
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 137604, 15 pages
doi:10.1155/2011/137604

Research Article

On the Usage of GPUs for Efficient Motion Estimation in
Medical Image Sequences

Jeyarajan Thiyagalingam,1, 2 Daniel Goodman,1, 3 Julia A. Schnabel,4

Anne Trefethen,1, 2 and Vicente Grau1, 4

1 Oxford e-Research Centre, University of Oxford, Oxford OX1 3QG, UK
2 Institute for the Future of Computing, Oxford Martin School, University of Oxford, Oxford OX1 3BD, UK
3 School of Computer Science, The University of Manchester, Manchester M13 9PL, UK
4 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK

Correspondence should be addressed to Jeyarajan Thiyagalingam, jeyarajan.thiyagalingam@oerc.ox.ac.uk

Received 1 April 2011; Accepted 3 June 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Jeyarajan Thiyagalingam et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Images are ubiquitous in biomedical applications from basic research to clinical practice. With the rapid increase in resolution,
dimensionality of the images and the need for real-time performance in many applications, computational requirements demand
proper exploitation of multicore architectures. Towards this, GPU-specific implementations of image analysis algorithms are
particularly promising. In this paper, we investigate the mapping of an enhanced motion estimation algorithm to novel GPU-
specific architectures, the resulting challenges and benefits therein. Using a database of three-dimensional image sequences, we
show that the mapping leads to substantial performance gains, up to a factor of 60, and can provide near-real-time experience. We
also show how architectural peculiarities of these devices can be best exploited in the benefit of algorithms, most specifically for
addressing the challenges related to their access patterns and different memory configurations. Finally, we evaluate the performance
of the algorithm on three different GPU architectures and perform a comprehensive analysis of the results.

1. Introduction

Motion estimation is one of the fundamental and crucial
operations in machine vision and in video-processing appli-
cations. The process is often computationally intensive, and
minimising the time for estimation across a number of
frames is often a key objective in interactive image/video pro-
cessing applications. As we will see in forthcoming sections,
the task is repetitive and renders itself for exploitation in
parallel architectures. With the rise of multicore machinery,
such as many-core microprocessors and graphics processing
units (GPUs), it is natural that the abundant amount of
parallelism available on these systems to be exploited by
mapping the algorithms on them. Among these, usage
of GPUs has become increasingly common across many
scientific domains.

There are several reasons for such a wide adoption
of GPUs across many scientific disciplines. Modern GPUs

contain hundreds of computational cores and have become
available at a fraction of the cost of an equivalent con-
ventional CPU-based system. This relative measure of
performance versus price and performance versus power
ratios between GPU-based architectures and CPU-based
architectures further encourages the choice of GPUs.

However, the performance gains are not without signif-
icant challenges. Firstly, the identification and exploitation
of any parallelism in the application is the responsibility
of the developers. Often, this requires extensive remapping
work rather than simple program transformations and often
change in the fundamental algorithm. Secondly, the GPU
programming model is not oblivious to the underlying
architecture. Detailed knowledge of the architecture is fun-
damental for writing effective GPU-based applications.

These issues are partly overcome by different program-
ming models, such as OpenCL [1] or CUDA [2, 3]. In
practice, although these programming models simplify the

mailto:jeyarajan.thiyagalingam@oerc.ox.ac.uk


2 International Journal of Biomedical Imaging

task of programming these devices, they are far from
providing abstractions at the domain-specific level.

GPU implementations of some specific image processing
algorithms have already been made available, including
optical flow algorithms as those outlined by Marzat et al.
[4]. However, in this paper, we consider a more complex,
complete and enhanced version of the original optical flow
algorithm. The motion estimation algorithm we use in this
paper combines local and global optimisations and preserves
the volume during motion estimation—a key requirement
for cardiovascular medical image analysis. We then map our
motion estimation algorithms on to three different GPU
systems with appropriate optimizations. We have chosen
the systems whose GPU architectures are representative of
the time line and relevant to the important architectural
aspects of GPUs. We effectively demonstrate the applicability
of the algorithm using a set of three-dimensional image
sequences. Using this as an evaluation phase, we discuss and
highlight the relative merits and demerits of architecture-
based realization of the algorithm and resulting impacts on
the overall performance. To the best of our knowledge, in the
context of GPUs, there is no comprehensive discussion of a
motion estimation algorithm of this level in the literature.
Our comprehensive analysis on the effect of architecture
and programming decisions can be abstracted for different
image processing applications. We believe this would be
a highly valuable resource for (biomedical) image analysis
researchers, and this is, thus, the fundamental aim and
contribution of this paper.

The rest of this paper is organized as follows: Sections 2
and 3 serve as a background for the rest of the paper. We first
discuss the GPU-based systems in Section 2, highlighting the
differences to the conventional CPU-based system wherever
applicable. Then, we discuss the mathematics behind motion
estimation in Section 3 and concisely formulate the motion
estimation algorithm. This is then followed by Section 4,
where we discuss the implementation and mapping aspects
in detail highlighting the architectural aspects wherever
necessary. We evaluate the performance of the enhanced
algorithm in Section 5 along with the presentation of our
analysis. Finally, we conclude the paper in Section 6 summa-
rizing our key findings and directions for further research.

2. Parallelism with GPUs

Exploiting graphics cards or accelerator cards for their
computational capability is not a new concept. However,
historically they have been exceptionally hard to pro-
gram and demanded programmers to have a rather in-
depth understanding of the cards, their instruction set,
or familiarity with OpenGL calls and Shader languages.
However, with the introduction of compute unified device
architecture (CUDA) by Nvidia, this setting has improved
rather significantly. The CUDA is both a programming
model as well as a hardware model coupled together to
provide considerably high-level utilization of the GPUs.
As will be observed, it is still the case that an intimate
knowledge must be maintained to leverage their potential,

but it is relatively easier than Shader languages or OpenGL
calls.

2.1. GPU Architecture. A compute unified device architec-
ture- (CUDA-) enabled GPU is connected to the host system
via a high-speed shared bus, such as PCI Express. We show
an internal arrangement of a typical GPU in Figure 1(a).
Each GPU consists of an array of streaming multiprocessors.
Each streaming multiprocessor is packed with a number
of scalar processing cores, named streaming processors, or
simply cores. This is shown in Figure 1(b). These scalar
processors are the fundamental computing units which
execute CUDA threads. For example, the Nvidia Tesla C2070
GPU has 14 streaming multiprocessors and each streaming
multiprocessor consists of 32 streaming processors, yielding
448 processing cores in total. The number of cores per
multiprocessor or the number of multiprocessors per GPU
varies from device to device. In CUDA, all threads are created
and managed by the hardware. As a result, the overheads
are almost negligible, and this leads to the possibility of
executing a large number of threads at a time and to switch
between them almost instantaneously.

Unlike multicore CPUs where the processor currently
contains a relatively small number of cores each of which is
capable of operating completely independently of each other,
computational cores inside GPUs work in tandem and in a
lock-stepped fashion.

Apart from the number of computational cores, one of
the important aspects on which GPUs vary from CPUs is
their memory subsystem. In GPUs, the traditional control
logic dedicated to data management is used for computa-
tional cores, maximizing the space for these. This renders the
data placement operations to be defined by the programmer
with little or no assistance from hardware. However, to facil-
itate better placement strategies, GPUs are equipped with
different memories. For example, in conventional CPUs, data
placement is voluntarily done and in the absence of any
placement, the control logic is responsible for raising the
data through various different memory levels, to maintain
coherency and to store them. In contrast, in the context of
GPUs, the programmer is responsible for moving the data
to appropriate memory. Such a liberated approach leads to
considerably intricate programming model. For example, the
way thread contexts are handled or how the data are moved
around or the guarantee on the availability of the data prior
to a computation are now left to the programmer.

