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Abstract
Purpose Fetoscopic laser photocoagulation is a minimally invasive surgery for the treatment of twin-to-twin transfusion
syndrome (TTTS). By using a lens/fibre-optic scope, inserted into the amniotic cavity, the abnormal placental vascular
anastomoses are identified and ablated to regulate blood flow to both fetuses. Limited field-of-view, occlusions due to fetus
presence and low visibility make it difficult to identify all vascular anastomoses. