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Computer-based swarm systems, aiming to replicate the flocking behavior of birds, were 
first introduced by Reynolds in 1987. In his initial work, Reynolds noted that while it was 
difficult to quantify the dynamics of the behavior from the model, observers of his model 
immediately recognized them as a representation of a natural flock. Considerable ana-
lysis has been conducted since then on quantifying the dynamics of flocking/swarming 
behavior. However, no systematic analysis has been conducted on human identifica-
tion of swarming. In this paper, we assess subjects’ assessment of the behavior of a 
simplified version of Reynolds’ model. Factors that affect the identification of swarming 
are discussed and future applications of the resulting models are proposed. Differences 
in decision times for swarming-related questions asked during the study indicate that 
different brain mechanisms may be involved in different elements of the behavior assess-
ment task. The relatively simple but finely tunable model used in this study provides a 
useful methodology for assessing individual human judgment of swarming behavior.

Keywords: swarming, flocking, perception of biological motion, swarm intelligence, human perception

1. inTrODUcTiOn

This paper uses a relatively simple computer-based model to, as Shmueli et al. (2014) put it, help us 
“sense, understand, and shape human behavior.” Following the broad approach of Servi and Elson 
(2014), the aim is to provide “… a mathematically unbiased approach … ” for understanding human 
judgment of swarming behavior.

Computer-based swarm systems, aiming to replicate the flocking behavior of birds, were first 
introduced by Reynolds (1987). Reynolds’ “boids”, short for “birdoids,” were based on the emergent 
behavior resulting from the interaction of three simple rules: attraction, alignment and repulsion. 
Reynolds (1987) noted that while the dynamics of the resulting behavior was difficult to quantify, 
people who viewed them “… immediately recognized them as a representation of a natural flock.” 
Understanding individual behavior, and the differences between the behavior of individuals, will 
contribute to understanding and potentially shaping human behavior overall.

Toner and Tu (1998) define a flock as “the collective coherent motion of large numbers of self-
propelled organisms.” “Flocking” is one of many terms used to describe a form of behavior referred 
to as “collective motion”. Vicsek and Zafeiris (2012) define collective motion as “… a phenomenon 
occurring in collections of similar, interacting units moving with about the same absolute veloc-
ity.” Collective motion includes the behaviors known as flocking, swarming, schooling, shoaling, 
and herding. The term “flocking” generally applies to birds, “shoaling” and “schooling” to fish, and 
“herding” to land animals.
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The term “swarming” is applied in a broad sense, being applied 
to collections of like elements more broadly than just animals—
including people, unmanned aerial vehicles, robots, etc.—and 
will be used for the current study. Clough (2002) defined a swarm 
as a “ … collection of autonomous individuals relying on local 
sensing and reactive behaviors interacting such that a global 
behavior emerges from the interactions.” As Clough noted, a 
common feature of systems displaying swarming behavior is that 
the dynamics is an emergent phenomenon, with structure at the 
macro level resulting from interactions at the micro level.

The key features of swarming behavior are as follows:

•	 there are large numbers of like particles which are clustered or 
grouped, and

•	 particles are continuously moving, but their motion is not uni-
formly ordered or aligned, i.e., the individual particles move in 
diverse directions.

Overall, the effect is one of dynamic stability with a balance 
between regular and random shape and motion that human 
observers recognize as “natural” or “life-like”.

There has been extensive quantitative study of many examples 
of swarming behavior, and a good summary of the field is pro-
vided in the study by Vicsek and Zafeiris (2012). Wu et al. (2011) 
have suggested that the emergent properties of swarming systems 
occur when the systems are “at the edge of chaos.” Das et al. (2012) 
have demonstrated chaotic system dynamics in a social foraging 
swarm model, and the range of parameters for which chaos exists 
in the dynamics was quantified. They also showed that swarm 
parameters can be chosen such that the swarm can be stable, 
convergent, or chaotic. Similarities with chaotic systems include 
the emergence of structure without explicit external control, the 
existence of multistability (coexistence of many stable states), 
and the existence of state transitions with dramatic change in the 
system dynamics. Mecholsky et  al. (2012) investigated a broad 
range of control parameters to determine the stability of models 
of flocks. In related work, Harvey et al. (2015) applied quantitative 
measures used to characterize chaotic systems to a simplified ver-
sion of Reynolds’ boids model to identify the range of parameter 
values for which swarming would occur. There has not, however, 
been any systematic analysis of the identification of swarming 
by human observers. Nor has there been any systematic attempt 
to develop a mathematical model of subjective identification of 
swarming behavior.

