine nomogram calibration. The DCA curve
was generated with the ‘‘rmda’’ package. This
manuscript was prepared on the basis of the
Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis or
Diagnosis [34].

RESULTS

Patient Characteristics

A total of 889 patients with tICH expansion
were included in the development dataset
(Fig. 1; Table 1). Among them, 487 (55.22%)
patients had a mild GCS level (13–15 score) at
admission, and 779 (88.73%) brain contusions
occurred in the frontal and temporal lobes. The
ICC was 0.812, suggesting a good agreement
between automatic volume calculation with
and without fine-tuning. Among these individ-
uals with brain contusion, 198 (22.27%) had
significant acute tICH expansion, and 47
(5.29%) died in hospital. Compared with the

patients without tICH expansion, those with
tICH expansion had a higher rate of in-hospital
mortality. In terms of clinical variables, indi-
viduals with acute tICH expansion had rela-
tively high mean arterial pressure, MLR, and
frequency of hypertension, coagulopathy, and
diabetes, and a severe or moderate GCS level on
admission. In terms of imaging variables, indi-
viduals with acute tICH expansion had a rela-
tively large baseline tICH volume, short time
from brain trauma to initial CT scan, and a high
frequency of subarachnoid hemorrhage, sub-
dural hemorrhage, and multihematoma fuzzy
sign.

Predictive Model Creation

Univariate logistic regression analysis revealed
that several clinical variables including age,
level of GCS score, mean arterial pressure,
hypertension, coagulopathy, and MLR were
linked to an elevated risk of tICH expansion
(Table S1). In addition, multiple imaging vari-
ables, including subarachnoid hemorrhage,
subdural hemorrhage, time from brain trauma
to initial CT, initial tICH volume, and multi-
hematoma fuzzy sign, were linked to an ele-
vated risk of acute tICH expansion. The
variables retained in the final multivariate
logistic regression included age [odds ratio
(OR)1.49; 95% confidence interval (95% CI)
0.86–2.58; 41–65 years vs. 18–40 years; OR 3.23;
95% CI 1.72–6.05;[65 years vs. 18–40 years],
baseline tICH volume (OR 3.37; 95% CI
1.87–6.08; 5–10 mL vs.\5 mL; OR 9.04; 95% CI
4.85–16.87;[10 mL vs.\5 mL), time to base-
line CT (OR 2.21; 95% CI 1.36–3.62;\3
vs. C 3 h), subdural hemorrhage (OR 2.72; 95%
CI 1.60–4.66; yes vs. no), coagulopathy (OR
1.82; 95% CI 0.94–3.55; yes vs. no), multihe-
matoma fuzzy sign (OR 12.41; 95% CI
7.74–19.87;; yes vs. no), and MLR (OR 2.10; 95%
CI 1.38–3.19) (Table 2).

On the basis of multivariate logistic regres-
sion, a basic model and a TPHEA model for
acute tICH expansion were introduced. The
former consisted of initial tICH volume, time to
initial CT, subdural hemorrhage, and coagu-
lopathy, and the latter included all the risk
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Table 1 Characteristics of the development dataset

Variable Total
(n5 889)

No expansion
(n5 691)

Expansion
(n5 198)

P value

Demographics and clinical variables

Male sex, no. (%) 683 (76.83%) 529 (76.56%) 154 (77.78%) 0.719

Mean age (SD), years 48.91 (17.98) 47.69 (17.85) 53.12 (17.82) \0.001

Severity of injury mechanism, no. (%) 0.284

Mild 177 (27.19%) 132 (25.83%) 45 (32.14%

Moderate 29 (4.45%) 22 (4.31%) 7 (5.00%)

Severe 445 (68.36%) 357 (69.86%) 88 (62.86%)

Level on Glasgow Coma Scale score, no. (%) 0.004

Mild (13–15 points) 487 (55.22%) 398 (58.19%) 89 (44.95%)

Moderate (9–12 points) 157 (17.80%) 115 (16.81%) 42 (21.21%)

Severe (3–8 points) 238 (26.98%) 171 (25.00%) 67 (33.84%)

Mean arterial pressure, mean (SD), mmHg 99.74 (17.46) 98.39 (16.76) 104.44 (19.01) \0.001

