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ABSTRACT
Tumors acquire numerous mutations during development and progression. When translated into
proteins, these mutations give rise to neoantigens that can be recognized by T cells and generate
antibodies, representing an exciting direction of cancer immunotherapy. While neoantigens have been
reported in many cancer types, the profiling of neoantigens often focused on the class-I subtype that are
presented to CD8 + T cells, and the relationship between neoantigen load and clinical outcomes was
often inconsistent among cancer types. In this study, we described an informatics workflow, REAL-neo,
for identification, quality control (QC), and prioritization of both class-I and class-II human leukocyte
antigen (HLA) bound neoantigens that arise from somatic single nucleotide mutations (SNM), small
insertions and deletions (INDEL), and gene fusions. We applied REAL-neo to 835 primary breast tumors
in the Cancer Genome Atlas (TCGA) and performed comprehensive profiling and characterization of the
detected neoantigens. We found recurrent HLA class-I and class-II restricted neoantigens across breast
cancer cases, and uncovered associations between neoantigen load and clinical traits. Both class-I and
class-II neoantigen loads from SNM and INDEL were found to predict overall survival independent of
tumor mutational burden (TMB), breast cancer subtypes, tumor-infiltrating lymphocyte (TIL) levels,
tumor stage, and age at diagnosis. Our study highlighted the importance of accurate and comprehen-
sive neoantigen profiling and QC, and is the first to report the predictive value of neoantigen load for
overall survival in breast cancer.
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Introduction

Immune responses play a critical role in carcinogenesis and
harnessing the immune system is a promising approach for
cancer prevention and treatment. Cancers arise from
somatic alterations, which can result in the production of
proteins with altered amino acid sequences, termed tumor-
specific antigens (TSAs) or neoantigens, that the immune
system recognizes as foreign and may evoke immune
responses.1–3 Specifically, neoantigens can potentially be
presented by both class-I and class-II human leukocyte
antigen (HLA, the major histocompatibility complex
[MHC] in human) and induce protective sustained cyto-
toxic T-lymphocyte responses that destroy cancer cells,
while sparing normal tissue.4,5 Higher tumor mutational
burden (TMB) has been linked to better overall survival
(OS) after immune checkpoint blockade therapies in multi-
ple cancer types, 6 prompting the hypothesis that higher
TMB is associated with higher neoantigen load and more
effective antitumor immune responses.7,8 Higher TMB has
been linked to improved survival for bladder, colorectal,
head and neck, and lung cancer after adjustment for other
clinical covariates, but interestingly not for breast and sev-
eral other cancers.6

In this study, we bypassed the surrogate of TMB and
investigated the relationship between predicted neoantigen
load and OS in breast cancer (BRCA). First, we developed
an improved bioinformatics workflow for neoantigen predic-
tion and quality control (QC). Most prior analyses focused on
neoantigen load predicted to result from somatic nonsynon-
ymous single nucleotide mutations (SNM) and small frame-
shift insertions and deletions (INDEL) without considering
large genomic rearrangements or gene fusions. Oftentimes
only immunogenic peptides presented to CD8 + T cells on
restricted HLA-I subtypes were included, leaving out those
binding to HLA-II subtypes on CD4 + T cells. In addition,
effects of frame-shift INDEL and gene fusion, and to a lesser
extent nonsynonymous SNM, on protein sequences are highly
dependent on which transcriptional isoforms are expressed;
accordingly, our method includes prioritization algorithms to
predict which neoantigens are most likely expressed.
Furthermore, the predicted neoantigens should be screened
to eliminate mutant peptides that are part of naturally occur-
ring wild-type proteins. Our recently developed REAL-neo
pipeline was designed to optimally address these limitations
often found in other neoantigen prediction approaches. To
demonstrate the potential of the REAL-neo algorithm, we
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applied this method to 835 primary BRCAs in the Cancer
Genome Atlas (TCGA) and performed comprehensive profil-
ing and characterization of the predicted neoantigens. We
observed that the neoantigen loads varied greatly between
patients, and were significantly different between BRCA mole-
cular subtypes and immune subtypes described in the recent
TCGA publication.9 In peri- and post-menopausal women,
the neoantigen loads were significantly different between race
groups stratified by BRCA subtypes. Gene fusion, an often
ignored genomic mutation type regarding neoantigen discov-
ery, contributed to more than 1/3 of total neoantigen load.
Lower HLA class-I and class-II restricted neoantigen loads
were found to be associated with worse OS independent of
other clinical variables including TMB, BRCA subtype, level
of tumor-infiltrating lymphocytes (TILs), tumor clinical stage,
and age at diagnosis.