The aim of this paper is to extend the work in Harvey et al. 
(2015) to determine the conditions under which swarming is 
identified by human observers using a computationally generated 
swarm model. The motivation of this work is twofold. First, if the 
quantitative metrics of the identification of swarming could be 
developed to perfectly describe humans’ perception of swarming, 
one could use these metrics during an evolutionary process to 
discover new rules and models for swarming without expensive 
and tedious human evaluations. This could be useful in automatic 
generation of visual effects. Second, swarming has been a subjec-
tive topic without proper mechanisms to explain its root causes 
or a proper quantification of the phenomenon. The ability to 
understand the root causes of humans’ identification of swarming 
contribute to our objective understanding of the phenomenon.

Decision times to make “swarming” and related “group” and 
“order” decisions are analyzed to help understand the basis of the 
decisions involved. The key advantage of the computationally 
generated swarm model used in this study is that dynamics can be 
directly and finely controlled using the model control parameters.

This article is organized as follows. In Section 2, the experi-
mental method is explained. Results are presented and discussed 
in Section 3. Conclusions are drawn in Section 4 along with a 
discussion on future work.

2. eXPeriMenTal MeThOD

The aim of the subjective study was to identify the range of 
control parameters for a simplified boids model for which 
swarming behavior is identified by human subjects. Based on the 
work in Harvey et al. (2015), it was hypothesized that subjects 
would identify swarming behavior in the test cases classified as 
“swarming cases” using objective measures. Conversely, subjects 
would identify behavior as “not swarming” for the cases classi-
fied as “non-swarming cases” using the same objective measures. 
No significant difference in performance between subjects was 
expected. It was also hypothesized that when subjects identified 
behavior as swarming they would also identify that the particles 
were “grouped” and their motion was “not ordered”, consistent 
with the results of objective studies.

In the remainder of this section, the simplified boids model 
used for the subjective study is defined (Section 2.1) and the 
experimental method described in detail (Section 2.2). Results 
are then presented and discussed (Sections 3.1 and 3.2).

2.1. Boids Model
The boids model used for the current study is based on the original 
work by Reynolds (1987) as modified by Harvey et al. (2015). The 
model uses three simple rules that lead to simulated swarming 
behavior, which Reynolds lists in decreasing precedence as:

•	 Collision avoidance (repel): avoid collision with nearby 
flock mates.

•	 Velocity matching (align): attempt to match velocity with nearby  
flockmates.

•	 Flock centering (attract): attempt to stay close to nearby 
flock mates.

The initial location and velocity of each particle are selected 
at random from a uniform distribution. All other aspects of the 
boids model are fully deterministic and repeatable. A key point, 
not explicit in the original Reynolds paper, is that the rules and 
associated parameters applying to the particles are the same for 
all particles, i.e., the population is homogenous.

To simplify the model, neither aerodynamics nor gravity is 
simulated. Particles are defined as points in space, and it is there-
fore possible for particles to overlap or for one particle to “pass 
through” another if there is no repulsion force in effect. There are 
no directional constraints on senses, particles are therefore able 
to sense distance from other particles in all directions. Attraction, 
repulsion, and alignment forces apply to “nearby” particles, 
where nearby is defined using a control parameter that specifies 
a range. Particles inside the range are considered nearby while 
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TaBle 2 | Definition of rule-sets—based on presence or absence of control 
parameters for attract, align, and repel forces.

1/FFT(attract) 1/FRV(align) 1/FKA(repel) rule-set

>0 0 0 Attract
>0 0 >0 Attract + repel
>0 >0 >0 Attract + repel + align
>0 >0 0 Attract + align
0 >0 0 Align
0 0 >0 Repel
0 >0 >0 Align + repel
0 0 0 No rules

TaBle 1 | Experiment control parameters.

Parameter Description Value

N Total number of particles 100
Rmax Region size 500
Vmax Maximum velocity 1, 2, 4
T Total iterations 1500
Rc Attraction range 100
Ra Alignment range 100
Rs Repulsion range 10
1/FFT Flock together factor 0, 0.005, 0.01, 0.02 
1/FRV Relative velocity factor 0, 0.0625, 0.125
1/FKA Keep away factor 0, 0.50, 1, 2

Values used in the original study by Harvey et al. (2015) are underlined.
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those outside the range are not. Particles are “reflected” when they 
reach the boundaries of the experimental area. Neither obstacle 
avoidance nor a goal seeking force is considered. Motion is only 
considered in two dimensions.

