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Background: Acute mountain sickness (AMS) is a crucial public health problem for high
altitude travelers. Discriminating individuals who are not developing (AMS resistance,
AMS−) from developing AMS (AMS susceptibility, AMS+) at baseline would be vital
for disease prevention. Salivary microRNAs (miRNAs) have emerged as promising non-
invasive biomarkers for various diseases. Thus, the aim of our study was to identify
the potential roles of salivary miRNAs in identifying AMS− individuals pre-exposed to
high altitude. Moreover, as hypoxia is the triggering factor for AMS, present study also
explored the association between cerebral tissue oxygenation indices (TOI) and AMS
development after exposed to high altitude, which was the complementary aim.

Methods: In this study, 124 healthy men were recruited, and were exposed at
simulated high altitude of 4,500 m. Salivary miR-134-3p and miR-15b-5p were
measured at baseline (200 m). AMS was diagnosed based on Lake Louise Scoring
System at 4,500 m. The measurements of physiological parameters were recorded at
both the altitudes.

Results: Salivary miR-134-3p and miR-15b-5p were significantly up-regulated in AMS−
individuals as compared to the AMS+ (p < 0.05). In addition, the combination of these
miRNAs generated a high power for discriminating the AMS− from AMS+ at baseline
(AUC: 0.811, 95% CI: 0.731−0.876, p < 0.001). Moreover, the value of cerebral TOIs at
4,500 m were significantly higher in AMS− individuals, compared to AMS+ (p < 0.01).

Conclusion: Our study reveals for the first time that salivary miR-134-3p and miR-
15b-5p can be used as non-invasive biomarkers for predicting AMS− individuals pre-
exposed to high altitude.

Keywords: hypoxia, high altitude, acute mountain sickness, saliva, microRNA, cerebral tissue oxygenation
indices, predictor
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INTRODUCTION

Acute mountain sickness (AMS) is a prevalent disease among
travelers exposed to high altitudes of >2,500 m and presents
as a combination of several symptoms, such as headache,
dizziness, gastrointestinal symptoms, and fatigue (Roach et al.,
2018). The incidence of this disease varies from 16 to 100%,
and depends on several factors, such as the speed of ascent,
altitude, and individual predisposition (Gaillard et al., 2004;
MacInnis et al., 2013; McDevitt et al., 2014; Waeber et al.,
2015; Roach et al., 2018). The severe forms of AMS can lead
to high altitude cerebral edema in the travelers, having life-
threatening consequences (Bartsch and Swenson, 2013; Liu
et al., 2017a; Meier et al., 2017). Indeed, AMS has become
a crucial public health problem owing to a significant rise in
the number of travelers ascending per year (MacInnis et al.,
2013; Gonggalanzi et al., 2016, 2017). As such, discriminating
individuals who are not developing (AMS resistance, AMS−)
from developing AMS (AMS susceptibility, AMS+) pre-exposed
to high altitudes would be vital for disease prevention. Presently,
the knowledge on AMS resistance and susceptibility is limited to
some physiological parameters and gene polymorphisms (Zhou
et al., 2004; Koehle et al., 2010; Cochand et al., 2011; Karinen
et al., 2012; Kovtun and Voevoda, 2013; Luo et al., 2014; MacInnis
and Koehle, 2016; Bailey and Ogoh, 2017; Sutherland et al., 2017;
Yasukochi et al., 2018). However, due to the low sensitivity and
specificity, their clinical applications are limited (Ding et al.,
2011; Song et al., 2013). Thus, there is an unmet need to find
a convenient and efficient biomarker for identifying AMS−
individuals at baseline.

MicroRNA (miRNA) are 21∼23-nucleotide long, single-
stranded, non-coding RNA, which are an important class of gene-
modulators for various physiological and disease processes, such
as cell cycle, growth, development, differentiation, apoptosis, and
inflammatory response (Zhou et al., 2016; Wang et al., 2017). In
the recent years, miRNA has been found to be stably expressed
in saliva, thus being proven as a convenient and non-invasive
biomarker for cancer, Sjögren’s syndrome, concussion symptoms,
and aging (Weber et al., 2010; Xie et al., 2013, 2015; Machida
et al., 2015; Alhasan et al., 2016; Greither et al., 2017; Johnson
et al., 2018). Importantly, our recent study on plasma miRNA
array has demonstrated that 16 miRNAs were up-regulated and
15 were down-regulated in AMS− individuals at baseline (Liu
et al., 2017b). Specifically, our pilot study involved the evaluation
of the salivary expression levels of the five topmost up-regulated
miRNAs, which led to the identification of miR-134-3p and
miR-15b-5p as abundantly expressed in both whole saliva and
its supernatant.