Hypertension, no. (%) 98 (11.49%) 68 (10.27%) 30 (15.71%) 0.038

Diabetes, no. (%) 40 (4.59%) 22 (3.25%) 18 (9.23%) \0.001

Coagulopathy, no. (%) 94 (10.57%) 64 (9.26%) 30 (15.15%) 0.017

Imaging variables

Time to baseline CT, h

Median (IQR) 2.25

(1.50–4.00)

2.33 (1.50–4.00) 2.00

(1.50–3.33)

0.058

No. (%) 0.028

\3 528 (59.39%) 397 (57.45%) 131 (66.16%)

C 3 361 (40.61%) 294 (42.55%) 67 (33.84%)

Time from baseline CT to follow-up CT (IQR), h 17.50

(9.00–24.00)

18.00

(10.00–25.00)

12.50

(6.62–24.00)

\0.001

Intraventricular hemorrhage, no. (%) 58 (6.53%) 39 (5.65%) 19 (9.60%) 0.084

Subarachnoid hemorrhage, no. (%) 668 (75.23%) 488 (70.72%) 180 (90.91%) \0.001

Subdural hemorrhage, no. (%) 567 (63.85%) 398 (57.68%) 169 (85.35%) \0.001

Extradural hemorrhage, no. (%) 173 (19.48%) 133 (19.28%) 40 (20.20%) 0.772

Location of contusion, no. (%) 0.003

Frontal 390 (43.92%) 286 (41.45%) 104 (52.53%)

Temporal 389 (43.81%) 308 (44.64%) 81 (40.91%)
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factors in the basic model and two novel pre-
dictors of multihematoma fuzzy sign and MLR.

In discrimination, the AUC of the TPHEA
model [AUC 0.90 (95% CI 0.88–0.93)] was larger
than that of the basic model [AUC 0.80 (95% CI
0.77–0.84)], multihematoma fuzzy sign [AUC
0.78 (95% CI 0.74–0.81)], and MLR [AUC 0.75
(95% CI 0.70–0.77)] (Fig. 3a). In DCA, all the
models performed certain clinical practicality of
which the TPHEA model showed the largest net
benefit between threshold probabilities 5% and
95% (Fig. 3b). Its calibration was better than
that of the basic model in patients with brain
contusion (Fig. 3c, d). Compared with the basic
model or novel individual predictors, the
TPHEA model had better performance in dis-
crimination, calibration, and clinical utility for
tICH expansion.

TPHEA Nomogram

A TPHEA nomogram derived from the TPHEA
model was introduced to facilitate clinical
application (Fig. 4). Here, all the predictors are
assigned a point, and the total points are cal-
culated by adding the points of every predictor.
The nomogram has a scale from 10 to 90%. For
any particular patient, the use of total points
allows for the easy exploration of the corre-
sponding probability of acute tICH expansion.

TPHEA Nomogram Validation

A total of 264 individuals with brain contusion
were included in an external validation dataset
from the Affiliated East Hospital of Xiamen
University (Fig. 1; Table S2). Among them,

Table 1 continued

Variable Total
(n5 889)

No expansion
(n5 691)

Expansion
(n5 198)

P value

Others (parietal lobe, occipital lobe, basal ganglia,

brainstem, and cerebellum)

109 (12.27%) 96 (13.91%) 13 (6.57%)

Multihematoma fuzzy sign, no. (%) 223 (25.11%) 89 (12.90%) 134 (67.68%) \0.001

Baseline tICH volume, mL

Mean (SD) 4.65 (9.99) 2.90 (8.87) 9.89 (11.27) \0.001

No. (%) \0.001

\5 mL 592 (74.94%) 513 (86.66%) 79 (39.90%)

5–10 mL 98 (12.41%) 44 (7.43%) 54 (27.27%)

[10 mL 100 (12.66%) 35 (5.91%) 65 (32.83%)

Follow-up tICH volume, mean (SD), mL 8.76 (15.27) 2.97 (4.95) 26.08 (21.40) \0.001

Inflammatory index

Leukocyte count, mean (SD), (9 109 cells/L) 15.16 (5.52) 14.76 (5.32) 16.59 (5.97) \0.001

Monocyte count, mean (SD), (9 109 cells/L) 0.85 (0.49) 0.84 (0.47) 0.91 (0.55) 0.039

Lymphocyte count, mean (SD), (9 109 cells/L) 1.30 (0.85) 1.39 (0.91) 1.00 (0.47) \0.001