A detailed mathematical description of the implementation of 
the simplified boids model is in the study by Harvey et al. (2015). 
The current study builds on the original study in Harvey et al. 
(2015) by adding subjective assessment of particle behavior and 
using an expanded range of control parameters for the simplified 
boids model, as shown in Table 1. These parameters were identi-
fied in the previous study to produce stable swarming behaviors 
within the allocated number of iterations.

The 1/FFT, 1/FRV, and 1/FKA control parameters determine 
whether the attract, align, and repel forces are applied and their 
strength. The presence or absence of these three forces results in 
eight “rule-sets”, as shown in Table 2. A particle path diagram for 
the 100 boids for one example of each rule-set for Vmax = 2.0 is 
shown in Figure 1.

The rule-sets determine whether or not particles are “grouped” 
and “ordered”, and hence whether behavior is swarming or not-
swarming, as shown in Table 3. Harvey et al. (2015) found that three 
rule-sets—Attract, Attract + Repel, and Attract + Align + Repel—
result in swarming behavior, based on objective measures. No other 
rule-sets displayed swarming behavior.

2.2. experimental Protocol
The study used a laptop computer with a presentation area for the 
model of 11 cm × 11 cm viewed from a distance of approximately 
60  cm. The display layout is as shown in Figure  2. Individual 
particles are represented by a 5 pixel diameter blue circle 

(approximately 0.11 mm on the screen) on a white background. 
Explicit heading orientation of the particles is not shown. Particles 
were displayed for iterations from t  =  501:1,500. Presentation 
rate was held constant for all cases at approximately 20 iterations 
(position updates) per second. As shown in Table 1, the range of 
control parameters comprised three values each of Vmax and 1/FRV 
and four values each for 1/FFT and 1/FKA. This provided a total of 
144 test cases for examination.

2.2.1. Participants
There were 30 participants in the study, 17 males and 13 females. 
Subject ages ranged from 21 to 82  years. All participants gave 
informed consent, and the UNSW Canberra Human Research 
Ethics Advisory Panel approved the experiment protocol.

2.2.2. Design
The structure of the study is shown in Table 4. The 144 test cases 
were arranged in a random order (but the same for all subjects) 
and presented to subjects in two groups of 72 each. Three calibra-
tion sessions—where subjects were directed to make a specific 
response—were included in the study. The aim of the calibration 
sessions was to allow calculation of the subjects’ simple response 
time without having to make a decision.

For each of the test cases, subjects were asked three questions 
about the dynamics of the particles in each presentation as follows:

•	 Swarming question: does the motion of the particles appear to 
be life-like, swarming motion, like a group of birds or bees or flies 
or insects? Possible responses to this question were “swarming”, 
“not swarming”, and “don’t know”.

•	 Grouping question: are the particles grouped, i.e., clustered 
together, or are they scattered across the experiment area? Possi-
ble responses were “grouped”, “not grouped”, and “don’t know”.

•	 Order question: are the particles ordered, i.e., are they generally 
all moving in the same direction or are they moving in different 
directions? Possible responses were “ordered”, “not ordered”, 
and “don’t know”.

The sequence of the questions was varied such that each of 
the three questions was asked first for one third of the subjects to 
balance any order effect on decision time. Particle motion was not 
stopped until the third question was answered. Subjects were then 
required to select a “start” button to start the next presentation. 
The total study took between 25 and 40 min for each subject.

2.2.3. Data Recorded
Subject data recorded comprised the age and sex of subject. Res-
ponse data recorded from each subject comprised the response to 
each of the “group”, “order”, and “swarm” questions as well as the 
time taken to make each response. All other data were derived from  
this raw data.

3. resUlTs anD DiscUssiOn

3.1. Judgment of swarming Behavior
3.1.1. Average Results across All Subjects
Figure 3 shows the proportion of subjects identifying behavior 
as “swarming” for the 144 test cases presented. As shown in 
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TaBle 3 | Behavioral characteristics of rule-sets, categorized by “grouping” and 
“order”.

grouped not grouped

Not ordered attract Repel
attract + repel No rules
attract + align + repel

Ordered Attract + Align Align
Align + Repel

Objectively identified “swarming cases” are in bold.