Materials and methods

Sample description

We downloaded the exome and RNA sequencing BAM files of
1,099 patients with BRCA from TCGA, among which 835
cases had information about patient race, BRCA subtype,
immune subtype, 9 tumor stage and other clinical variables,
and were included in the current study. The additional sample
annotations, including TILs and age at diagnosis, were
obtained from the same TCGA publication.9 All patients
described in this paper have given written consent to the
inclusion of material pertaining to them as part of the
TCGA project. Local Institutional Review Boards (IRBs) at
the tissue source sites reviewed protocols to approve submis-
sion of cases. This study is in full compliance with all relevant
codes of experimentation and legislation, and follows the
principles of the Declaration of Helsinki.

HLA genotyping

We selected OptiType version 1.3.110 and HLA-HD version
1.2.011 for class-I and class-II HLA genotyping, respectively. The
tumor exome sequencing BAM files were converted to FASTQ
format using an in-house-developed script for HLA genotyping.

Somatic mutation profiling and prediction of putative
neoepitopes

Somatic SNM and INDEL from patients with BRCA were down-
loaded from TCGA GDC (https://portal.gdc.cancer.gov/). Gene
fusions were obtained from The Jackson Laboratory’s Tumor
Fusion Gene Data Portal12 (https://www.tumorfusions.org/).
Because the TCGA annotations of the SNM and INDEL were
based on a randomly selected transcriptional splicing isoform of
the gene, we re-annotated all mutations as following: (1) the
chromosomal position of each mutation was mapped to all tran-
scriptional isoforms annotated by Ensembl reference genome
GRCh38.p13 using gene/exon/transcript definitions described in
Ensembl Genes 88; (2) the transcriptional isoform expressions in
each sample were quantified using Salmon13 and the expressed
isoforms were determined using a threshold (Log2TPM ≥ −5)

defined by the bi-modal distribution (Supplement Figure S1);
(3) the expressed transcriptional isoforms harboring mutations
were then translated into proteins to obtain 8–11 amino acid (aa)
long neoepitopes (mutant peptides) for class-I HLA binding pre-
diction, and 15-aa neoepitopes for class-II HLA binding predic-
tion; (4) for gene fusions, the exonic regions of the driver gene
before breakpoint and the recipient gene after breakpoint were
fused and translated based on the transcription direction of the
driver gene. The fusion transcripts from expressed isoforms of the
driver and recipient genes harboring the breakpoints were trans-
lated to obtain neoepitopes; and (5) all neoepitopes were further
screened against wild-type protein sequences to filter out those
that are part of naturally occurring wild-type peptides in
a different protein. For example, a neoepitope could be a wild-
type peptide from anothermember of the same protein family due
to sequencing homology.

Binding affinity prediction and neoepitope selection

For each BRCA sample, NetMHC v4.014 was used to predict
the binding affinities between the patient-specific 8–11 aa
neoepitopes and class-I HLA genotyped by OptiType, and
NetMHCII v2.315 was used to predict the bindings between
15-aa neoepitopes and class-II HLA genotyped by HLA-HD.

Nonsynonymous germline and somatic mutations in
BRCA1 and BRCA2 genes

The germline variants were not readily available from TCGA.
The tumor-paired normal tissue or peripheral blood exome
sequencing data were used to identify germline nonsynonymous
mutations in BRCA1 and BRCA2 genes using a Mayo in-house
exome analytic pipeline.16 Briefly, the FASTQ files were aligned
to human reference genome GRCh38 using BWA-MEM.17

Single nucleotide variants (SNV) and small INDELs were identi-
fied and prioritized following the best practice guideline by Broad
(https://software.broadinstitute.org/gatk/best-practices/work
flow?id=11145) using the Genome Analysis Toolkit (GATK).18

The variants that passed QC were annotated using BioR to
identify nonsynonymous variants in BRCA1 and BRCA2
genes.19 The somatic nonsynonymous mutations in BRCA1 and
BRCA2 genes were part of the downloaded TCGAmutation data.

Statistics

All statistics were performed in R. Pearson correlation coeffi-
cients and p values were calculated between neoantigen load
and mutation burden. The comparisons of neoantigen load
between groups with different clinical traits were performed
using student’s t-test assuming unequal variance. The survival
analyses were performed using the Cox proportional hazards
models while correcting for covariates.