Based on these findings, we hypothesized that salivary
miR-134-3p and miR-15b-5p may aid in discriminating
between AMS− and AMS+. Therefore, the aims of the
present study were to examine whether salivary miR-134-
3p and miR-15b-5p could be identified as non-invasive
biomarkers for predicting AMS− individuals at baseline,
and to evaluate their discriminatory powers. Moreover,
as hypoxia is the triggering factor for AMS, the present
study also explored the association between cerebral tissue

oxygenation indices (TOI) and AMS development after exposed
to high altitude.

MATERIALS AND METHODS

Participants
Participants were recruited according to the inclusion and
exclusion criteria. The inclusion criteria involved healthy
individuals, without primary residence at an elevation of
≥1,000 m. Exclusion criteria were listed as follows: individuals
with history of travel to an elevation of >2,500 m in the last
2 years, cardio-cerebrovascular diseases, respiratory diseases,
kidney diseases, liver diseases, and neuropsychological diseases.
In total, 124 healthy Chinese men aged 20–23 years were
recruited in the present study.

This study protocol was approved by the Third Military
Medical University Ethics Committee, China, meeting with the
requirements of the Declaration of Helsinki, and all individuals
signed informed consent forms before entry.

Study Procedures
Following the methods of previous studies (Burtscher et al.,
2014; Broessner et al., 2016), all participants were exposed at
the simulated high altitude of 4,500 m [hypobaric chamber
(Feng Lei, Guizhou, China), temperature: 23–25◦C, humidity:
23–27%] for 12 h [the time of ascending from baseline (200 m)
to 4,500 m is 40 min]. At baseline (8:00 a.m.), blood sample,
saliva sample, demographic data, and physiological parameters
were collected from the participants. After a 12 h-exposure
at 4,500 m (8:40 p.m.), the participants were subjected to
diagnosis of AMS, measurement of physiological parameters, and
collection of blood sample (Figure 1). During the investigation,
participants were provided with the same diet (no coffee,
tea, or alcohol drinks), and required to avoid strenuous
physical activity. Security assurances, accompanying physicians,
immediate evacuation, and medical treatment were available.

Clinical Data Collection and AMS
Diagnosis
At baseline, a self-reported questionnaire was used to record
the demographic data (i.e., age, body mass index [BMI],
smoking, and drinking history). After the 12 h-exposure at
4,500 m, our accompanying physicians evaluated the AMS
of individuals. It was assessed based on Lake Louise Scoring
System, which comprises a questionnaire and a scorecard that
determine severity (Roach et al., 2018). As per the diagnostic
criteria, the score was calculated as a combination of headache,
dizziness, fatigue, and gastrointestinal symptoms (Roach et al.,
2018). Finally, the participants with headache and a score ≥3
points, were diagnosed with AMS (AMS+). Participants who
had no headache or a score <3 were classified as AMS−,
i.e., without AMS.

Physiological Measurements
The basic physiological parameters, including heart rate (HR),
pulse oxygen saturation (SpO2), diastolic blood pressure (DBP),
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FIGURE 1 | Trial flow diagram. AMS+, participant with acute mountain sickness (AMS); AMS–, participant without AMS; qRT-PCR, quantitative reverse-transcription
polymerase chain reaction; LLS, Lake Louise Score; BP, blood pressure; HR, heart rate; SpO2, pulse oxygen saturation; TOI, tissue oxygenation indices.

and systolic blood pressure (SBP), were measured by our
accompanying doctors with a sphygmomanometer (HEM-6200,
OMRON, China) and a pulse oximeter (NONIN-9550, Nonin
Onyx, United States). Cerebral TOI for the left and right
brain were measured using continuous wave near-infrared
spectroscopy (NIRO-200NX, Hamamatsu Photonics, Japan). In
detail, two sensors were attached to each participant, one on
the left and the other on the right forehead (approximately
2.5 cm above the eyebrows) and held gently with a double-
sided tape. The sampling frequency and time duration were
50 Hz and 5 min, respectively. TOI was computed using
a spatially resolved spectroscopy algorithm and defined as
oxygenated hemoglobin as a percentage of total hemoglobin,
which represents the mixed oxygenation level of the cerebral
compartments. Finally, the mean value of TOI within 5 min was
used in the present study. The participants rested for 30 min
before the evaluation. In total, our tests have been conducted
at baseline (8:00 a.m.) and at 4,500 m (8:40 p.m.), separately.