Recently, GPUs have evolved rather significantly in this
respect. GPUs are differentiated by their compute capability.
The compute capability describes the features supported by
a CUDA hardware. These features vary between devices from
generation to generation in respect of maximum number of
threads, support for IEEE-compliant double precision and
alike. GPUs with a compute capability of less than 2.0, do
not support any automatic data placement or coherency
mechanisms. However, from devices with compute capability
of 2.0, known as Fermi-based architectures, this has changed.
Fermi-based devices contain cache memories but with the
possibility of performing volunteer data management. This
means that even in the presence of cache memories (see



International Journal of Biomedical Imaging 3

Registers

Registers

Registers

Registers

L2 cache

H
O

ST
IN

T
E

R
FA

C
E

G
IG

A
T

H
R

E
A

D
D

R
A

M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

MP 1 MP 2 MP 8

MP 16MP 10MP 9

(a)

LD/ST

LD/ST
LD/ST

LD/ST
LD/ST

LD/ST

LD/ST

LD/ST
LD/ST
LD/ST
LD/ST

LD/ST

LD/ST
LD/ST

LD/ST

LD/ST

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

SFU

SFU

SFU

SFU

Instruction cache

Warp scheduler Warp scheduler

Interconnect network
64 KB shared memory/L1 cache

Uniform cache

Dispatch unit Dispatch unit

Registers

(b)

Figure 1: The overall architecture of a modern Fermi-based GPU device (a) and the inner details of a multiprocessor (b). Multiprocessors
are configured around a shared level-2 cache and register files. Each multiprocessor has a number of computational cores and a level-1 cache.
In the earlier versions of architectures such as C1060, these two cache levels do not exist, and the absence is facilitated by explicitly managed
memories. This includes shared, constant, and texture memories. Image adopted from CUDA Programming Guide [2].

below), there is still some aspect regarding the data place-
ment and management left to the developer. A more detailed
information can be found in the CUDA Programming Guide
[2].

In the latest generation of GPUs (based on Fermi archi-
tecture), the memory system is partially arranged in hier-
archical manner and computational units are arranged
alongside this memory system. A GPU typically has the
following memory subsystems: global memory, a common
level-2 cache, a combined private level-1 and shared memory,
constant cache and texture cache. The global memory (also
known as device memory) is common to processors (and
thus to all threads) and has a high access latency. The private
level-1 cache is exclusive to a streaming multiprocessor and
has a low-latency connection. The level-2 cache is common
across processors, and it has a better latency than global
memory.

Both constant and texture memories are read-only mem-
ories separated from the shared memory. With the intro-
duction of cache memories in GPUs, aggressive exploitation
of both constant and texture memories is performed only
when absolutely necessary. However, their load granularity
(number of words loaded upon a load instruction) is
different. As a result, sometimes, it is beneficial to utilize
them. The constant memory allows each group of processors
to store a selection of constants that they are going to use
for the computation locally to allow fast access, without
any coalesced memory access issues between processors.

The texture memory provides read only access to data and
follows a similar architecture to constant memory, except
that instead of having a designated memory for the card as a
whole, textures are bound to data stored in the card’s global
memory which leads to larger data capacity. As the memory
is designed for storing textures in graphics applications, the
memory supports a range of hardware-based functions such
as interpolating the value of points that are not on integer
locations.

Furthermore, the private level-1 cache is reconfigurable.
This finite amount of memory pool can be configured so
that part of it can be used as a shared memory, while
the remaining is used as a cache memory. This enables
the applications to receive partial data placement support.
The system supports fixed number of such configurations,
and a configuration suitable for a given application is
often not known in advance and thus may need to be
determined by experimentation. The total memory available
for shared-memory and/or level-1 cache on current Fermi-
based systems is 64 KB. This is normally used to buffer inputs
and outputs to allow computations that do not naturally fit
the coalesced memory access pattern to take advantage of
the fast data transfers. This private first-level caches/shared
memory are available to every streaming multiprocessor. In
addition to this, there is a 768 KB shared secondary-level
cache, which can be turned off if needed.

On GPUs, memory bandwidth to the computational
cores is typically higher than that found on a CPU, meaning



4 International Journal of Biomedical Imaging

that cores are less likely to suffer from starvation for
data. Furthermore, this connection often has additional
optimizations if certain patterns of access are adhered to
and often take the form of coalesced memory accesses. If
the memory is accessed by threads at random (uncoalesced),
each memory load is performed independently; however, if
all the cores in a group in order access consecutive memory
locations (coalesced), starting from an offset into memory
that is a multiple of 16, then 16 memory loads can be done
in the time usually required to perform a single one.

2.2. CUDA/GPU Programming Model. The CUDA program-
ming model, which is an extension of the C program-
ming language, relies on this hardware support to provide
concurrency. In the model, computations are expressed as
special functions known as kernels. A kernel is launched
from the host-CPU and executed by N threads using the
available computational cores (and N is usually in the range
of several thousands) on the GPU. All threads are organized
as a one- or two-dimensional grid of thread blocks. Each
block can be one-, two-, or three-dimensional. Threads in
a block are assigned to the same streaming multiprocessor
during execution. With a unique numbering scheme for
threads, each thread can be made to compute on a different
subset of the input data so that the execution leads to the
single program multiple data (SIMD) style parallelism. The
memory system arrangement is such that potential data
locality among threads can be exploited by computational
cores.

The CUDA programming model evolved over time
and originally the model relied on manual placement of
data—which means that the application developer is solely
responsible for moving the data from the host memory
to the device memory (or in reverse direction) and to
exploit any reuse by relying on shared memory or constant
cache. However, modern GPUs partially support automatic
data placement, most specifically to cache memories. As
discussed in the previous section, the level-1 cache memory
can be configured as cache memory or as shared memory
or as both. Yet, it is the responsibility of the programmer
to make the right judgement on the amount of memory
to be dedicated for cache or for shared memory and to
ensure that the latencies are hidden and memory requests
to the device memory are linearized for best bandwidth
exploitation (hardware memory coalescing). The hardware
support is available only for the data movement from and
to the cache memory. In line with the conventional parallel
programming models, memory transfers (corresponding
to communication overheads) may offset the benefits of
parallelization, if it dominates the execution time. As a result,
it is performance critical that memory transfers around the
system and within the GPU are minimized as much as
possible. For example, if a kernel feeds another kernel with
its output, it is beneficial to retain the data in the GPU device
memory without any intermediate transfers to the host.

The latest generation of CUDA devices support a number
of other features which we do not explore in this paper.
This includes the ability to launch multiple kernels and the
utilization of unified memory.

3. Motion Estimation

3.1. Background. Images are fundamental in a wide range of
biomedical applications, covering most aspects of medical
research and clinical practice. Improvements in technology
have brought increased resolution and higher dimensionality
datasets (three-dimensional and higher); furthermore, stud-
ies involving several modalities are becoming more common.
In these circumstances, it is indispensable to have means for
automated image analysis.

Given the dataset sizes and the limited time per patient
available in clinical settings, the speed of image analysis
algorithms is crucial.

Imaging technologies have become integral part of all
aspects of clinical patient management, from diagnosis
to guidance of minimally invasive surgical interventions.
Estimation of organ motion is necessary in many of these
applications, either because motion provides an indication
of the presence of pathologies (as in the case of cardiac
imaging), or because the presence of motion is detrimental
to the accuracy of the result (as in the effect of respiratory
motion in the assessment of other organs).