Results

The REAL-neo pipeline

The REAL-neo pipeline is described in Figure 1. The pipeline
starts by detecting tumor somatic mutations from patient
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samples, including SNM, INDELs, and expressed fusion
genes. These mutations are then re-annotated and mapped
to all human transcriptional isoforms based on the gene/exon/
transcript definitions from Ensembl Genes 88, allowing the
users to examine the impacts of mutations on all transcripts
rather than focusing on the canonical or longest transcript. In
the next step, the mutated nucleotide sequences are translated
into peptide sequences. The isoform expressions in each sam-
ple are quantified and the expressed isoforms are selected
based on the bi-modal distribution of the expression values.
At this point, only mutated peptides on expressed isoforms
are kept as putatively expressed mutant peptides. These pep-
tides are then compared to our database of wild-type peptides
from the human proteome to rule out mutant peptides that
are part of the naturally occurring wild-type proteins. In
parallel, HLA genotyping of both class-I and class-II HLA
alleles are performed for each patient. We used OptiType
for class-I and HLA-HD for class-II genotyping for the
BRCA cohort based on the comparison of performance of
multiple tools (Supplement Figure S2, manuscript in prepara-
tion); however, the users have the option to choose other
genotypers.

Once the HLA genotypes are determined, the workflow pro-
ceeds to predict the binding affinity between the mutant peptides
and the patient-specificHLAalleles. By default, peptide-HLApairs
with binding affinity <500 nM are kept as putative MHC-binding
neoepitopes. In the meanwhile, the pipeline has an optional func-
tion to predict binding affinity between the HLA alleles and all
wild-type peptides from the human proteome, which serves as
a reference for MHC-binding affinities. Instead of using the pre-
defined binding affinity of 500 nM, the users can choose to
compare the binding affinity between mutant peptide and its

native wild-type protein, and keep mutant peptides that have
higher binding affinity than its native wild-type sequence. From
either option, the users will end upwith a list of predicted neoanti-
gens. Finally, the pipeline will examine the read depth of the
mutant allele in tumor RNA-Seq data to evaluate whether the
mutant alleles of the predicted neoantigens are expressed. This
step allows users to further refine the neoantigen list to identify
likely vaccine candidates.

In summary, our REAL-neo pipeline integrates all steps of
neoantigen identification. It incorporates both DNA and RNA
level data, applies several layers of filtering to control for false
positives, and delivers a highly processed and immunologi-
cally relevant list of predicted neoantigens that arise from
both simple and complex tumor mutational events and bind
to both class-I and class-II restricted HLA alleles. It also
allows the users to choose their own bioinformatics tools
and filtering strategies, making it highly individualizable.

HLA genotypes and neoantigen load in the TCGA BRCA
patients

A total of 67 unique class-I and 24 unique class-II HLA subtypes
(Figure 2a) were identified among 835 BRCA patients. Class-I
HLAs were detected in all but one case, and each case had up to
six different HLA-I subtypes. HLA-II subtypes were not identi-
fied in 149 (17.84%) out of 835 BRCAs and the remaining cases
had up to 6 class-II HLA subtypes (Figure 2b). Among the three
somatic mutation types, SNM, INDEL, and gene fusion, that
resulted in neoantigens, SNMs contributed to only 6.25% of the
total neoantigens (number of class-I neoantigens vs. number of
class-II neoantigens = 1:3.5); INDELs accounted for 57.17% of
the total (class-I: class-II = 1:2), and gene fusions accounted for

Figure 1. The REAL-neo pipeline.
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36.58% of the total (class-I: class-II = 1:2.2) (Figure 2c). The
number of neoantigens per patient varied widely. For HLA
class-I restricted neoantigens it ranged from 0 to 1953 contrib-
uted by SNMs, 0–17,743 by INDELs, and 0–7255 by gene
fusion; and 0–3728 contributed by SNMs, 0–45,883 by
INDELs, and 0–20,383 by gene fusion for HLA class-II
restricted neoantigens (Figure 2d). Compared to previous stu-
dies, 9,20 we identified significantly higher numbers of predicted
neoantigens for several reasons: (1) unique neoepitopes from all
expressed transcriptional isoforms were considered instead of
one randomly selected isoform; (2) the threshold for determin-
ing expressed isoforms was based on the bi-modal distribution
(Supplement Figure S1, Log2TPM ≥ −5) instead of an arbitrarily
high threshold ;9 (3) fusion genes were included in deriving
putative neoepitopes which contributed to more than one-third
of the total neoantigen load; and (4) both class-I and class-II
neoantigens were predicted.