FigUre 1 | Particle paths for eight test cases from t = 501:1,500. Position at t = 501 shown as an open blue circle. Position at t = 1,500 shown as an open green 
circle. (a) The particle paths for the “Attract” case, i.e., when only the Attract force is present. (B) The particle paths for the “Attract + Repel” case, i.e., when both 
the Attract and Repel forces are present. (c) The particle paths for the “Attract + Repel + Align” case, i.e., when the Attract, Repel, and Align forces are present.  
(D) The particle paths for the “Align” case, i.e., when only the Align force is present. (e) The particle paths for the “Repel” case, i.e., when only the Repel force is 
present. (F) The particle paths for the “Attract + Align” case, i.e., when both the Attract and Align forces are present. (g) The particle paths for the “Repel + Align” 
case, i.e., when both the Repel and Align forces are present. (h) The particle paths for the “No rules” case, i.e., when no forces are present.
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Figure 3, there is a wide range of test cases for which swarming 
behavior is identified. In no case, however, do 100% of subjects 
identify that swarming is occurring, the maximum case being 
approximately 90%. Nor is there a case where the proportion of 

subjects identifying swarming is 0%, the minimum being approx-
imately 5%. These findings show that a decision on swarming or 
not-swarming is not a clear cut decision, but varies considerably 
between test cases and individuals.

To better understand the conditions under which swarming 
was identified, the 144 test cases were categorized into the eight 
“rule-sets” used in the study by Harvey et al. (2015) and as shown 
in Table 2. The results of this analysis are shown in Table 5 and 
Figure 4.

As shown in Table 5, and consistent with the findings in the 
study by Harvey et al. (2015), not all of Reynolds’ three forces are 
necessary for swarming behavior to occur. A majority of subjects 
identify that swarming is occurring in all instances of three rule-
sets: Attract, Attract + Repel, and Attract + Repel + Align. These 
three rule-sets—the “swarming cases”—comprise 90 of the 144 
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TaBle 4 | Test case presentation.

Presentation Description

1:5 Calibration Set 1
6:77 First 72 test cases
78:82 Calibration Set 2
83 – 154 Second 72 test cases
155 – 159 Calibration Set 3

FigUre 2 | Screenshot of subjective swarming test.
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test cases. The average proportion of subjects identifying swarm-
ing behavior for each of these rule-sets is significantly higher 
(ANOVA, p < 0.001) than for each of the other five rule-sets, the 
“non-swarming cases”.

To further investigate the range of responses, Figure 2 shows 
the swarming responses classified by rule-set and the three 
values of Vmax. Balanced one-way analysis of variance [ANOVA, 
see Fisher (1925) for an explanation] of the three swarming 
cases shows that, for the swarming cases, the proportion of 
subjects identifying swarming behavior is significantly higher for 
Vmax = 4.0 compared with Vmax = 1.0 (p < 0.05). Vmax does not have 
a significant effect on subject responses for the non-swarming 
cases.

The breakdown by rule-set and Vmax shows that subjects’ 
identification of swarming behavior is sensitive to both the rule-
sets and the maximum velocity that control the behavior of the 

particles. However, it is necessary to look at individual responses 
to better understand the distribution of results.

3.1.2. Individual Responses
Figure  5 shows the “swarming” results for individual subjects, 
grouped into swarming cases and non-swarming cases. Responses 
are categorized as true positives (identifying “swarming” for the 
swarming cases), false negatives (identifying “swarming” for the 
non-swarming cases), and “don’t know” for the swarming cases. 
Responses are classified as true negative (identifying “not swarm-
ing” for the non-swarming cases), false positive (identifying 
“swarming” for the non-swarming cases), and “don’t know” for 
the non-swarming cases.

As shown in Figure  5, there is a wide range of individual 
responses in identifying swarming behavior rather than an aver-
age level of response across all subjects. These results lead to two 
hypotheses:

 1. there are different degrees of “swarminess” within the swarm-
ing cases for this model and

 2. individual subjects have different “swarminess” thresholds for 
identifying behavior as swarming.