Motion estimation has been profusely investigated in
machine vision and video coding applications, where min-
imising the time for estimation across a number of frames
is often a key objective in interactive applications. Medical
imaging shares some (but not all) aspects with these and adds
the common use of three (or higher) dimensional sequences.
As an example, so far widely used two-dimensional echocar-
diography (ultrasound imaging of the heart) is being grad-
ually replaced by real-time 3D echocardiography (RT3D).
RT3D scans can typically consist of 2003 voxels per frame,
with approximately 20 frames per scan. Local estimation of
structure motion is required for assessing a range of heart
conditions. In order to be fitted in the clinical protocol,
this estimation would need to be done in a few seconds,
ideally in real time. In Figure 2, motion estimation is
illustrated in a sample echocardiographic sequence. Many
other applications within the biomedical imaging field exist,
in some routine clinical cases reaching image sizes of 5123

voxels per frame, which can be much larger in basic science
applications (e.g., analysis of histopathology slices).

A number of algorithms have been proposed to estimate
motion in medical image sequences. In fact, the problem
of motion estimation is sometimes just considered as an
image registration (alignment) procedure, where registration
between consecutive frames, or between each frame and a
specific one selected as reference, is performed. This opens
up the possibility of using any of the approaches proposed
in the extensive registration literature. For an overview of
registration methods, the reader is addressed to reviews such
as [5–8].

In this paper, we use a motion estimation algorithm
based on the optical flow approach. While we do not
claim that this method is optimal for any particular task,
optical flow methods are present in many state of the art
algorithms for motion estimation and biomedical imaging.
The particular optical flow algorithm applied here, described
in Sections 3.2 and 3.3, has the additional advantage of



International Journal of Biomedical Imaging 5

(a) (b) (c)

(d) (e) (f)

Figure 2: Example of motion estimation in a cardiac ultrasound sequence. (a) Original slice at end diastole. (b) Original slice at end systole.
(c) Image (b) after alignment to image (a). (d) Estimated motion vector field, shown superimposed on (a). (e), (f) Images (a) and (c),
respectively, with the endocardial contour superimposed. Note how the shapes are matched by the motion estimation process and all motion
estimation and resampling were performed in 3D; a sample 2D slice is shown for clarity.

combining several generic image analysis operations (con-
volutions, interpolations, and iterative solution of partial
differential equations). This makes it a good exemplar case
to illustrate the possibilities and limitations of biomedical
image analysis using GPUs, which is one of the aims of this
paper.

3.2. Hybrid Motion Estimation Algorithm. In this paper, we
use the motion estimation approach proposed by Bruhn
et al. [9], which combines classic solutions to optical
flow estimation proposed by Horn and Schunck [10] and
Lucas and Kanade [11], as the baseline version. There are
several reasons why we believe this is a particularly relevant
algorithm for our purpose. In [9], Bruhn et al. reported
excellent results including a quantitative comparison in
which the algorithm is shown to outperform a number
of previously published optical flow approaches. In their
subsequent paper [12], they proposed different means of
improving the computational performance of the algorithm
in a uniprocessor platform, which makes it an excellent
example to explore the peculiarities of multicore versus
single-core implementations. Finally, the algorithm contains
a number of individual operations which are commonly

found in medical image analysis applications, and thus could
be reused.

Optical flow methods are based on the assumption that
corresponding points in two consecutive frames of an image
sequence have the same intensity values. This condition can
be linearized considering only the first terms of the Taylor
expansion, which in the case of 3D images gives

Ixu + Iyv + Izw + It = 0, (1)

where Ix,y,z,t are spatiotemporal partial derivatives of the
image pixel intensities I and u,v, and w are displacement
vector components. Equation (1) is a constraint equation
and direct estimation of u, v, and w by minimising the
derivatives therein is an underdetermined problem, and
additional constraint(s) are required. Under this circum-
stance, the most that can be done is obtain the projection
of the vectors in the corresponding direction of the image
gradients Ix,y,z, which is referred to as the aperture problem.

Several alternatives have been proposed to solve the
aperture problem. In [10], Horn and Schunck propose a vari-
ational approach, where it is assumed that the motion field is



6 International Journal of Biomedical Imaging

smooth in the neighbourhood of estimation and it seeks to
minimize

E(u, v,w) =
∫∫ ((

Ixu + Iyv + Izw + It
)2

+α
(
|∇u|2 + |∇v|2 + |∇w|2

))
dx dy dz.

(2)

In other words, (1) is transformed into a cost term (Ixu+
Iyv + Izw + It)

2 to be minimized along with a regularization
term α(|∇u|2+|∇v|2+|∇w|2) which assures well-posedness.
Furthermore, α is the weight of the regularization term which
links intensity variation and motion.

In [11], Lucas and Kanade assume that the local motion
is constant within a certain neighbourhood ρ; this provides
a system of linear equations which can be directly solved.
The method adopted in this paper, originally presented by
Bruhn et al. [9], utilises a hybrid of both the approaches
described above. This approach exploits regularization both
at the local [11] and at the global level [10]. In short, the
approach involves calculating the matrix

Jρ(∇4I) = Kρ ∗
(
∇4I∇4I

T
)

, (3)

where, following the notations from Bruhn et al. [9], ∇4I is
a column vector containing the derivatives of I with respect
to x, y, z, and t and Kρ is a Gaussian kernel with variance
ρ, which is convolved with each of the matrix components.
J0 is used to represent the matrix before the application of
the Gaussian filter. This leads to following functional to be
minimized:

∫
Ω

(
wTJρ(∇4I)w + α|∇w|2

)
dx dy dz, (4)

along with the definitions of

w = [u, v,w, 1]T , |∇w|2 = |∇u|2 + |∇v|2 + |∇w|2.
(5)

The functional in (4) is minimized by solving its correspond-
ing Euler-Lagrange equations

0 = Δu− 1
α

(J11u + J12v + J13w + J14),

0 = Δv − 1
α

(J21u + J22v + J23w + J24),

0 = Δw − 1
α

(J31u + J32v + J33w + J34),

(6)

where Δu represents the Laplacian of u, and we use, as in [9],
the notation Ji j to refer to the values at position (i, j) in the
matrix Jρ(∇4I). With this, (6) can be expressed as a system of
linear equations in the form of Ax = b, where

A = ∇4I ×∇4I
T , x =

⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎣
Δu

Δv

Δw

⎤
⎥⎥⎥⎦, (7)

where the Laplacian for a spatial point i can be approximated
from the neighbourhood elements as below:

Δu = 6ui −
∑

j∈N(i)

uj

h2
. (8)

We represent the three-dimensional six-neighbourhood of i,
as N(i) and h is the image resolution.

The total number of equations/unknowns given in (6) is
3NxNyNz, which means an iterative solving method needs
to be used. In [9], Bruhn et al. used the successive over-
relaxation (SOR) method. The SOR method changes the
motion values on the fly; that is, the calculation of motion
at iteration k will use the motion values already calculated
at that iteration. An alternative is the Jacobi method, which
bases the calculation of all motion values at iteration k only
on the values from the previous iteration, thus allowing a
more efficient parallelization. The equation to calculate ui for
each voxel i is

u(k+1)
i =

∑
j∈N(i) u

(k)
j −

(
h2/α

)(
J12,iv

(k)
i + J13,iw

(k)
i + J14,i

)

|N| + (h2/α)J11,i
,

(9)

where the superscript k denotes the iteration number and
|N| is the number of neighbours of voxel i within the
domain. J12,i represents the value of the component (1, 2)
of the J matrix in (3), calculated at voxel i in the image
and calculated at the start of the iterative procedure (i.e.,
independent of iteration number k). Similar expressions can
be easily found for the components of the motion field along
the y and z axes, respectively, v and w. The algorithm thus
starts with an initialization for u, v, and w (zero in our case)
and a precalculation of the J values, and iteratively calculates
the values of uk, vk, and wk until convergence is reached.
Calculation of u at voxel i, thus, requires the values of u, v,
and w at the same voxel i and the values of u at neighbouring
voxels j, all from the result of the previous iteration.