Correlation between tumor mutational burden and
neoantigen load

Despite the significantly higher neoantigen load per sample
reported here, TMB and total neoantigen load were positively
correlated (r = 0.42, p < 2.2E-16) (Figure 3a). In addition, TMB
also correlatedwith each sub-categories of neoantigen load (class I:
SNM: r = 0.59, p < 2.2E-16; INDEL: r = 0.28, p < 2.2E-16; gene
fusion: r = 0.26, p = 2.01E-11; class II: SNM: r = 0.47, p < 2.2E-16;
INDEL: r = 0.16, p = 1.7E-05; gene fusion: r = 0.31, p = 4.37E-13)
(Figure 3b–c). The distribution of the binding affinities of

neoantigens resulted from SNM, INDEL and gene fusion were
similar for both class-I (Figure 3d) and class-II HLA binders
(Figure 3e), peaking at IC50 of 20 nM.

Neoantigen recurrence across breast cancer cases

Similar to previous reports, 1 the vast majority (99.75%) of the
predicted neoantigens occurred in ≤1% of the cases and 83.76%
were patient-specific found in one patient only.One thousand four
hundred and eighty-four class-I neoantigens from 94 genes and
8583 class-II neoantigens from 146 genes were shared by 10–17
(1-2%) patients; 180 class-I neoantigens from 12 genes, and 1784
class-II neoantigens from 20 genes were shared by 18–42 (2-5%)
patients; and 1 class-I neoantigen from gene DIXDC1 (DIX
Domain Containing 1), and 17 class-II neoantigens from
DIXDC1 and PIK3CA (Phosphatidylinositol-4,5-Bisphosphate
3-Kinase) were shared by >42 (5%) patients (Figure 4a). The
overwhelmingly large number of class-II recurrent neoantigens
suggests that the influence of HLA-restricted CD4+ responses
could be well underlying the tumor immunogenicity mechanisms
and should not be neglected.

DIXDC1 is a positive regulator of the Wnt signaling pathway
and is associated with gamma tubulin at the centrosome. PIK3CA
is a well-known cancer driver gene and is the most recurrently
mutated gene in multiple cancer types including breast cancer.
Seven neoantigens from PIK3CA occurred in 47–71 (5.63–8.5%)
patients (Figure 4b). This prompted us to study all neoantigens
predicted from cancer driver genes in breast cancer defined as
q < 0.1 by MutSigCV21 downloaded from cBioPortal (https://

Figure 2. HLA genotyping and neoantigen profiling in 835 TCGA BRCA tumors. (a) The number of unique HLA genotypes in the 835 TCGA BRCA patients. (b)
Distribution of the number of class-I and class-II HLA genotypes per patient. (c) Total number of neoantigens in the BRCA cohort, stratified by: (i) type of somatic
mutations: SNM, INDEL, and gene fusion from which neoantigens arose; and (ii) the class of HLA molecules neoantigens bind to. (d) The numbers of class-I (top
panel) and class-II (bottom panel) neoantigens per patient, stratified by somatic mutation types of SNM, INDEL and Fusion. The x-axis is in Log2 scale.
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www.cbioportal.org/). We calculated the number of mutations
and neoantigens in these 37 driver genes from our cohort, as
well as the numbers of patients affected by neoepitopes of these
genes (Table 1). Interestingly, 7 genes had many neoantigens that
occurred in >1% patients, including GATA3 (58 neoantigens, 8
class-I and 50 class-II), TBX3 (61 neoantigens, 0 class-I and 61
class-II), GPRIN2 (110 neoantigens, 1 class-I and 109 class-II),
TP53 (252 neoantigens, 46 class-I and 206 class-II),MAP3K1 (746
neoantigens, 167 class-I and 579 class-II), and CDH1 (764 neoan-
tigens, 146 class-I and 618 class-II). PIK3CA also had 37 neoanti-
gens (6 class-I and 31 class-II) that occurred in >1% patients.