3.1.3. Effect of Vmax on Individual Responses
Results for individuals were categorized into the three values of 
Vmax. The results are shown in Table 6 and Figure 6. As shown in 
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FigUre 3 | Contour plot of proportion of subjects choosing “swarming” for 144 test cases. Lighter shading indicates higher proportion of subjects identifying 
swarming behavior. Rule-sets are shown for Vmax = 1.0. (a)–(c) The cases when Vmax = 1 and 1/FRV = 0.0, 0.0625, and 0.125, respectively. (D)–(F) The cases when 
Vmax = 2 and 1/FRV = 0.0, 0.0625, and 0.125, respectively. (g)–(i) The cases when Vmax = 4 and 1/FRV = 0.0, 0.0625, and 0.125, respectively.
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Table 6, there is a significant increase in the proportion of true 
positives for the swarming cases as Vmax increases. Balanced one-
way ANOVA shows that results for Vmax =  4.0 are significantly 
higher than for Vmax = 1.0 (p < 0.05).

Figure  6 shows that the overall increase in true positives is 
not uniform across all individuals. A large number of individuals 
achieve 100% true positives for Vmax = 1.0. The increase in true 

positives as Vmax increases is the result of individuals with lower 
levels of true positives at Vmax  =  1.0 achieving higher levels of 
true positives as Vmax increases. Vmax, therefore, is a determinant 
of “swarminess” and for some subjects’ decision to identify 
behavior as swarming. Increase in true positives as Vmax increases 
is not always the case. As shown in Figure 6, for Subject 16 the 
proportion of true positives decreases as Vmax increases. The 
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FigUre 4 | Summary results of proportion choosing “swarming” by rule-set 
and Vmax.

TaBle 5 | Total test cases classified by rule-set and corresponding proportion of 
subjects choosing “swarming.”

rule-set Total Proportion 
choosing 
swarming

Swarming
cases

Attract only 9 0.78
Attract + Repel 27 0.75
Attract + Align + Repel 54 0.71

Non-swarming cases Align only 6 0.08
Repel only 9 0.24
Attract + Align 18 0.10
Repel + Align 18 0.10
No rules 3 0.09

Summary Swarming cases 90 0.73
Non-swarming cases 54 0.13
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swarm model used in this study provides a mechanism to further 
investigate individual differences that lead to differences in the 
identification of swarming.

3.1.4. Effect of Sex of Subject on Individual 
Responses
The 30 subjects in the study were divided into two groups 
based on the sex of the subject. Results of the analysis are 
shown in Table 7 and Figure 7. Unbalanced one-way ANOVA 
of the results in Table 7 showed that female subjects displayed 
a higher proportion of true positives (and correlated lower 
number of false negatives) than the male subjects (p < 0.05). 
There was no difference in proportion of subjectives choosing 
swarming between males and females for the true negatives/
false positives.

Differences in proportion of subjects choosing swarming 
between males and females have been found in other studies of 
visual processing tasks. For example in the studies by Thayer and 
Johnsen (2000) and Montagne et al. (2005), females were found 
to be more accurate than men in recognizing facial expressions. 

Similar results were found in the study by Campbell et al. (2002), 
where women were more accurate than men in recognition of 
expressions of “disgust” and “anger.” Investigating the processing 
of facial expressions, Natale et al. (1983) also found there where 
differences in where the processing was done. These lateralization 
effects, i.e., the differences between males and females in their 
brain’s tendency to show more dominant cognitive processing in 
one hemisphere than the other, were also found by Campbell et al. 
(2002). In analyzing these and related results, Voyer (1996) found 
clear brain lateralization effects across a range of visual and verbal 
processing tasks. Voyer concluded that the differences between 
men and women could be explained, at least in part, by the fact 
that men tend to be more lateralized than women. The computer-
based model used in this study provides the opportunity to fur-
ther investigate sex-based and/or lateralization-based differences 
between individuals using a tunable, quantifiable model.

3.1.5. Analysis by Sex of Subject and Vmax

Results were also assessed for the combined effect of sex of subject 
and Vmax. Results are shown in Table 8. Analysis of covariance 
of sex of subject and Vmax showed that the interaction is not 
significant, i.e., both male and female subjects’ proportion of true 
positives increase as Vmax increases.

3.1.6. Effect of Age on Individual Responses
The total sample of 30 subjects was divided into three equal 
groups of 10 based on age. The summary results are shown in 
Table  9. Balanced one-way ANOVA of the results in Table  9 
showed that there was no significant difference in response levels 
for the swarming cases based on age, other than the existence of 
a higher number of “don’t know” responses for the youngest age 
group for the non-swarming cases (p < 0.001). The results suggest 
that there is a higher willingness for younger subjects to make a 
“don’t know” response than for the older age groups.