Using a linear approximation as in (1) works only in the
case of very small motions, which is overly restrictive for
general medical imaging applications. In order to overcome
this limitation, it is possible to apply the whole procedure
within an iterative framework, where the motion field is
calculated, applied to the moving image, and the motion
estimation process starts again using this newly resampled
image. Note that this does not require recalculation of
the spatial gradients Ix, Iy , Iz, as these are calculated on
the fixed image. In the same way, the whole procedure
can be embedded in a multiresolution framework without
any major changes. We present the overall algorithm in
Algorithm 1 and discuss in detail below.

In summary, the algorithm can be divided into these sub-
tasks, whose GPU implementation is described below.

(1) Calculate the derivatives of the image intensities
with respect to spatial and temporal coordinates:
Ix, Iy , Iz, and It.

(2) Calculate the cross-products of the derivatives (this
would correspond to the matrix J0(∇4I)).



International Journal of Biomedical Imaging 7

I1 ← Initialize( )
I2 ← Initialize( )
Ix ←Dx(I1)
Iy ←Dy(I1)
Iz ←Dz(I1)
for 1 to R

It ←Dt(I1, I2)
J0(∇4I) ← ∇4I ×∇4IT

Jp(∇4I)← Kρ ∗ J0(∇4I)
A← Jρ(∇4I)
[Δu,Δv,Δw]← Jacobi (u, v, w, h, Nx , Ny , Nz)
x ← eqnSolve(A, b)
I2 ← reSample(I1, x)

end for

Algorithm 1: The estimation algorithm without the volume
preserving term (see Section 3.3. The meanings of the symbols
remain as in the text. I1 represents a static image I(x, y, z, t) and
I2 represents a moving image I(x, y, z, t + 1). First, the Image I1

is initialized and partial derivatives are computed. D denotes the
partial derivative operator. Following this, the algorithm is applied
repeatedly R times. Each time of the iteration, as a precursor to
solve (6), values of Δu,Δv and Δw are computed using Jacobi
method. The routine Jacobi performs this operation. One this is
available, all the unknowns, given by x, are solved iteratively using
the routine eqnSolve, which solves a system of linear equations.
Then the solutions are used to resample the image to estimate the
moving image I2.

(3) Convolve each one of the components of the matrix
above with a Gaussian filter Kρ to produce Jρ(∇4I).

(4) The resulting system of linear equations given in (6)
are solved using eqnSolve which deploys an iterative
technique. This necessitates estimating the Laplacian
values using Jacobi.

(5) Apply this motion field to all the frames of a moving
image along with resampling wherever necessary.

(6) All of the above are applied repeated R times where
the solution converges.

To simplify the notation, in Algorithm 1 and in sub-
sequent sections, we assume that the motion vectors are
calculated between two images I1 and I2, corresponding to
two consecutive frames in the temporal sequence.

3.3. Enhanced Volume-Conserving Motion Estimation. Car-
diac muscle is to a large extent incompressible [13, 14],
and thus, in this application, it is important for the
estimated motion field to preserve the original volume
locally. A number of algorithms have been proposed to
estimate incompressible motion fields, with the Jacobian
being commonly used as a measure of volume change. In this
paper, we use the variational optical flow first introduced by
Song and Leahy [15], where an additional term is introduced
in the minimization to favour divergence-free motion fields,

which together with the diffusion-free term ensures volume
preservation. Equation (4) thus becomes
∫
Ω

(
wTJρ(∇4I)w + α|∇w|2 + β · div(w)

)
dx dy dz. (10)

The solution is then computed using the Euler-Lagrange
equation, similarly to the derivation presented above. The
original algorithm presented in Algorithm 1 can be modified
to account the preserving term we introduce here.

4. GPU Parallelization

The original algorithm exhibits abundance amount of par-
allelism at the pixel level. The CUDA architecture, where
parallelism exists at the single instruction multiple data
(SIMD) level, is particularly suitable for exploiting such a
fine-grained parallelism. Although exploiting this appears
rather trivial at the algorithmic level, the data placement
and management posed considerable challenges in realising
the algorithm. Furthermore, the continuous evolving of the
architecture has a direct impact on the way the algorithms
are realized.

The raw-data for the computation is represented as a
vector of NxNyNz elements, with the best possible spatial
locality along one of the dimensions (in our case, this is x).
In the case where the size of the raw image to provide any
undesirable effects for coalesced access, we pad the image
appropriately. This leads to constant strided access along
other two dimensions (stride of Nx along the y-axis and
NxNy along z-axis). Although nonlinear layouts may provide
some performance benefits, we have not considered them, to
minimize the addressing issues. Initial set of images will be
denoted by I1 (fixed image) and I2 (moving image).

As we have discussed in Section 2, the complexity of
modern GPU architectures in terms of data placement and
management directly impacts the way that the algorithm is
realized. In particular, the Fermi architecture supports both
shared and cache memory. Though predetermined, a finite
pool of memory can be used as a full shared memory, or as
cache memory or in hybrid fashion. There is no well deter-
mined method for establishing which configuration will lead
to better results. In our case, the repeated application of the
algorithm may benefit from shared-memory, but this brings
additional overheads to the data movement. Alternatively,
the shared-memory functionality can be turned off, and
we could configure the available memory as a level-1 (L1)
cache, which will simplify the management. We foresee that
since the accesses are constant strides, the latter configuration
is likely to provide better results. However, to verify this,
we implemented both methods. In the following sections,
we outline how we have implemented this among a set of
key functions which are central to the motion estimation
algorithms outlined in Section 3.

4.1. Gradient Calculation. From the two initial three-
dimensional images (I1 and I2), the gradient values are calcu-
lated using a forward difference approximation: Ix(x, y, z) =
I(x+1, y, z)−I(x, y, z), assuming that two consecutive voxels
are separated by unit distance. These are calculated on the



8 International Journal of Biomedical Imaging

16

1

1

4

Figure 3: An example of the shared memory tiles used complete
with a halo on two sides to store the extra values that are required.

fixed image I1. In the same way, the value of the temporal
derivative is approximated by the finite difference I2(x, y, z)−
I1(x, y, z). Border voxels are dealt with by assigning their
corresponding derivatives to zero, rather than assigning
periodic boundary conditions. The cross-products are then
calculated, producing a total of nine extra values per voxel:
I2
x , I2

y , I2
z IxIy , IxIz, IyIz, IxIt, IyIt, and IzIt.