Neoantigen load and BRCA1/BRCA2 mutation status

BRCA1 and BRCA2 are the two most important breast cancer
susceptibility genesmutated in 21–40%of all inherited BRCA.22–24

BRCA1 and BRCA2 deficiency has been associated with higher

TMB.25 We evaluated 835 BRCAs for presence of any of 115
known deleterious BRCA1/BRCA2 germline mutations26 and
identified individuals with BRCA1/BRCA2 somatic mutations
from TCGA data. As shown in Figure 5, cases with deleterious
germline BRCA1/BRCA2 variants, compared to those with wild-
type BRCA1/BRCA2, had suggestively higher TMB (Figure 5a, left
panel, p = .067) but neoantigen loads were not significantly differ-
ent (Figure 5b, left panel). The cases with germline and somatic
BRCA1/BRCA2 mutations had both significantly higher TMB
(Figure 5a, right panel, p = 2.76E-06) and neoantigen loads than
BRCAs with wild-type genes (Figure 5b, right panel, p = .009).

Neoantigen load and BRCA clinical traits

We next investigated the relationships between neoantigen
load and other clinical traits, including race, tumor stage,
BRCA subtypes and immune subtype.9 As shown in Figure

Figure 3. (a) The correlation between log2-transformed tumor mutation burden and neoantigen load per case in 835 TCGA BRCA tumors. Each dot represents
a sample. The oval circle represents normal confidence ellipses. The Pearson correlation coefficient and the corresponding p-value were used to measure the strength
of a linear association between TMB and neoantigen load. (b) The correlations between log2-transformed TMB and class-I neoantigen load, stratified by type of
somatic mutations: SNM (pink), INDEL (orange) and fusion (blue). (c) The correlations between log2-transformed TMB and class-II neoantigen load, stratified by SNM
(purple), INDEL (brown) and fusion (green). (d) The distribution of binding affinities between neoantigens and class-I HLA measured by IC50 (nM), stratified by SNM
(pink), INDEL (orange) and fusion (blue). Smaller IC50 values indicate stronger bindings between neoantigens and HLA. (e) The distribution of binding affinities
between neoantigens and class-II HLA (SNM in purple, INDEL in brown, and fusion in green).
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5c, Her2 subtype had the highest neoantigen load while
LumA breast tumors had the lowest load. In addition,
immune subtype C1 had the highest mutational load
(Figure 5d). We found no significant difference in neoanti-
gen load between different tumor stages (Supplement Figure
S3A) or races (Asian, Black and White) for BRCA overall
(Supplement Figure S3B). However, when we stratified by
BRCA subtype and age group (pre-menopausal: ages 26–44;

peri-menopausal: ages 45–54; or post-menopausal: ages
55–90), we found significant differences of neoantigen load
for subsets of peri- and post-menopausal women by race
(Figure 6a–c). In older women, the general trend is that
Black and White women had higher predicted neoantigen
load compared to Asians. Neoantigen loads did not differ
between black and white women in any strata of age or
molecular subtype.

Figure 4. Neoantigen recurrence in the TCGA BRCA patients. (a) The occurrences of class-I (brown box) and class-II (green box) neoepitopes in 1, 2–5 (<0.6%), 6–9
(0.6%-1%), 10–17 (1%-2%), 18–42 (2%-5%), and >42 (>5%) patients. For neoepitopes that occurred in >1% cohort, the numbers of recurrent neoepitopes were
followed by the numbers of genes they affected. (b) The peptide sequences, number of recurrence among patients, gene names and mutation types of the 18
neoepitopes that occurred in >42 patients.
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Neoantigen load and survival

The standardized annotations of survival data of all TCGA
cases were downloaded from the TCGA Pan-Cancer Clinical
Data Resource, 27 including clinical outcome endpoints of OS,
progression-free interval (PFI), disease-free interval (DFI),
and disease-specific survival (DSS). The neoantigen load was
divided into different categories by HLA type (class-I or class-
II), and mutation types (SNM, INDEL, and gene fusion). The
835 patients were divided into low (bottom 25%), medium
(middle 50%) or high (top 25%) neoantigen load groups.