Moreover, all the instruments were validated by a medical
device engineer.

Samples Collection and White Blood Cell
Count Measurements
At baseline, up to 5 mL of saliva sample was obtained in
a 50-mL centrifuge tube from each individual. In order to
stimulate glandular salivary flow, the cotton swab with 2%
citric acid solution was provided, which is used to touch
the bilateral posterior lateral surfaces of the tongue (5 s
every 30 s) (Xie et al., 2013). Then, a total of 2 mL of
saliva was removed from the tube as whole saliva sample.
The remaining 3 mL of saliva sample was centrifuged at a
speed of 3,000 × g for 15 min under 4◦C, to spin down
the exfoliated cells. After that, the supernatant was further
centrifuged (12,000 × g, 10 min, 4◦C) to completely remove
the cellular components. Finally, the samples (whole saliva
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and supernatant saliva) were aliquoted into RNase/DNase free
Eppendorf tubes and stored at −80◦C until assay. Based on
the previous methods of Xie et al. (2013, 2015), using citric
acid in cotton swab can stimulate glandular salivary flow, but
does not alter the results. At baseline and after the exposure
at 4,500 m, venous blood samples were collected from the
participants by qualified nurses using EDTA-coated tubes and
standard procedures. The blood samples were stored at 4◦C until
further testing. Then, the white blood cell count (WBC) was
analyzed using the AU-2700 analyzers (Olympus, Tokyo, Japan)
and commercial reagents.

RNA Extraction and qRT-PCR Assay
Before RNA was isolated from the whole saliva or supernatant
saliva samples, 3.5 µl of the working solution of synthetic
Caenorhabditis elegans miRNA, cel-miR-39 (Qiagen,
Valencia, CA, United States), was added as a control. Then,
similar to a previous study (Gao et al., 2014), miRNeasy
extraction kit (Qiagen, Valencia, CA, United States) was
used to isolate the total RNA from samples based on the
instruction of the manufacturer. For qRT-PCR assay, the
Bulge-LoopTM miRNA qRT-PCR Starter Kit (including

TABLE 1 | Characteristics of participants.

AMS+ (75) AMS− (49) p value

Demographic data

Age (year)

Mean 21.44 ± 0.66 21.55 ± 0.78 0.664

Range 20–23 20–23

BMI (kg/m2) 22.43 ± 2.72 22.27 ± 1.86 0.500

Smoker (yes) 50 (66.7%) 32 (65.3%) 0.888

Drinker (yes) 57 (76.0%) 38 (77.5%) 0.843

AMS severity

LLS 5.57 ± 2.08 1.69 ± 0.98 <0.001∗∗∗

AMS+, participant with acute mountain sickness (AMS); AMS−, participant without
AMS; BMI, body mass index; LLS, Lake Louise Score. ∗∗∗Means LLS are
significantly different between AMS+ and AMS− groups at 4,500 m with p
value < 0.001. Data was expressed as means ± standard deviations.

primers) (Ribobio, Guangzhou, China) was used for
reverse transcription and iQTM5 Real-Time PCR Detection
System (Bio-Rid, United States) was used for performing
quantitative real-time PCR. Data was analyzed according to the
2−1CT method.

MIRNA Target Computational Analysis
In order to explore the biological functions of miR-134-
3p and miR-15b-5p, we predicted the target genes of
these miRNAs by employing microT-CDS v5.0, which
is the new version of the microserver and has been
significantly enhanced with an improved target prediction
algorithm (Vlachos et al., 2012; Paraskevopoulou et al.,
2013; Alhasan et al., 2016). Then, these target genes
were enriched into gene ontology (GO) biological
processes using the software DIANA-miRPath v3.0
(Vlachos et al., 2015).

Statistical Analysis
Shapiro–Wilk’s test was used for calculating the normality of
all data. Then, the normally distributed data was expressed
as mean ± standard deviation, while the non-normally
distribution was expressed as median (interquartile range).
For the normally distributed data, the independent t-test
was used to compare the differences whereas for the non-
normally distributed data, the Mann–Whitney U test was
employed. Spearman’s correlation and Pearson’s correlation
were carried out for analyzing relationships between the
AMS severity and variables. Univariate logistic regression
was used to identify the protectors for AMS. Then, a
multivariant logistic regression with enter method was
used to confirm independent protectors. Receiver operating
characteristic (ROC) curve was applied for each miRNA and
the combination. Areas under the ROC curve (AUC) and
95% confidence interval (CI) were calculated to evaluate
the power of miRNAs for distinguishing AMS− from
AMS+ groups. Statistical analyses were performed with
IBM SPSS Statistics 19 (SPSS, Chicago, IL, United States),
and MedCalc Statistical Software version 15.4 (MedCalc

TABLE 2 | Difference of physiological parameters between AMS+ and AMS− groups.