The simplest strategy to parallelize this calculation would
be to allocate a thread to every pixel. However, given the
memory arrangement described above, this would result in
each thread performing five loads from main memory (the
values of I1 at the corresponding voxel, the three forward
neighbours in x, y, z and the value of I2), including one
that is uncoalesced (the value I1(i + 1, j, k) as x values are
consecutive, and so they do not have an appropriate stride
for coalesced memory access). To reduce this overhead, we
could either rely on the L1 cache or use the shared memory,
a common technique we will be reusing in realising other
key routines. The data is first partitioned into cubes along
the x and y directions (each cube containing the full range
of z values). As the computation for each cube is looking
forward, for each cube, we also require a halo of size one
along the x and y directions, as shown in Figure 3. However,
the partitioned cube may still not fit the shared memory.
For this reason, we process the image as slices along the
z direction. This introduces a halo of size one along the z
direction as well. This means that the shared memory for
each block of threads needs to be of size (X + 1,Y + 1, 2).
Image values are then loaded into shared memory, with each
thread loading its interior (i.e. nonhalo) voxel in its image I1

at that z value, and the value of the corresponding voxel in
image I2. The halo values are then loaded in by a subset of
the threads. This subset is constructed by giving each thread
a number k such that k = thread Idx.x + thread Idx.y × X
and then selecting the threads where k < X + Y + 1. Each
of these threads will load one value for the halo in the x
and y directions. This means each thread needs to perform a
maximum of three loads instead of five, with Y + 1 of these
being uncoalesced per z value. As mentioned before, loading
all the values in the z direction in one go is not possible
with current shared memory sizes of only 64 KB per group
of eight processors on these cards. Thus, we only store the
values for z and z + 1 in the shared memory at any one
time. However, the number of loads from global memory
is kept down by moving the data around within the shared
memory as the z values change. Once all the computations
have been performed for the lower z plane in the image,
this plane is discarded from the shared memory. Then, the

z + 1 plane is copied allowing it to become the new z plane.
Once this has been completed, a new z + 1 plane is loaded.
Diagrams demonstrating this can be seen in Figure 4. For this
application, we cut the data into pieces of size 32 × 4. This
size was chosen through experimentation and maintaining
the necessary constraint that the x dimension is a multiple of
16 in order to maintain coalesced memory accesses.

4.2. Smoothing. After the cross-products of the derivatives
have been calculated, a Gaussian filter is applied to each of
them. This is performed by convolving the image with a
kernel approximating the Gaussian, in the following way:

fσ
(
x, y, z

) =
i=Kx∑
i=−Kx

j=Ky∑
j=−Ky

k=Kz∑
k=−Kz

gσ
(
i, j, k

)
f
(
x − i, y − j, z − k

)
,

(11)

with gσ being the values of the kernel obtained by sampling
a Gaussian function. The kernel has a size (2Kx + 1, 2Ky +
1, 2Kz + 1), where the values of Kx, Ky , and Kz are captured
as Kρ in Algorithm 1; the values of Kx, Ky , and Kz need
to be large enough to provide an accurate approximation
to the Gaussian but not too large to avoid unnecessary
calculations. Large values of sigma require large kernels, and
thus impose a big computational load. As an alternative, the
3D convolution can be separated into three one-dimensional
convolutions, one in each of the x, y, and z directions. This is
the approach we have used. For simplicity of notation, in the
next Section we assume Nx = Ny = Nz, and we use the value
K = 2Nx + 1

As mentioned above, a naive implementation would just
use a separate thread for each value within a given set.
However, this approach also suffers from the number of
global memory loads, which this time are a function of
the kernel size (K) being applied, giving 3K loads from
the dataset plus 3K accesses to load the kernel for the
convolution in each direction. Of these, 3K accesses to load
the kernel, and the K accesses to perform the convolution in
the x direction will be uncoalesced. Clearly, this will cause a
server bottleneck, so once again, we use the shared memory
to reduce the cost of this. Additionally, we also use the
constant memory on this occasion.

Half of the global memory accesses can be removed by
simply storing the kernel in constant memory instead of
global memory. This change does require a maximum size
for the kernel to be set, but as this maximum can be in the
thousands, this is not a restriction on the design.

The method for utilising the shared memory is the same
as in Gradient calculation. Each thread loads some of the data
ensuring coalesced memory accesses, and then all the threads
share this loaded data to perform the computation. However,
as the computation takes the form of three separate passes
due to the separation of the three-dimensional convolution
into three separate one-dimensional linear ones, it has to be
formed from three separate CUDA invocations. This means
that in any given invocation, the computation will only be
looking in one direction. This is important, as the shared
memory is not large enough to store sufficient information to



International Journal of Biomedical Imaging 9

z

x

y

(a) (b)

(c) (d)

Figure 4: (a) the initial state of the shared memory. (b) after the plane z has been deleted. (c) the top tile (z = 1) has been moved into the
position of the bottom tile (z). (d) new data with the next z coordinate value is then loaded into the space created by moving the top tile. In
each instance, the different shades of Gray represent different layers within the piece of data that we are reading from into shared memory.

look in all three directions at the same time. This behaviour
also means it is necessary to construct a different style of
solution for the x direction to the y and z directions to take
into account the need for coalesced memory accesses.

4.3. Solving the System of Linear Equations. For solving the
system of linear equations, we implemented the two different
variants of the Jacobi method: one version will rely on the
L1-cache (without any shared memory), and the other will
use the shared memory. Both approaches reduce the number
of global memory accesses, in particular uncoalesced ones. In
the case of the shared memory version, as before, we partition
the data into tiles each with a halo, and these tiles are slices
along the z dimension. However, on this occasion, given both
the forward and the backward neighbours are used, the halo
occupies both edges in both x and y as shown in Figure 4, and
we maintain three tiles at any given moment bar the first and
last values in the z direction, as zero padding at the borders
is assumed. Due to the limited size of the shared memory,
each of the z planes is computed in turn, so increasing the
available memory for a given computation and so increasing
the ratio of values computed to halo values loaded.

4.4. Intensity Interpolation. As explained above, due to
the linear approximation introduced in (1) the above
process has to be repeated in an iterative motion esti-
mation/interpolation cycle. Having estimated the motion
between the two images, it is now necessary to apply this
motion to the moving one and interpolate the image intensi-
ties at the new positions. We use a trilinear approach, where
the value of the image at each position is linearly interpolated
from the values of their eight immediate neighbours. While
there is a range of interpolation techniques including nearest
neighbour, tricubic and different spline-based methods, in
this application the trilinear method was deemed a good
compromise between accuracy and speed. However, staying
in line with the over arching aim of this work, we ensured
that our framework is easily amenable to a different method.

The smoothness constraint in (4) and (10) means that
there should be a high degree of locality associated with
the reads required to sample for pixels that share locality
in the original image. Despite this pattern, there is no way
to determine the locations in advance, so it is not possible
to use the shared memory to save on access times or to
overcome the inevitable uncoalesced memory accesses. For
these reasons, we turned to the texture memory to provide
caching for the data accesses to improve the performance
of this phase. Once the original image is mapped to a
texture, it would have been possible to get the texture
functionality already available in the device to perform the
interpolation instead of writing new code. However, this
is only implemented to a sufficient accuracy for displaying
pixels on computer screens, to around four decimal places,
and is inflexible in that we would be restricted to the
interpolation techniques supported by the cards, rather
than being able to extend this code to perform alternative
interpolation techniques. As such, we map the data structure
to a texture with a call from the host and then perform the
interpolation on a one thread per voxel basis. Each thread
calculates the location of and extracts the eight closest voxels
from the texture memory. Having done this, it performs the
calculation and saves the result back to the main memory.
Because of the use of the texture memory as a cache, the
locality of the eight pixels, and the locality of any other
interpolated points within the blocks executed on a given
group of cores results in both coalesced memory accesses and
data reuse.

The use of the texture memory instead of the shared
memory to overcome the limitations of the memory system
makes this piece of code by far the simplest and demonstrates
how much clearer CUDA code can be once all concerns
about memory management are abstracted away. However,
experiments with the use of texture memory shows that it is
actually two orders slower than shared-memory counterpart,
and thus, we will not be discussing this any further. We
attribute the overheads to the losses.