3.2. Judgment of “group” and “Order”
As noted in Section 1, for swarming to be present, particles need 
to be both grouped and exhibiting ongoing, unordered motion. 
Subjects identifying behavior as “swarming” were therefore 
expected to identify the behavior as both “grouped” and “not 
ordered.” Figures  8A–C and Table  10 show the results of cor-
relation analysis of the relationship between the proportion of 
subjects choosing “swarming” and responses to the “group” and 
“order” questions and the combination of the two.

As shown in Table 10, there is a strong positive correlation 
between subjects identifying behavior as “swarming” and “grouped”.  
While necessary for the existence of swarming behavior, being 
grouped is not sufficient. All instances of the non-swarming 
Attract +  Align rule-set  also result in particles being grouped, 
coalescing into 1, 2, or 3 overlapping elements. As shown in 
Figure  8A, generally 50% or fewer of subjects identified the 
Attract  +  Align rule-set as “grouped”. Subjects appear to treat 
these overlapping groups as a small number of individual parti-
cles rather than a small number of very tightly grouped particles. 
For future studies, if required, the use of a small repel force, and a 
small repel radius would provide sufficient separation of particles 
to allow identification of grouping.
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TaBle 6 | Individual response levels categorized by Vmax, shown as a 
percentage of total responses for swarming and non-swarming cases.

Vmax(%)

condition 1.0 2.0 4.0

Swarming True positive 61 73 84
False negative 38 25 15
Don’t know 1 2 1

Not swarming True negative 80 80 78
False positive 12 14 14
Don’t know 8 6 8

FigUre 5 | Swarm decision results for individuals, sorted by number of “true positive” responses.
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For the “order” question, as shown in Table 10, there is no signi ficant 
correlation between the proportion of subjects choosing “swarming” 
and proportion of subjects choosing “not ordered”. Examination of 
Figure 8B shows that unlike the “group” question there is a broad 
spread of responses to the “order” question and no clear differentia-
tion between the swarming and non-swarming cases.

The combination of the two measures, as shown in Table 10 
and Figure 8C, results in a very strong positive correlation and 
clear separation between the swarming and non-swarming cases. 
This is because the swarming and non-swarming test-cases 
that were overlapping in the “group” question are generally not 
overlapping in the “order” question and vice  versa. The results 

from the study support the hypothesis that subjects that identify 
behavior as swarming also identify it as both “grouped” and “not 
ordered”. Decisions on “group” and “order” are therefore likely 
to be key contributing factors for subjects identifying whether 
behavior is swarming or not swarming.

3.3. Decision Times
Decision times for the “group”, “order,” and “swarm” questions 
were analyzed for each subject to determine whether there was 
any significant difference in subject decision times for each of the 
test cases. A decision time (Td) was calculated from the recorded 
response time (Tr), as shown in Equation 1.

 T T Td
i

r
i

s
i= −  (1)

where Td
i = decision time for the ith question, Tr

i = response time 
for the ith question, and Ts

i =  simple response time for the ith 
question.

Average values for Ts for all subjects for the 15 calibration ques-
tions in each of the three calibration sets are shown in Figure 9. 
Balanced one-way ANOVA for the three calibration sets showed 
that Ts for Set 1 is considerably longer than for Set 3 (p < 0.05), 
indicating a learning effect through the trial. To take this learning 
effect into account, ( )Ts

i  for each response for each subject was 
calculated by interpolating between average response times for 
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TaBle 7 | Individual performance categorized by sex of subject.

condition Male (%) Female (%)

Swarming True positive 60 88
False negative 37 12
Don’t know 2 0

Not swarming True negative 79 81
False positive 14 11
Don’t know 7 7

FigUre 6 | Swarm decision results for individuals, classified by Vmax. Subjects are sorted by the proportion of “true positives” for the Vmax = 1.0 case. (a) The case 
where Vmax = 1. (B) The case where Vmax = 2. (c) The case where Vmax = 4.
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the calibration sets for each subject. This calculation—for the first 
72 test cases—is shown in Equation 2. The same approach was 
used for the second 72 test cases but using response times for 
calibration Sets 2 and 3.