We first performed univariate Cox proportional hazards
model of survival analyses for covariate selection (data not
shown) and our final covariates included immune filtration,
tumor stage, breast cancer subtype, and age at diagnosis.
Neoantigen load was not associated with PFI, DFI, or DSS
(data not shown). Similar to previous report, 6 TMB was not
predictive of OS, nor was total neoantigen load (Supplement
Figure S4A, S4B). When we grouped the neoantigens into
class-I or class-II HLA binders, and into neoantigens arising
from small somatic mutations (SNM and INDEL) and those
from large structural rearrangements (gene fusion), we found
that lower class-I neoantigen load from SNM and INDEL
(Figure 7a), as well as lower class-II neoantigen load from
SNM and INDEL (Figure 7b), corresponded to worse OS
independent of TIL, BRCA subtype, tumor stage, and patient
age at diagnosis. As expected, in this multivariate Cox

proportional hazards model, both older age at diagnosis and
later tumor stages predicted worse OS (Figure 7a,b). Higher
TIL regional fraction values were trending toward improved
survival, but did not reach statistical significance. Despite the
significant correlations between TMB and neoantigen load
(Figure 3a–c), including TMB and neoantigen load in the
same model did not decrease the predictive value of neoanti-
gen load on OS, and TMB remained not predictive
(Supplement Figure S4C-D).

Discussion

TMB has been reported as a prognostic marker for patient
overall survival in multiple cancer types after immune check-
point blockade therapy. Higher TMB in general is associated
with better OS with the hypothesis that higher TMB is asso-
ciated with higher tumor neoantigen load facilitating immune
recognition and the development of antitumor immune
response.7,8 On the other hand, the relationship between
neoantigen load and survival has been controversial in litera-
ture. Higher neoantigen load has been linked to better survi-
val in ovarian cancer28 and melanoma, 29 but worse survival
in multiple myeloma.30 Recently, when screening 33 cancer
types, no clear association was found between predicted
neoantigen load and survival9 although only class-I neoanti-
gens were included in the study. Here we studied the TCGA

Table 1. Neoantigens in BRCA driver genes.

Gene

Number of
patients with NS

mutations

Number
of NS

mutations

Total
number of
neoantigens

Number of class-I
neoantigens in
>1% patients

Number of class-II
neoantigens in
>1% patients

Number of class-I
neoantigens in
>5% patients

Number of class-II
neoantigens in
>5% patients MutSig (q-value)

TP53 227 288 2392 46 206 0 0 2.12E-12
PIK3CA 237 250 2825 6 31 0 7 2.12E-12
CDH1 97 167 3045 146 618 0 0 1.76E-11
GATA3 86 157 908 8 50 0 0 2.12E-12
MAP3K1 72 123 4644 167 579 0 0 1.40E-10
RUNX1 36 60 1377 0 0 0 0 1.88E-12
ERBB2 37 55 10,875 0 0 0 0 6.67E-07
NCOR1 36 51 5902 0 0 0 0 1.10E-04
TBX3 24 44 1210 0 61 0 0 2.21E-11
PIK3R1 25 42 346 0 0 0 0 1.66E-03
RB1 26 41 3095 0 0 0 0 1.42E-03
FOXA1 25 31 413 0 0 0 0 2.12E-12
GPRIN2 21 31 431 1 109 0 0 8.70E-02
MAP2K4 22 31 728 0 0 0 0 1.32E-11
SF3B1 21 28 405 0 0 0 0 2.12E-12
HLA-DRB5 25 28 162 0 0 0 0 8.33E-02
ZFP36L1 14 26 1727 0 0 0 0 1.00E-02
CBFB 16 20 303 0 0 0 0 2.12E-12
TBL1XR1 11 19 3254 0 0 0 0 2.10E-02
CTCF 14 19 866 0 0 0 0 2.98E-02
GPS2 10 18 425 0 0 0 0 1.28E-04
ASXL2 10 15 3454 0 0 0 0 4.98E-02
MYB 10 15 996 0 0 0 0 2.40E-02
CDKN1B 8 15 374 0 0 0 0 2.10E-05
CASP8 14 15 302 0 0 0 0 3.18E-02
FAM86B1 14 14 91 0 0 0 0 1.09E-02
FAM20 C 6 9 218 0 0 0 0 5.83E-02
FBXW7 7 9 222 0 0 0 0 1.22E-02
HIST1H2BC 7 7 73 0 0 0 0 5.43E-02
KRAS 6 7 38 0 0 0 0 2.33E-03
ZFP36L2 6 7 103 0 0 0 0 8.69E-03
WSCD2 6 6 51 0 0 0 0 3.23E-02
PTGER2 3 3 43 0 0 0 0 2.52E-02
AQP12A 1 2 107 0 0 0 0 9.37E-04
ZP4 2 2 4 0 0 0 0 3.64E-02
RAB42 1 2 3 0 0 0 0 9.32E-02
PTEN 1 2 1203 0 0 0 0 2.72E-12
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BRCA cohort and directly assessed the prognostic potential of
predicted neoantigen load rather than TMB as a predictor of
survival independent of known clinical predictors including
patient age at diagnosis, molecular subtype, regional TIL
fraction and tumor stage. In our study, the combined SNM
and INDEL neoantigen load of both HLA class-I and class-II
restricted neoepitopes predicted OS in BRCA patients inde-
pendent of TMB and other clinical factors. To our knowledge,
we are the first to report the association between neoantigen
load and OS in breast cancer. We did not find an association
between fusion neoantigen load and OS. However, previous
studies investigating fusion neoantigens have reported
reduced survival with higher fusion neoantigen rate in osteo-
sarcoma, 31 and no association between fusion neoantigen