10 International Journal of Biomedical Imaging

Table 1: Details of systems used for evaluation.

Parameters System 1 System 2 System 3

System name C1060 GTX480 C2070

Host CPU
Xeon 5110

(Harpertown)
Intel Core i7

Xeon 5650
(Gulftown)

Host CPU speed 1.6 GHz 2.8 GHz 2.67 GHz

Host OS
Ubuntu 10.10

(64 bit)
Ubuntu 10.10

(32 bit)
Ubuntu 10.10

(64 bit)

Kernel 2.6.35 2.6.31 2.6.35

Host RAM 2 GB 4 GB 24 GB

Host L1-cache 64 KB 64 KB 64 KB

Host L2-cache 4 MB 8 MB 12 MB

GPU series C1060 GTX480 C2070

Compute
capability

1.3 2.0 2.0

Device memory 1 GB 4 GB 6 GB

Multiprocessors 24 16 14

Cores per MP 8 16 32

Total cores 192 512 498

GPU L1-cache 16 KB 64 KB 64 KB

(Shared memory)

GPU L2-cache N/A 128 KB 128 KB

CUDA version 4.0 3.3 3.2

Compiler flags
-O3 –arch =

sm 13
-O3 –arch =

sm 2.0
-O3 –arch =

sm 2.0

5. Experimental Evaluation

5.1. Experimental Procedure. The task of performance com-
parison of an application on CPU- and GPU-based systems is
highly dependent on a number of factors. These include the
underlying operating system, compilers used, optimization
flags, order of the optimizations and caching policies of the
platforms in question [16]. With this in light, it is difficult to
conclude that an application will always lead to performance
improvement on another platform. For this reason, to gain
more insight into the benefits, we use three different systems
to compare and analyse the performance results. The details
of the systems on which we performed our experiments are
shown below in Table 1.

There are different metrics by which we could compare
the benefits. In this paper, we treat the version compiled
for the host CPU as the baseline version. The computation
on the GPU involves more than raw-computation on the
GPU cores. This includes data transfers and associated
managements. However, in our context, we see that the
data will persist in the GPU for subsequent runs, and
therefore, we report the performance results excluding the
data transfer times. For the rest of the section, we evaluated
the performance of the algorithm as follows.

(1) For each system, we perform the runs a number of
times in an unperturbed condition, and we chose the
median of the measurements.

(2) We use a database of three-dimensional image se-
quences of varying sizes to test our algorithm under
different configurations (see below). The database
includes synthetic images wherever needed, which
does not affect the results.

(3) The nonsystem-specific and algorithm-specific pa-
rameters are tested for their influence on the overall
performance of the algorithm. This includes the
kernel size and number of iterations.

(4) The overall motion estimation algorithm, as dis-
cussed in the previous sections, contains a number
of components and each of them gain significant
speedups when run on the GPU. We evaluate the
speedups gained by different components.

(5) Different variants of the implementations are used
to assess the impact of shared memory, L1 and L2
cache memories on the algorithm. For this, we run
the following variants.

(a) A shared memory version. This is available on
all systems. In the modern systems, the L1-
cache is turned off and the full pool of memory
is used as shared memory. On the C1060
system, this is the standard configuration.

(b) A nonshared memory version. On Fermi-based
systems (GTX480 and C2070), this effectively
turns on the L1-cache. In addition to this, this
approach simplifies the overall programming as
complicated techniques such as tiling are not
needed, and thus purely relying on the loading
resolution of the cache controllers on the GPU.

(c) A no-L1 mode. This turns off the L1 and shared
memory mode and thus purely relies on L2-
cache. This configuration does not exist on the
older systems (C1060).

5.2. Experimental Results. We first present the impact of the
number of iterations (denoted by R in Algorithm 1) and of
the kernel size (denoted by Kρ in Alogrithm 1), on the overall
speedup in Figure 5. We evaluate the impact of the number of
iterations using two different fixed size images (1283 and 2563

images) on all three platforms, for a range of iterations. For
each platform, we pick the best performing versions (among
shared memory, nonshared memory and non-L1-mode) and
then we vary the number of iterations. As observed, the
number of iterations does not have a noticeable impact on
the overall speedups across all platforms. Although varying
the image size changes the maximum speedup (speedup
increases as image size increases), for a given image, the
number of iterations do not alter the speedup by a large
degree. This is because, although increasing the number
of iterations benefits from overall reuse per transfer, the
inter- and intraiteration spatial locality in the cache is
not in favour of the application. This essentially carries
an important message: although the execution time for
increased number of iterations will rise, the speed up will
not be affected. However, the kernel size has an impact on



International Journal of Biomedical Imaging 11

0

10

20

30

40

50

60

70

C1060 (128)

GTX480 (128)

C2070 (128)

C1060 (256)

GTX480 (256)

C2070 (256)

Sp
ee

du
p

ag
ai

n
st

se
qu

en
ti

al
ve

rs
io

n

Impact of iterations on the algorithm

Number of iterations

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

(a)

0

5

10

15

20

25

30

35

40

3 7 31 35 39 43 47 51 55 59 63

Kernel size

Effect of kernel size on smoothing speedup

Sp
ee

du
p

11 15 19 23 27

(b)

Figure 5: (a) shows the impact of number of iterations in the overall
speed up of the algorithm. We show the impact for two different
image sizes. (b) shows the impact of kernel size on the overall speed
up of the algorithm.

the overall performance of the algorithm. As the kernel size
increases, the number of accesses to memory per floating
point operation (FLOP) decreases and this improves the
GPU speedups. Furthermore, if the kernel size were to exceed
the size of the CPU cache, this observation will change
considerably.

Provided that for a given case, the number of iterations
and the kernel sizes are fixed, the overall speedup is only
affected by the size of the image. In the remaining part of
this section, we keep the number of iterations and the kernel
size constant, and we only vary the image size.

As stated above, the overall motion estimation algorithm
has a number of operations, which are componentized in our

0

10

20

20 30

30

40

40 50

50

60

60

70

70

80

80 90

90

100

100 180

Speedup of pipeline components

Size of x, y and z dimension

T
im

es
sp

ee
du

p

Calculate gradient

Smooth

Solve linear system
Total

Resample

110 120 130 140 150 160 170

Figure 6: Speed up of the different components of the motion
estimation algorithm for different size of images on the C1060
platform.

case, and their speedups on the GPU vary with the problem
size. This is shown in Figure 6 for the C1060 platform. Here,
all components of the algorithm show significant gains in
speedup. The kernel size for the smoothing is 15. Different
parts of the pipeline have different access patterns, leading
to different overall behaviour. However, both the gradient
calculation and linear system solution use the same access
patterns both on the host and the GPU, explaining the similar
shape. The presence of local spikes in speed up is due to
the different optimal sizes between CPU and GPU. In our
case, we observe that the Gaussian filter achieved a speed
up of around 25 times, and the data generation and image
interpolation achieved speedups close to 90 times in the
best case. The worst case values (slowdowns) were observed
for very small image sizes (e.g., around 5 times slowdown
for Gaussian), which are not shown here. However, the
overall speed up is much less than the best speedups of all
components and this is currently limited to 60 times. We
also observed the highest percentage of the time being spent
solving the linear equations and smoothing the data.

Having presented the performance of fine-grained
aspects of the GPU performance, we present the overall per-
formance behaviour of the algorithm on different systems.
As stated in the previous section, different variants of the
implementations are tested for their performance.