AMS+ AMS−

Baseline 4,500 m Baseline 4,500 m

SBP (mmHg) 118.67 ± 9.50 115.01 ± 13.78 118.32 ± 10.15 116.73 ± 10.90

DBP (mmHg) 70.78 ± 7.45 68.17 ± 11.05 70.79 ± 7.46 72.00 ± 8.15

HR (beat/min) 66.98 ± 9.50 89.03 ± 11.49 66.14 ± 8.59 86.67 ± 12.98

SpO2 (%) 98.04 ± 1.13 80.05 ± 6.66 98.32 ± 0.90 82.71 ± 5.69∗

Left brain TOI (%) 72.35 ± 4.36 60.90 ± 5.13 71.47 ± 4.58 63.43 ± 4.89∗∗

Right brain TOI (%) 72.21 ± 4.98 60.39 ± 4.50 70.67 ± 5.27 62.02 ± 4.06∗∗

Average brain TOI (%) 72.00 ± 5.50 60.65 ± 4.52 71.07 ± 4.04 62.72 ± 3.84∗∗

AMS+, participant with acute mountain sickness (AMS); AMS−, participant without AMS; BP, blood pressure; SBP, systolic BP; DBP, diastolic BP; HR, heart rate; SpO2,
pulse oxygen saturation; TOI, tissue oxygenation indices. ∗Means parameters are significantly different between AMS+ and AMS− groups at 4,500 m with p value < 0.05;
∗∗Means parameters are significantly different between AMS+ and AMS− groups at 4,500 m with p value < 0.01.
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Software bvba, Ostend, Belgium). p < 0.05 was considered
statistically significant.

RESULTS

Demographic Data and Clinical
Characteristics of Participants
In the present study, the incidence of AMS is 60.5% (75 out
of 124). There was no significant difference between AMS+
and AMS− groups in age (21.44 ± 0.66 vs. 21.55 ± 0.78,
p = 0.664), BMI (22.43 ± 2.72 vs. 22.27 ± 1.86, p = 0.500),
smoking (66.7 vs. 65.3%, p = 0.888), and drinking rate
(76.0 vs. 77.5%, p = 0.843). Moreover, in comparison
with the AMS− group, the AMS+ group had higher LLS
(5.57 ± 2.08 vs. 1.69 ± 0.98, p < 0.001, Table 1). For all
baseline parameters, there was no significant difference between
the two groups. Regarding the physiological parameters at
4,500 m, SpO2 and the cerebral TOIs, were significantly
higher in AMS− group, as compared to the AMS+ group (all
p < 0.05, Table 2).

Differences in Salivary miR-134-3p and
miR-15b-5p Between AMS+ and AMS−
Groups
Upon employing cel-miR-39 as the normalization control, the
results of qRT-PCR assay revealed that miR-134-3p (p < 0.001)
and miR-15b-5p (p < 0.05) of whole saliva (W-miR-134-
3p and W-miR-15b-5p) were significantly up-regulated in the
AMS− group as compared to the AMS+ group. Similarly,
miR-134-3p and miR-15b-5p of supernatant saliva (S-miR-134-
3p and S-miR-15b-5p) were also significantly up-regulated (all
p < 0.001, Figure 2).

Salivary MiRNA Signature for
Discriminating AMS− From AMS+
Individuals
Receiver operating characteristic curves were computed to
evaluate the power of miRNAs for discriminating AMS− from
AMS+ individuals. The AUC of W-miR-134-3p, W-miR-15b-5p,
S-miR-134-3p, and S-miR-15b-5p was 0.747, 0.601, 0.767, and
0.703, respectively (Figures 3A–D).

To improve the accuracy of identification, we performed
ROC curves for the combination of S-miR-134-3p and
S-miR-15b-5p, using logistic regression analysis. Notably,
the combination resulted in a robustly increased AUC
(0.811), leading to a unique signature for identifying AMS−
individuals (Figure 4).