Monocyte–lymphocyte ratio (MLR), mean (SD) 0.81 (0.57) 0.76 (0.55) 1.01 (0.57) \0.001

In-hospital mortality, no. (%) 47 (5.29%) 23 (3.33%) 24 (12.12%) \0.001

CT computed tomography, IQR interquartile range, SD standard deviation, tICH traumatic intraparenchymal haematoma
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22.35% (59) had acute tICH expansion. Com-
pared with those in the development dataset,
the patients with acute tICH expansion usually
have a higher mean arterial pressure, a higher
MLR, a larger baseline tICH volume, a shorter
time from brain trauma to baseline CT scan, and
a higher frequency of hypertension, diabetes,
coagulopathy, subarachnoid hemorrhage, sub-
dural hemorrhage, and multihematoma fuzzy
sign.

In the validation dataset, the TPHEA nomo-
gram maintained optimal discrimination [AUC
0.87 (95% CI 0.81–0.92)] compared with the
basic model [AUC 0.79 (95% CI 0.67–0.82)],
multihematoma fuzzy sign [AUC 0.74 (95% CI
0.71–0.84)], and MLR [AUC 0.70 (95% CI
0.62–0.77)] (Fig. 5a). The calibration curve also
indicated that the TPHEA nomogram exhibited
good calibration for acute tICH expansion
(Fig. 5b).

TPHEA Nomogram Performance
in Subgroups

In the validation dataset, the TPHEA nomogram
performance was generally consistent across
different subgroups including sex, age, severity
of trauma, baseline tICH volume, and coagula-
tion function. Its discrimination was consider-
ably better than that of the basic model across
all the subgroups (Table 3). Moreover, the
TPHEA nomogram exhibited a balanced per-
formance in sensitivity and specificity.

DISCUSSION

In this multicenter retrospective study, a novel
TPHEA model was developed for acute tICH
expansion among individuals with hemor-
rhagic brain contusion. Compared with the
basic model, multihematoma fuzzy sign, and
MLR, the TPHEA model had optimal discrimi-
nation, calibration, and clinical utility. On the
basis of this model, a TPHEA nomogram was

Table 2 Multivariate models for predicting acute tICH expansion

Variable Base model TPHEA model

Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Age, years

18–40 1 [reference] 1 [reference] 1 [reference] 1 [reference]

41–65 1.23 (0.78, 1.95) 0.369 1.49 (0.86, 2.58) 0.155

[65 2.17 (1.27, 3.71) 0.004 3.23 (1.72, 6.05) \0.001

Coagulopathy (yes vs no) 1.78 (1.00, 3.16) 0.051 1.82 (0.94, 3.55) 0.077

Baseline tICH volume, mL

\5 1 [reference] 1 [reference] 1 [reference] 1 [reference]

5–10 6.92 (4.23, 11.32) \0.001 3.37 (1.87, 6.08) \0.001

[10 14.24 (8.358, 24.31) \0.001 9.04 (4.85, 16.87) \0.001

Time to baseline CT, h (B 3 vs.[3) 2.00 (1.31, 3.06) 0.001 2.21 (1.36, 3.62) 0.002

Subdural hemorrhage (yes vs. no) 4.04 (2.51, 6.48) \0.001 2.72 (1.60, 4.66) \0.001

Multihematoma fuzzy sign (yes vs. no) 12.41 (7.74, 19.87) \0.001

Monocyte–lymphocyte ratio 2.10 (1.38, 3.19) \0.001

CT computed tomography, tICH traumatic intraparenchymal haematoma
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Fig. 3 ROC curve, calibration curve, and clinical decision
curve for basic model, TPHEA model, multihematoma
fuzzy sign, and MLR in predicting acute tICH expansion.
a ROC curves for basic model (black line), multihematoma
fuzzy sign (blue line), MLR (green line) and TPHEA
model (red line) in forecasting acute tICH expansion in
the development dataset. b In the DCA curve, the net
benefit curves of all predictive models are shown: yellow
line exhibits the basic model, red line the TPHEA model,
blue line the multihematoma fuzzy sign, green line the
MLR, light gray line the net benefit when all the subjects

are regarded as manifesting with acute tICH expansion,
and black line the absolute net benefit when all the subjects
are regarded as not manifesting with tICH expansion; red
line (the TPHEA model) had the highest net benefit at
any given threshold. Calibration curves of the basic model
(c) and the TPHEA model (d) showing the observed
versus predicted probabilities of acute tICH expansion
across risk levels. The light gray line represents an ideal
model, and the red line designates the observed frequencies
of estimated probability. The light red area shows the 95%
confidence interval of the red line
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derived and externally validated. The main
predictors of this tool are multihematoma fuzzy
sign, baseline tICH volume, and inflammatory
index of MLR. The TPHEA nomogram main-
tained an excellent and robust discrimination
for tICH expansion across a wide spectrum of
patients with brain contusion.