The speedup on the C1060 system is shown in Figure 7
for two different configurations. One with the shared
memory being exploited and the other one without any
shared memory utilization. In overall, the shared memory
implementation is faster than nonshared memory imple-
mentation. For the reasons discussed in Section 2, accessing
shared memory is faster than accessing the device memory.



12 International Journal of Biomedical Imaging

0

10

20

30

40

50

60

50 75 100 125 150 175 225 250200

Sp
ee

du
p

ag
ai

n
st

se
qu

en
ti

al
ve

rs
io

n

on C1060

Cubic root of the image size

Shared

No shared

Speedups

(a)

0

100

200

300

400

500

600

700

800

Cubic root of the image size

(M
B

/s
)

H2D (S)

D2H (S)

H2D (NS)
D2H (NS)

Host-to-device/device-to-host bandwidth

Sp
ee

d

50 75 100 125 150 175 225 250200

(b)

Figure 7: (a) shows the overall speed up of the algorithm on the
C2070 system with the data transfer times excluded while (b) shows
the variation of transfer speed with the image size.

This improved the implementation so less time is spent
on wait states, thus the overall speedup gains. One other
observation, for which further investigations are needed, is
sudden slowdowns at image size of 2003 which are more
pronounced on the shared memory implementation.

Reporting speedups as in the figures above can be
sometimes slightly misleading. In particular, this is true when
slowdowns on the CPU side are translated as speedups.
For this reason, we present the raw runtimes in Table 2. In
addition to this, the transfer speed rate between the host
and device and vice versa varies with data size. As per the
configuration, the rate is biased towards the direction in
which the transfer occurs (data transfer rate from device to
host is much higher than transfer rates from host to device)
but rarely achieves the peak rate of respective systems.

Figure 8 shows the performance of the algorithm on the
GTX480 system. Since GTX480 GPU is based on the Fermi
architecture, the GPU contains two levels of caches, (L1
and L2) one which can be configured either as a shared

Table 2: Raw runtimes of the algorithm on the C1060 system.

Cubic root of
image size

CPU time
(ms)

GPU time
(with shared

memory)
(ms)

GPU time
(without shared

memory)
(ms)

50 1272 86 96

75 4457 245 257

100 11362 355 443

125 21112 531 771

150 45101 895 1123

175 62310 1147 1594

200 96703 3036 2856

225 134668 3473 3834

250 176238 4261 6016

0

10

20

30

40

50

50

60

70

75 100 125 150 175 225 250200

GTX480

ag
ai

n
st

se
qu

en
ti

al
ve

rs
io

n

on

Cubic root of the image size

Shared

No shared

No L1

Speedups

Sp
ee

du
ps

Figure 8: The overall speedup of the algorithm on the GTX480
system for different image sizes with the image size (with the data
transfer times excluded).

memory, as a L1-cache or a mix of both. We ran our
implementation under three different configurations. First,
we ran the algorithm with no-shared memory option. This
is the default and triggers the usage of L1 and L2 caches
of the system. Under this setup, the implementation does
not need to have any extensive shared-memory mapping
procedures. Then, we performed the same experiment
with the shared memory variant of the implementation.
Under this configuration, the L1-cache is fully configured
as a shared memory system and our implementation takes
the full responsibility of the loading and data placement.
Finally, we run the implementation with the L1-cache being
completely turned off. This renders both the shared memory
and L1 not available to the application, thus fully relying on
the L2 cache, which cannot be turned off.

As can be observed in Figure 8, the default configuration
outperforms the other two versions. In other words, exten-
sively tuning the application for shared memory usage is
not optimal under the new architecture. Two reasons can be



International Journal of Biomedical Imaging 13

Table 3: Raw runtimes of the algorithm on the GTX480 system.

Cubic root
of
image size

CPU time
(ms)

GPU time
(with
shared

memory)
(ms)

GPU time
(without
shared

memory)
(ms)

GPU time
(without

L1)
(ms)

50 671 49 26 49

75 2379 155 83 155

100 5788 272 150 265

125 11338 440 240 435

150 23714 677 373 671

175 31369 955 554 942

200 47914 2037 1101 1999

225 66870 2357 1275 2312

250 91610 2864 1564 2823

attributed to this failure. Firstly, the data management and
placement overheads cannot compete with the automatic
placement provided by the L1-cache. Secondly, the L2-cache
deploys the inclusive policy, which feeds the L1 without any
extra wait states.

However, turning off the L1-cache does not affect the per-
formance significantly since the L2-cache is active. Very close
inspection of Figure 8 and runtimes in Table 3 reveal that
even after turning off the L1-cache, the overall performance
of the shared memory implementation is outperformed.
Again, we explain this based on the efficiency and loading
policies of the cache controllers on GPU. Furthermore,
a performance drop at the image size 1753 is observed
similar to what was observed on the C1060 system, but
here, the nonshared memory implementation suffers from
slowdowns.

Finally, we present the performance of the algorithm on
the C2070 system in Figure 9. Since the system has no device
memory, we were able to run the algorithm with considerably
large image sizes (up to 5253).

Similar to the GTX480 system, the default configuration,
where no shared memory was utilized, performs better
than the other two version. All the other observations
align with the previous observations on GTX480 system.
Furthermore, as before, even relying on the Level-2 cache is
sufficient enough to gain substantial speedups. Furthermore,
a performance drop observed on the C1060 and GTX480
systems observed here as well, where the observation is
repeated. Although all of these observations have been visible
in other systems, one subtle feature of this C2070 system is
that it has a built-in error checking and correction (ECC)
mechanism for the GPU memory.

Historically, in the context of GPUs, error rates were
not an issue—as this only affected the color of the pixel.
However, this is no longer the case with GPUs being used
as part of the HPC systems as the soft error rates in DRAM
are high. Despite this, previous generations of GPUs did
not support ECC and only recently this support has started
to arrive. In our case, C2070 supports ECC. However, the
ECC comes with the penalty on runtimes due to overheads

75

80

90

125 175 225 2

C2070on

Cubic root of the image size

325 37575 425 475 525

NoSHM

SHM

No L1

0

10

20

30

40

50

60

70

ag
ai

n
st

se
qu

en
ti

al
ve

rs
io

n

Speedups

Sp
ee

du
ps

Figure 9: The overall speed up of the algorithm on the C2070
system for different image sizes (with the data transfer times
excluded).

0

5

10

15

20

25

30

35

40
50

50

75 10
0

12
5

15
0

17
5

32
5

22
5

45

64 20
0

30
0

12
8

25
6

Cubic root of the image size

32 35
0

37
5

27
5

42
5

45
0

47
5

40
0

50
0

52
5

V
ar

ia
ti

on
fr

om
th

e
be

st
ca

se
(%

)
Impact of GPU ECC on runtimes

Figure 10: The variation of the runtime when ECC is enabled as a
percentage of the best case for the C2070 system.

associated with a large number of check bits. To evaluate the
impact of ECC, we ran the algorithm with and without ECC.
To avoid any direct influence of L1 on this, we turned off
the level-1 cache. We report the variation of the runtimes
as a percentage of the best case, the non-ECC version, in
Figure 10. However, in our case, we did not see any difference
in accumulated errors, which is a random event. As can be
observed, the variation diminishes as image sizes increases
but is more pronounced at the power-of-two problem sizes.
At the power-of-two problem sizes, the number of check
bits required for ECC is higher than for nonpower-of-two
problem sizes [17], and thus overheads are considerably
high. We assume that with increasing data size, the accesses
are more consolidated to blocks, and thus the number of
separate checks reduces.

6. Conclusions

In this paper, we investigated the mapping of an enhanced
motion estimation algorithm to a number of GPU-specific



14 International Journal of Biomedical Imaging

architectures, resulting challenges and benefits therein. Using
a database of three-dimensional image sequences, we showed
that the mapping leads to substantial performance gains, up
to a factor of 60, and can provide near-real-time experience.
By doing this, we gained more insight into the process. From
our investigation, we observed the following.

(i) Although the presence of different memory subsys-
tems are key in GPU programming, their significance
is diminishing. We witnessed this simply with the use
of shared and constant memories against level-1 and
level-2 caches. Partly, this observation is very influ-
ential across image processing applications—where
working with large amounts of data is a fundamental
requirement. In modern Fermi-based systems, the
loading resolution of the cache controllers amortizes
the overheads in managing different memory subsys-
tems.

(ii) In three-dimensional image processing applications,
the spatial locality can only be exploited along one
dimension in the CPU, while there is no spatial
locality in the other two dimensions. This leads to
benefits along one of the dimensions on the CPU.
Meanwhile, on the GPU-front, nonspatially local
dimensions benefit from coalesced memory access.
However, memory accesses along the remaining
dimension do not benefit from coalesced memory
access. These two facts are difficult to assess without
detailed profiling but are evident in the fact that
coalesced access leads to better performance.

(iii) In three-dimensional image processing applications,
increasing the number of smoothing iterations on the
GPU will not change the overall speedup although it
increases the absolute runtimes.

(iv) Even in the absence of the level-1 (L1) cache, the
performance was sustained by the level-2 cache.

(v) Error correction and checking (ECC) is necessary for
reliable outputs. However, wherever possible, this can
be traded off for performance.

(vi) In a typical image processing application, the motion
estimation pipeline is repeatedly applied for subse-
quent frames of image sequences, and therefore, it is
valid to assume that the data will persist on the device
and long-term runtime benefits will amortize the cost
of host-to-device and device-to-host transfers.

(vii) The overall cost per performance is very attractive.
The cost of a 512-core GPU is only a quarter
of a 16-core CPU-based system (as of mid 2011).
Nevertheless, the GPU-based system yields noticeable
performance benefits. Furthermore, the evolving and
simplified architectural and programming models,
makes this an excellent option for biomedical image
processing applications.

Although our work has exploited several different aspects
of the GPU-architecture, there are several different aspects
which may be improved.

(i) For extremely large datasets, where the device mem-
ory cannot hold the entire dataset, it may be neces-
sary to perform distributed processing using multiple
GPUs. Although both our algorithm and the software
framework can easily be extended to cover this, the
immediate benefits on near-real-time experience is
not known.

(ii) The current Fermi-based GPUs support concurrent
kernel execution, which permits launching multi-
ple kernels in a concurrent fashion. This feature
essentially liberates the GPU and unlocks it from
traditional SIMD-style processing. The exact benefits
still need to be investigate especially in the context of
three-dimensional image processing applications.

(iii) To alleviate the intricacies relating to conditionals,
the current version of the algorithm does a fixed
number of iterations. A more suitable method is
needed to adaptively control the convergence rate.

With all these, we find that although exploiting architec-
tural peculiarities rendered tangible benefits, these benefits
are narrowing with the evolving architecture and simplified
programming models. The future of GPU architectures will
incorporate prefetching [18] and will support abstractions at
the higher level.

Acknowledgments

The authors would like to thank Professor Mike Giles from
the Mathematics Institute, University of Oxford, and Jing
Guo from the University of Hertfordshire for their invaluable
inputs. They also would like to thank the anonymous
reviewers for their feedback and comments on the work
presented in this paper. This research is supported by the
Oxford Martin School, University of Oxford. V. Grau is
supported by an RCUK Academic Fellowship.

References

[1] Khronos Group: The OpenCL Specification 1.1 (Last accessed
May 20, 2011) http://www.khronos.org/opencl/.

[2] NVIDIA Corporation: NVIDIA CUDA Compute Unified
Device Architecture Programming Guide 3.0 (June 2010).

[3] D. B. Kirk and H. W. Wen-mei, Programming Massively
Parallel Processors: A Hands-on Approach, Morgan Kauffmann,
Boston, Mass, USA, 1st edition, 2010.

[4] J. Marzat, Y. Dumortier, and A. Ducrot, “Real-time dense and
accurate parallel optical flow using CUDA,” in Proceedings of
the 17th International Conference in Central Europeon Com-
puter Graphics, Visualization and Computer Vision (WSCG
’09), 2009.

[5] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes,
“Medical image registration,” Physics in Medicine and Biology,
vol. 46, no. 3, pp. R1–R45, 2001.

http://www.khronos.org/opencl/


International Journal of Biomedical Imaging 15

[6] J. B. A. Maintz and M. A. Viergever, “A survey of medical image
registration,” Medical Image Analysis, vol. 2, no. 1, pp. 1–36,
1998.

[7] B. Zitová and J. Flusser, “Image registration methods: a
survey,” Image and Vision Computing, vol. 21, no. 11, pp. 977–
1000, 2003.

[8] T. Mäkelä, P. Clarysse, O. Sipilä et al., “A review of cardiac
image registration methods,” IEEE Transactions on Medical
Imaging, vol. 21, no. 9, pp. 1011–1021, 2002.

[9] A. Bruhn, J. Weickert, and C. Schnrr, “Lucas/Kanade meets
Horn/Schunck: combining local and global optic flow meth-
ods,” International Journal of Computer Vision, vol. 61, pp.
211–231, 2005.

[10] B. K. P. Horn and B. G. Schunck, Determining Optical
Flow. Technical report, Massachusetts Institute of Technology,
Cambridge, Mass, USA, 1980.

[11] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings
of the 7th International Joint Conference on Artificial Intelligence
(IJCAI ’81), pp. 674–679, 1981.

[12] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr, “A
multigrid platform for real-time motion computation with
discontinuity-preserving variational methods,” International
Journal of Computer Vision, vol. 70, no. 3, pp. 257–277, 2006.

[13] F. Yin, C. Chan, and R. Judd, “Compressibility of perfused
passive myocardium,” American Journal of Physilogy, vol. 271,
no. 5, pp. H1864–H1870, 1996.

[14] F. Yin, C. Chan, and R. Judd, “Compressibility of perfused
passive myocardium,” IEEE Transactions on Medical Imaging,
vol. 271, no. 8, pp. H1864–H1870, 1996.

[15] S. M. Song and R. M. Leahy, “Computation of 3-D velocity
fields from 3-D cine CT images of a human heart,” IEEE
Transactions on Medical Imaging, vol. 10, no. 3, pp. 295–306,
1991.

[16] R. Damelio, Basics of Benchmarking, Productivity Press, 1st
edition, 1995.

[17] R. W. Hamming, “Error detecting and error correcting codes,”
Bell System Technical Journal, vol. 26, no. 2, pp. 147–160, 1950.

[18] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kauffmann, Boston, Mass,
USA, 3rd edition, 2002.


	Introduction
	Parallelism with GPUs
	GPU Architecture
	CUDA/GPU Programming Model

	Motion Estimation
	Background
	Hybrid Motion Estimation Algorithm
	Enhanced Volume-Conserving Motion Estimation

	GPU Parallelization
	Gradient Calculation
	Smoothing
	Solving the System of Linear Equations
	Intensity Interpolation

	Experimental Evaluation
	Experimental Procedure
	Experimental Results

	Conclusions
	Acknowledgments
	References