 
T T Set T Set T Set

is
i

s
s s= +

−
∗( )

( ) ( )
1

2 1
72  

(2)

where Ts
i = simple response time for the ith question. dT  for the 

three questions are shown in Table 11.

3.3.1. Comparison of “Swarm”, “Group,” and “Order” 
Decision Times
Balanced one-way ANOVA of average Td times for all test-sets for 
all subjects show that Td for the “order” question is significantly 

longer than for the “group” and “swarm” questions (p <  0.05).  
A possible explanation for the longer decision time for the order 
question is that the “order” decision is based on assessment of 
the relative velocities of particles which requires an integration of 
position information over time. The group decision, in contrast, 
does not require an integration over time, a decision can be made 
based on a snapshot in time. If the “swarm” decision is based on a 
combination of a “group” assessment and an “order” assessment, 
it would follow that the “swarm” decision would also take longer 
than the “group” decision. Results in Table 11 show that this is 
not the case—Td for the “swarm” decision is not significantly 
longer than for the “group” decision. An alternate explanation 
is necessary.

Observation of subjects during the trial showed that many 
subjects tended to lean forward and pay closer attention to the 
display when they were responding to the “order” question. 
This was not observed for the “swarm” or “group” questions. 
The “group” and “swarm” decisions may therefore be based on a 
broad, “holistic” assessment of behavior rather than paying close 
attention to individual particles which may be the case for the 
“order” decision. There may be similarities between the processes 
involved in the identification of swarming and the identification 
of biological motion. Johansson (1973) showed that subjects could 
identify biological motion—in this case humans walking and 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


TaBle 9 | Individual performance by age.

age (%)

condition ≤31 years >31 ≤ 53 years >53 years

Swarming True positive 77 71 71
False negative 20 29 29
Don’t know 3 0 0

Not swarming True negative 61 87 90
False positive 18 12 9
Don’t know 21 1 1

TaBle 8 | Average number of true positives by sex of subject and Vmax.

Vmax all Male Female significant difference (p < 0.05)

1 0.61 0.50 0.74 No
2 0.73 0.58 0.93 Yes
4 0.84 0.74 0.97 Yes

Overall 0.73 0.61 0.88 Yes

FigUre 7 | Summary results of proportion choosing “swarming” by class by sex of subject. (a) Results for Male subject. (B) Results for Female subjects.
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running—using 8–10 small number of dots attached to human 
limbs. Casile and Giese (2005) observed that such identification 
of biological motion could be performed by exploiting relatively 
simple neural circuits that identify optic flow patterns. If the 

swarming decision is based on a holistic assessment of behavior 
it may perhaps use the same simple neural circuits, leading to a 
fast decision time.

3.3.2. Effect on Decision Times of Order in Which 
Questions Were Asked
Td was also analyzed to determine whether it was affected by 
the order in which questions were asked. Table 11 shows the Td 
results for the “group”, “order,” and “swarm” decisions depending 
on whether the question was asked first or second/third in the 
trial. Table  11 also shows the average difference (δt) between 
asking the question first and later. One-way balanced ANOVA 
shows that Td for the “group”, “order,” and “swarm” decision are 
significantly longer when the question is asked first (p <  0.05) 
compared with second or third. This result suggests that subjects 
require a period of “familiarization”—around 1 to 2  s—before 
they make their first decision.

3.3.3. Effect of Rule-Set on Decision Times
Table 11 and Figure 10 also show the Td results classified by the 
rule-sets of each of the test cases. Balanced one-way ANOVA 
for the decision times by rule-set showed no difference for the 
“group” or “swarm” questions. For the “order” question, Td was 
considerably longer for the Attract rule-set compared with the 
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TaBle 11 | Average response time in seconds, showing the difference between 
when question is presented first or second/third.

“group” “Order” “swarm”

Overall 0.83 1.76 0.97

Order of question
Asked first 1.39 2.69 1.70
Asked second or third 0.55 1.29 0.61
δ t 0.85 2.15 1.39

sex of subject
Female 0.72 1.84 0.86
Male 0.91 1.70 1.06

rule-sets
Attract 1.03 2.72 1.29
Attract + Repel 0.83 2.10 1.22
Attract + Align + Repel 0.64 1.60 0.83
Align 1.24 1.66 0.63
Repel 0.62 1.27 0.92
Attract + Align 1.06 1.48 1.13
Repel + Align 1.04 1.90 0.88
No rules 0.71 1.07 0.79

Vmax

1.0 0.77 1.96 1.06
2.0 0.83 1.66 0.96
4.0 0.88 1.65 0.90

FigUre 9 | Average simple response times for the three calibration sets.