Salivary miR-134-3p and miR-15b-5p as
Protectors for AMS Development
The univariate logistic regression analyses revealed that higher
expression levels of W-miR-15b-5p, S-miR-15b-5p, and the
combination (S-miR-134-3p + S-miR-15b-5p) were protectors
for AMS development (all p < 0.05). Furthermore, multivariate

FIGURE 2 | Salivary miR-134-3p and miR-15b-5p were different between
acute mountain sickness (AMS+) and non-acute mountain sickness (AMS–)
groups. These miRNAs were significantly down-regulated in AMS+ group
(n = 75) compared with AMS– group (n = 49). A non-parametric test
(Mann–Whitney U test) was employed to compare miRNAs in these two
independent groups. Data was expressed as median (interquartile range). The
expression level of W-miR-134-3p, S-miR-134-3p and S-miR-15b-5p were
significantly different between AMS+ and AMS– groups at baseline with p
value < 0.01. The expression level of W-miR-15b-5p were significantly
different between AMS+ and AMS– groups at baseline with p value < 0.05.
S-miR-134-3p: miR-134-3p of supernatant saliva; S-miR-15b-5p:
miR-15b-5p of supernatant saliva; W-miR-134-3p: miR-134-3p of whole
saliva; W-miR-15b-5p: miR-15b-5p of whole saliva.

logistic regression analyses showed that higher expression levels
of S-miR-15b-5p at baseline were independent protectors for
AMS (all p < 0.05, Table 3). Moreover, higher expression levels
of W-miR-134-3p, S-miR-134-3p might be possible protectors for
AMS, which need to be studied in the future.

Biological Process Regulated by
miR-134-3p and miR-15b-5p
The GO enrichment analysis exhibited that miR-134-
3p and miR-15b-5p could regulate biological processes
associated with the inflammatory response, such as the
innate immune response (GO:0045087), toll-like receptor
10 signaling pathway (GO:0034166), toll-like receptor
TLR1:TLR2 signaling pathway (GO:0038123), toll-like
receptor TLR6:TLR2 signaling pathway (GO:0038124),
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FIGURE 3 | ROC curve analysis for salivary miRNAs to discriminate AMS– from AMS+ groups. (A) ROC curve analysis for W-miR-134-3p. (B) ROC curve analysis
for W-miR-15b-5p. (C) ROC curve analysis for S-miR-134-3p. (D) ROC curve analysis for S-miR-15b-5p. AUC, area under curve; CI, confidence interval.

toll-like receptor 5 signaling pathway (GO:0034146),
toll-like receptor 9 signaling pathway (GO:0034162), toll-
like receptor 2 signaling pathway (GO:0034134), toll-like
receptor 4 signaling pathway (GO:0034142), TRIF-dependent
toll-like receptor signaling pathway (GO:0035666), MyD88-
independent toll-like receptor signaling pathway (GO:0002756),
toll-like receptor 3 signaling pathway (GO:0034138),
and stress-activated MAPK cascade (GO:0051403)
(Supplementary Table 1).

DISCUSSION

This is the first study, so far, to report that (i) salivary miR-134-
3p and miR-15b-5p were significantly up-regulated in AMS−
individuals at baseline; (ii) both salivary miR-134-3p and miR-
15b-5p served as non-invasive biomarkers for discriminating
AMS− from AMS+ individuals pre-exposed to high altitudes;

and (iii) AMS− individuals were featured with higher value
of cerebral TOIs.

Nowadays, the biological relevance of miRNAs in body fluid
circulation is regarded as a global, hormone-like functional
molecule, which might regulate gene expression across tissues
(Turchinovich et al., 2013; Yamakuchi and Hashiguchi, 2018).
Here, we found that the expression values of salivary miR-134-
3p and miR-15b-5p in the AMS− individuals, were significantly
higher in the AMS− than the AMS+ individuals. Their target
genes were enriched in toll-like receptor signaling pathway
and stress-activated MAPK pathway, which are major signaling
pathways for modulating inflammation (Mohan and Gupta,
2018; Koga et al., 2019).

Previous studies affirm that increased vascular permeability
due to hypoxia-induced inflammation is involved in the
pathophysiology of AMS development (Julian et al., 2011; Boos
et al., 2016; Luks et al., 2017). Recently, our study found that
the concentration of inflammatory cytokines, including IL-1β,
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FIGURE 4 | ROC curve analysis for the combination of S-miR-134-3p and
S-miR-15b-5p to discriminate AMS– from AMS+ groups. AUC, area under
curve; CI, confidence interval.