load and survival in melanoma,32 suggesting that the relation-
ship between fusion neoantigen and survival may be specific
to cancer types.

Our approach addressed several key considerations related
to neoantigen prediction from genomic sequencing data. For
example, the impact of somatic mutations on protein
sequences is highly dependent on the transcription splicing
isoforms, especially for fusion genes and frame-shift INDELs.
Conventionally, only one transcript isoform is used to gener-
ate neoepitopes which can result in the underestimate of the
neoantigen load if other isoforms are also expressed that
harbor a different set of neoepitopes. Second, the accuracy
and sensitivity of HLA typing methods are essential for class-I
and class-II HLA genotyping. The comparison of HLA

Figure 5. Neoantigen load and BRCA1/2 mutation status, BRCA subtypes and immune subtypes. (a) BRCA1 and BRCA2 mutation status and overall mutation burden.
Left panel: patients with known deleterious BRCA1 or BRCA2 germline mutations (labeled as Mutated, dark purple) had suggestive higher overall mutation burden
than patients without (labeled as WT, light purple) (p = .067). Right panel: patients with known deleterious BRCA1 or BRCA2 germline and somatic mutations (labeled
as Mutated, dark blue) had significantly higher overall mutation burden than patients without (labeled as WT, light blue) (p = 2.67E-06). (b) BRCA1 and BRCA2
mutation status and neoantigen load. Left panel: patients with known deleterious BRCA1 or BRCA2 germline mutations (labeled as Mutated, dark yellow) did not
show significant difference in neoantigen load from patients without (labeled as WT, light yellow). Right panel: patients with known deleterious BRCA1 or BRCA2
germline and somatic mutations (labeled as Mutated, dark green) had significantly higher neoantigen load than patients without (labeled as WT, light green)
(p = .009). (c) Breast cancer subtype and neoantigen load. Significant differences in neoantigen load were found between Basal and LumA (p = 4.04E-05), Her2 and
LumA (p = .005), LumA and LumB (p = 4.31E-06), and LumA and Normal (p = .0003). (d) Immune subtype and neoantigen load. Significant differences in neoantigen
load were found between C1 and C3 (p = .01), C2 and C3 (p = .001), and C1 and C6 (p = .03).
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Figure 6. Neoantigen load and race in stratified age groups and breast cancer subtypes. (a) Neoantigen load of patients in pre-menopausal stage (ages 26–44) in
Asian (red), Black (green) and White (blue) races separated by Basal, Her2, LumA and LumB subtypes. There is no significant difference among races in any breast
cancer subtype. (b) Neoantigen load of patients in peri-menopausal stage (ages 45–54) in Asian (red), Black (green) and White (blue) races separated by Basal, Her2,
LumA and LumB subtypes. White had significantly higher neoantigen load compared to Asian in Her2 subtype (p = .0033); both black and white patients had higher
neoantigen loads in LumB subtype compared to Asian (p = .037 and p = .04, respectively). (c) Neoantigen load of patients in post-menopausal stage (ages 55–90) in
Asian (red), Black (green) and White (blue) races separated by Basal, Her2, LumA and LumB subtypes. White patients had significantly higher neoantigen load than
Asian in Basal (p = .0057) and LumB subtypes (p = .0052); both black and white patients had higher neoantigen loads compared to Asian in LumA subtype (p = .037
and p = .0097, respectively).
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genotyping tools has been carried out by multiple groups
relying on either real-time PCR validation of a small set of
HLA alleles33 or correlations of HLA-types between family
trios based on haplotype inferences.34 We have established
a novel approach for evaluating HLA genotyping methods,
eliminating the uncertainty of haplotype inference and includ-
ing all called HLA alleles. The details of our approach will be
described in a separate manuscript (Ren Y. et al., in prepara-
tion), but as illustrated in Supplement Figure S2 using 12
TCGA cases, the performances of the current class-I and
class-I HLA genotyping methods are vastly different, as repre-
sented by consistencies of the called HLA subtypes between
germline (blood), tumor, and normal tissue exomes of the
same patient. We selected OptiType and HLA-HD for class-I
and class-II for HLA typing based on our test results (more
tools were tested, results not shown). In addition, it is worth
noting that novel methods are being developed to improve
class-II neoantigen prediction, such as the incorporation of
affinity-tagging protocols and machine learning models to
improve peptide binding prediction.35 With the impact of
class-II neoantigens being gradually recognized, better predic-
tion approaches will greatly benefit HLA class-II directed
cancer therapies. Third, multiple filtering steps need to be
implemented to exclude somatic mutations that are (i) poly-
morphic germline variants; (ii) also present in a wild-type
protein family member or another wide-type protein; or (iii)
expressed in normal tissues according to an in-house-curated
normal RNA-Seq databases. Furthermore, DNA library

preparation and sequencing approaches may affect the detec-
tion of fusions. A recent study identified multiple chromoso-
mal rearrangements that had neoantigenic potential in
mesothelioma using mate-pair sequencing36 whereas prior
approaches did not identify many gene fusions.37,38

Studies have shown that the recognition of neoepitopes by
endogenous T cells may elicit protective immune responses
without being affected by central T cell tolerance, making
neoantigens an ideal target for cancer immunotherapy.4,39,40

Neoantigen vaccines can be developed using different strategies.
Premanufactured vaccines may be developed to target neoepi-
topes related to recurrent somatic mutations. As we showed in
Table 1, among 37 BRCA driver genes with recurrent muta-
tions, 7 genes (18.92%) harbored many recurrent neoantigens
occurring in >1% TCGA BRCA cohort. Another source of
recurrent neoantigens is recurrent fusion transcripts. We
showed that fusion genes contributed to more than 1/3 of
total neoantigen load and will be a rich source for mining
recurrent neoantigens. Patients can be screened for these recur-
rent neoantigen-causal mutations as candidates for neoantigen
therapy using premanufactured vaccines. The second approach
is the patient-specific neoantigen therapy which requires tumor
sequencing, neoantigen prediction, and vaccine manufacturing.
Due to the potential large number of neoantigens predicted
bioinformatically in each tumor, additional filtering is required
to nominate top vaccine candidates.

When correlating neoantigen load with clinical traits, we
found that patients with BRCA1 or BRCA2 mutations had

Figure 7. Neoantigen load from SNM and INDEL predicts overall survival. (a) Overall survival of BRCA patients separated by low (bottom 25%), medium (middle 50%)
and high (top 25%) class I SNM and INDEL neoantigen load. When corrected for immune filtration, tumor stage, breast cancer subtype, and age at diagnosis using
the Cox proportional hazard models, low neoantigen load showed significantly worse survival than medium neoantigen load (p = .04). (b) Overall survival of BRCA
patients separated by low (bottom 25%), medium (middle 50%) and high (top 25%) class II SNM and INDEL neoantigen load. When corrected for immune filtration,
breast cancer subtype and age cohort using the Cox proportional hazard models, low neoantigen load showed significantly worse survival than medium neoantigen
load (p = .042).
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higher neoantigen load. This finding is consistent with
a previous report that linked higher predicted neoantigens
in BRCA1/2 mutated tumors compared to tumors without
such mutations in ovarian cancer, 28 therefore confirming
the link between BRCA1/BRCA2 mutations and immunogeni-
city. The neoantigen load is lower in Luminal A subtype
compared to any other molecular subtype. In addition, we
found higher neoantigen load in C1 (wound healing) immune
subtype compared to C2 (IFN-γ dominant), C3 (inflamma-
tory) and C6 (TGF-β dominant). Compared to the other
immune subtypes, the C1 subtype has elevated expression of
angiogenic genes, a high proliferation rate, and a Th2 cell bias
to the adaptive immune infiltrate, 9 which generally poses less
anti-tumor effect and may explain the higher neoantigen load
associated with it compared to other immune subtypes.

In summary, by comprehensive neoantigen detection and
careful QC, we were able to associate neoantigen load and
overall survival in patients with breast cancer from TCGA,
and identify INDELs and gene fusions as major contributors
to neoantigen burden in BRCA.
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