TaBle 10 | R2-value of correlation between proportion of subjects choosing 
“swarming” and results of “grouped” and “ordered” questions.

Measures all Male Female

“Grouped” 0.77* 0.64* 0.81*
“Not ordered” 0.00 0.00 0.00
“Grouped & not ordered” 0.91* 0.74* 0.86*

Correlations that have p < 0.05 are marked with a “*”.

A B C

FigUre 8 | Correlation between proportion of subjects choosing “swarming” and (a) proportion of subjects choosing “grouped”, (B) proportion of subjects 
choosing “not ordered”, and (c) proportion of subjects choosing “grouped & not ordered”. “Swarming cases” are in red, “non-swarming” cases are in blue and 
green.
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Attract + Align + Repel, Repel, and No rules rule-sets (p < 0.05). 
This result suggests that the time required to make an “order” 
decision is dependent on the nature of the dynamics in the 
model. This is not a simple differentiation between swarming 
and non-swarming behavior, however, as the three rule-sets with 
the shorter “order” decision times comprise both swarming and 
non-swarming cases.

3.3.4. Effect of Sex of Subject on Decision Times
Table 11 and Figure 10 show the Td results classified by the sex 
of the subjects. Balanced one-way ANOVA of Td showed no 
significant difference between males and females for the “order” 
question, but Td was significantly shorter for females for both the 
“group” and “swarm” questions (p < 0.05). As for the identifica-
tion of swarming, this result suggests that there is a significant 

gender effect in performance on the swarming identification task 
in this study.

3.3.5. Effect of Vmax on Decision Times
Table 11 and Figure 10 show the Td results classified by Vmax for 
each of the test cases. Balanced one-way ANOVA for the decision 
times by Vmax showed no difference for any of the three questions 
based on Vmax.

The current boids model—and mathematical models of 
behavior developed later in this paper—provides a useful basis 
to further investigate differences in time taken to make decisions 
in relation to swarming motion. Further testing could include 
observation of subject behavior during testing. fMRIT analyses 
could also be conducted to determine whether different decision 
strategies and different brain regions are involved in making the 
three different decisions.
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FigUre 10 | Td for “group”, “order,” and “swarm” questions, categorized by rule-set, sex of subject, and Vmax.

12

Harvey et al. Human Judgment of Swarm

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 13

4. cOnclUsiOn anD FUTUre WOrK

In this paper, we showed that human subjects identify swarming 
behavior for a wide range of control parameters of a simplified 
version of the boids model. The majority of subjects identify 
swarming behavior where swarming is predicted by previous 
studies using objective measures. There is no uniform swarm-
ing/not-swarming decision across all subjects. Three factors that 
affect subjects’ identification of swarming behavior that we have 
identified are as follows: the presence or absence of the Attract, 
Align, and Repel forces; the maximum velocity of the particles; 
and the sex of the subject. The results indicate there are degrees 
of “swarminess” for cases produced by the model and individual 
subjects have different “swarminess” thresholds for identifying 
swarming behavior. The study shows that females have a lower 
“swarminess” threshold than males. This finding is consistent 
with previous visual perception studies that have found a higher 
level of performance by female subjects. It has been suggested, 
however, that rather than directly an effect of sex of subject, the 
difference is the result of brain lateralization effects with males 
tending to be more lateralized than females.

Analysis of response times for “swarming”, “grouped,” and 
“ordered” questions and informal observations of subject behav-
ior during the subjective study suggest that different strategies, 
and potentially different areas of the brain, are being used to 
make the three decisions. The results suggest that the “swarming” 
and “grouped” decisions are based on a holistic assessment of 

behavior. The “ordered” decision may, in contrast, be based on a 
detailed assessment of behavior of individual particles.

The relatively simple swarming model of Reynolds used in 
this study together with the quantitative measures that charac-
terize the behavior produced by the model are useful examples of 
how applying relatively simple mathematical models to the social 
sciences can help better understand individual human behavior. 
The simple models can provide a mathematically unbiased 
approach for better understanding the neurocognitive basis of 
dynamic visual pattern perception and potentially help explain 
individual perception differences, including those based on sex 
and brain lateralization.
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