IL-6, and TNF-α, are positively correlated to AMS severity (Song
et al., 2016). Moreover, another important point to note from
our recent study regarding transcriptome analysis is that immune
and inflammatory responses are overrepresented in AMS+
individuals, but not in AMS− (Liu et al., 2017a). Intriguingly,
dexamethasone, the first line treatment for AMS, has proven to
be quite effective in producing an anti-inflammatory response
via inhibiting toll-like receptor signaling pathway and stress-
activated MAPK pathway (Chuang et al., 2017; Speer et al.,
2018). In this regard, the higher expression value of miR-134-3p
and miR-15b-5p in AMS− individuals suppresses the expression
of genes involved in toll-like receptor signaling pathway and
stress-activated MAPK pathway post-transcriptionally, and in
turn repress inflammatory response. Thus, the dampened
inflammatory response via miRNAs may be a biological factor

of AMS− individuals who reveal a higher expression level of
miR-134-3p and miR-15b-5p.

The immune system is a highly regulated system to several
extrinsic factors including environmental stress (Muhie et al.,
2013). The concept that hypoxia can induce inflammation
has also gained credence in some recent studies (Eltzschig
and Carmeliet, 2011). Our group has also revealed recently
that hypoxia could exacerbate the inflammatory response via
stimulating toll-like receptor four signaling pathway in rats (Wu
et al., 2018). Consistently, several studies in mice have also
proposed that hypoxia-induced inflammatory response could
result in an enhanced vascular permeability, which is associated
with the pathophysiology of AMS development (Singh et al.,
2016; Zhou et al., 2017; Gong et al., 2018). Interestingly, the
present study revealed that the AMS− individuals presented with
less severe hypoxemia (higher SpO2 and cerebral TOIs) than the
AMS+ individuals at high altitude, which was consisted with
previous studies (Basnyat, 2014; Guo et al., 2014; Mandolesi
et al., 2014; Harrison et al., 2016; Leichtfried et al., 2016). Taken
together, hypoxia could be a driver of the inflammatory response,
the less severe hypoxemia and the higher expression level of miR-
134-3p and miR-15b-5p could alleviate inflammatory response in
synergy, thus contributing to AMS prevention.

Limitations
We demonstrated for the first time, two novel non-invasive
salivary miRNAs for identifying AMS− individuals. However,
only the young Chinese men were included in this study because
they are a part of the population that most frequently travels to
high altitudes. Moreover, AMS was diagnosed in the hypobaric
chamber, and the rate of ascent was faster than that for a
regular travel to high-altitude regions, which may lead to a
higher disease incidence. In addition, our participants were all
slim, which perhaps could have skewed the results. Therefore,
further investigations in high altitude regions, larger sample sizes,
different genders, age, race, and BMI, should be studied to affirm
the results obtained.

TABLE 3 | Univariate and multivariate logistic regression for salivary miRNAs at baseline (n = 124).

95% CI

Risk factors β-coefficient Odds ratio Lower Upper p value

Univariate logistic regression

W-miR-134-3p −0.009 0.991 0.985 0.996 0.001∗∗

W-miR-15b-5p −0.123 0.884 0.790 0.989 0.032∗

S-miR-134-3p −0.007 0.993 0.990 0.996 <0.001∗∗∗

S-miR-15b-3p −1.090 0.336 0.162 0.699 0.004∗∗

Combination −5.447 0.004 0.001 0.032 <0.001∗∗∗

Multivariate logistic regression

W-miR-134-3p −0.006 0.994 0.988 0.999 0.044∗

S-miR-134-3p −0.006 0.994 0.991 0.998 0.001∗∗

S-miR-15b-3p −1.029 0.357 0.149 0.856 0.021∗

CI, confidence interval; S-miR-134-3p, miR-134-3p of supernatant saliva; S-miR-15b-5p, miR-15b-5p of supernatant saliva; W-miR-134-3p, miR-134-3p of whole saliva;
W-miR-15b-5p, miR-15b-5p of whole saliva. Combination: S-miR-134-3p+ S-miR-15b-5p. For univariate and multivariate logistic regression, the dependent variable is
AMS development (1 = AMS+, 0 = AMS−). ∗p value < 0.05; ∗∗p value < 0.01; ∗∗∗p value < 0.001.
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CONCLUSION

In this study, we report for the first time, two non-invasive
biomarkers, salivary miR-134-3p and miR-15b-5p, for identifying
AMS− individuals pre-exposed to high altitudes. Furthermore,
the combination of miR-134-3p and miR-15b-5p may hold a great
promise in becoming an important non-invasive tool for AMS
prevention in the future.
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