In pathophysiology, several predictive NCCT
variables, including the early presentation of
hematoma, large baseline tICH volume, and the
presence of subdural hemorrhage and multihe-
matoma fuzzy sign, all contribute to acute tICH
expansion after brain contusion. Theoretical
tICH expansion models indicated that the
mechanical injury tears and shears brain par-
enchyma and blood vessels, resulting in initial
hematoma [35, 36], and further shears rupture

the surrounding microvessels, resulting in pro-
gressive bleeding [37]. A large initial tICH vol-
ume severely shears microvessels and
exacerbates persistent bleeding [38]. Early pre-
sentation of hemorrhage on a CT scan may
signify the early stage of acute tICH expansion,
thus providing an opportunity to block persis-
tent bleeding. The presence of subdural hem-
orrhage may reflect rupture to the bridging
veins and the presence of venous sinuses that
induce brain venous congestion and increase
the risk of hematoma expansion [3]. The new
NCCT marker of multihematoma fuzzy sign
usually indicates the concurrence of blood clot
with fresh liquid blood in contusion regions
[17]. The existence of fresh liquid blood could

Fig. 4 A TPHEA nomogram abstracted from the
TPHEA model to forecast acute tICH expansion. For
the computation of the probability of acute tICH
expansion of a patient, each parameter’s points are given

by corresponding score from the value axis, and the sum of
the points is then plotted on the Total Points axis. The
probability of acute tICH expansion of a patient is the
corresponding value on the Acute tICH expansion axis
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explain the predictive ability of multihe-
matoma fuzzy sign for acute tICH growth.

In the clinical aspect, coagulation disorder
and neuroinflammation are important risk fac-
tors involved in tICH expansion. The patho-
physiological mechanisms of coagulopathy
after brain trauma involve platelet dysfunction,
fibrinogen modifications, endogenous antico-
agulation, inflammation hyperfibrinolysis, and
endothelial activation, all of which may induce
continued bleeding [19]. Laroche et al. reported
that coagulopathy is associated with prolonged
bleeding and parenchymatous hemorrhagic
progression [39]. In the present study, no sig-
nificant association was found between coagu-
lopathy and tICH expansion. To date, the role
of coagulation dysfunction in the progression of
traumatic parenchymal hematoma remains
controversial. Consistent with the current
findings, several studies have reported that
many patients with coagulopathy did not
develop hemorrhagic expansion [40, 41].
Another explanation for this difference is that
the current data analysis was underpowered to

detect a significant association between coagu-
lopathy and tICH growth. Nevertheless, coagu-
lation dysfunction as a widely reported risk
factor for tICH expansion was finally included
in the TPHEA model/nomogram.

Neuroinflammation is also an indispensable
manifestation of acute brain contusion linked
to tICH expansion and can affect its course [42].
The invasion of monocytes from the periphery
contributes to unfavorable outcomes in patients
with brain contusion [43, 44]. Consistent with
our previous study [18], the present work found
a positive association between MLR and acute
tICH expansion. The inflammatory marker of
MLR reflects the activation of the innate
immune system numerator and the suppression
of the adaptive immune system (denominator).
A high MLR may indicate a high level of
intracerebral monocyte infiltration in patients
with brain contusion. Given its easy accessibil-
ity, this indicator may provide new insights into
neuroinflammation for promoting acute tICH
expansion [18].

Fig. 5 Discrimination and calibration of TPHEA nomo-
gram for acute tICH expansion in the external dataset.
a ROC curves for basic model, multihematoma fuzzy sign,
MLR and TPHEA nomogram in predicting acute tICH
expansion. b Calibration curve showing the observed

versus predicted probabilities of acute tICH expansion
across risk levels. The light gray line represents an ideal
model, and the red line designates the observed frequencies
of estimated probability. The light red area shows the 95%
confidence interval of the red line

Neurol Ther (2022) 11:185–203 197



Consistent with its performance in the
development dataset, the TPHEA nomogram
maintained optimal discrimination and good
calibration in an external validation dataset.
Moreover, its predictive value for acute tICH
expansion was relatively robust in different
patient subgroups. High-risk patients could
benefit from using safe cost-effective treatments
consisting of hematoma/contusion evacuation,
recombinant activated factor VII administration
[45], and intensive surveillance. Meanwhile,
low-risk patients may avoid unnecessary repeat
CT scans and unnecessary intensive

monitoring. In the acute phase of brain contu-
sion, the TPHEA nomogram has the potential to
optimize the personalized management and
treatment of individuals.

Several comprehensive models for acute
tICH expansion have been developed. First,
Yuan et al. reported a risk score based on a ret-
rospective cohort with 468 cases. Its discrimi-
nation was good (c statistic = 0.86), and its
main predictors included age, brain contusion,
midline shift C 5 mm, platelet count, pro-
thrombin time, D-dimer, and glucose [15]. In a
retrospective study with 286 moderate or severe

Table 3 Subgroup-Specific ROC of the base model and TPHEA nomogram in the validation dataset

Subgroup Acute tICH expansion

Basic model TPHEA nomogram

AUC (95%
CI)

Sensitivity
(%)

Specificity
(%)

AUC (95%
CI)

Sensitivity
(%)

Specificity
(%)

Male 0.77 (0.70,

0.85)

84.41 59.44 0.90 (0.85,

0.95)

80.02 87.37

Female 0.79 (0.66,

0.92)

42.86 100.00 0.91 (0.83,

0.99)

85.71 83.33

B 70 years 0.78 (0.72,

0.85)

82.35 64.62 0.91 (0.87,

0.95)

82.35 86.34

[70 years 0.74 (0.50,

0.97)

62.52 77.79 0.91 (0.78,

1.00)

87.57 88.81

Mild trauma (GCS = 13–15

points)

0.74 (0.63,

0.85)

85.19 53.15 0.92 (0.87,

0.97)

85.19 87.39

Moderate trauma (GCS = 9–12

points)

0.83 (0.73,

0.93)

53.33 100.00 0.93 (0.85,

1.00)

80.00 100.00

Severe trauma (GCS = 3–8

points)

0.78 (0.65,

0.90)

88.27 53.61 0.89 (0.80,

0.98)

82.37 85.37

Baseline tICH volume,\10 mL 0.70 (0.63,

0.78)

70.75 61.73 0.89 (0.83,

0.94)

85.37 76.48

Baseline tICH volume,[10 mL 0.72(0.53,

0.92)

83.33 44.44 0.87 (0.74,

1.00)

72.28 100.00

Normal coagulation function 0.74 (0.67,

0.81)

77.08 58.43 0.90 (0.86,

0.95)

81.25 85.54

Coagulopathy 0.86 (0.72,

1.00)

90.93 61.51 0.93 (0.82,

1.00)

90.93 84.62
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patients, Allison et al. developed a similar
hemorrhagic progression of contusion score
[11] that had an AUC curve of 0.77 and was
incorporated with several predictors including
age, subarachnoid hemorrhage, subdural hem-
orrhage, convexity skull fracture, and time to
initial CT. Zhang et al. created a combined
radiomics model in a small dataset of 88
patients with brain contusion [16]. The main
predictors included international normalized
ratio, blood platelet count, fibrinogen, and one
comprehensive radiomics feature with five
imaging variables. Among these models, the
radiomics model exhibited the best discrimina-
tion for acute tICH expansion with an AUC
curve of 0.90.

Similar predictors, such as age, subdural
hemorrhage, time to baseline CT, and a com-
bined coagulation function feature with inter-
national normalized ratio, activated partial
thromboplastin time, and platelet count, were
also included in the TPHEA model. In univariate
regression analysis, other variables, such as GCS
level, mean arterial pressure, hypertension,
location of contusion, and subarachnoid hem-
orrhage, were found to be associated with tICH
expansion. However, multivariate regression
did not confirm this association and thus failed
to improve the discrimination of TPHEA model/
nomogram for acute tICH expansion. There-
fore, these variables were not included in the
final THPEA model/nomogram. The TPHEA
nomogram was also incorporated with other
important predictors, such as baseline tICH
volume, the novel NCCT marker of multihe-
matoma fuzzy sign, and the novel inflammatory
index of MLR. As a result, its discrimination of
tICH expansion was significantly improved,
with an AUC curve of 0.90, which is the same as
that for the radiomics model. Moreover, the
TPHEA nomogram based on easily accessible
clinical variables and noncontrast CT sign could
be easily generalized in other trauma centers, as
opposed to the radiomics model that needs
complex algorithms for the extraction of imag-
ing features.

In terms of datasets, all three reported mod-
els were derived from a single center small
dataset. In particular, HCP score was developed
from a dataset of patients with only moderate

and severe TBI. The bias may lead to its
inadaptability for patients with mild brain
contusion. Meanwhile, the TPHEA nomogram
originated from a multicenter larger dataset and
exhibited a high and stable performance for
predicting acute tICH expansion in different
subgroups in an external dataset. Compared
with previous models, this tool provides a more
robust predicting strategy for acute tICH
expansion.

Although tICH expansion has been associ-
ated with poor clinical prognosis, the relation-
ship between acute tICH expansion and clinical
outcome is controversial. First, the presence of
acute tICH expansion/progression contributes
to subsequent clinical deterioration and
requirement for surgical intervention [8].
Chang et al. reported that patients with contu-
sion growth[5 mL are seven times more likely
to require surgery than those whose contusions
grew by\5 mL [46]. Although univariate asso-
ciations between contusion progression and
short and long-term mortality have been
reported [6, 14, 47], these associations have not
been observed in multivariate analyses. One
reason might be the inconsistent definition of
acute tICH expansion. Previous combined
models define tICH expansion/progression
as C 15%, or C 25%, or C 30%, or C 5 mL
increase to the initial CT scan [11, 15, 16]. In
this study, acute tICH expansion was defined
as C 33% increase in size and C 5 mL increase in
absolute hematoma volume from the initial CT.
Patients must meet both of these criteria men-
tioned above to be recognized as having an
acute tICH expansion. Compared with that in
previous studies, this high threshold of acute
tICH expansion may further enhance the cor-
relation between acute tICH expansion/pro-
gression and deterioration or poor prognosis in
patients with brain contusion.

In summary, the strengths of this work
include its multicenter design, large sample size,
and external validation of the TPHEA nomo-
gram for acute tICH expansion following the
primary brain contusion. Multiple crucial risk
factors for acute tICH expansion were incorpo-
rated into the TPHEA nomogram and signifi-
cantly improved its accuracy and robustness in
predicting tICH expansion. Given that it is
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based on several clinical and NCCT imaging
variables that are easily assessed at admission,
the TPHEA nomogram can serve as a practical
and handy tool to support neurosurgeons in
their pre-judgement for acute tICH expansion
in patients with brain contusion.

Some limitations of this work should be
considered during the interpretation of find-
ings. First, a crucial limitation is the lack of a
subset of patients without follow-up CT or with
an urgent need for hematoma evacuation prior
to follow-up CT. A large baseline tICH volume
likely leads to an urgent need for hematoma
evacuation or early death. Therefore, the
inclusion and exclusion criteria could have
potentially led to selection bias in excluding
patients with a large initial hematoma volume.
Subgroup analysis suggested that the discrimi-
nation of the TPHEA nomogram for acute tICH
expansion was comparable between patients
with small or large initial tICH volumes. Sec-
ond, other variables such as fibrinogen,
D-dimer, and glucose were non-routine items or
lost at admission in the four hospitals. Further
comparison on the predictive value of these
scores/nomograms for acute tICH expansion is
not possible. Finally, the TPHEA nomogram is
not a substitute for a surgeon’s clinical evalua-
tion of an individual patient and should be used
with caution during clinical decision-making.

CONCLUSIONS

The main predictors of the novel TPHEA
nomogram are MLR, baseline tICH volume, and
multihematoma fuzzy sign. Integrating multi-
ple hematoma fuzzy sign and MLR significantly
improved the predictive value of the TPHEA
nomogram for acute tICH expansion. This
study provides a user-friendly tool for acute
traumatic intraparenchymal hematoma expan-
sion to optimize the individualized manage-
ment and treatment of patients with brain
contusion.
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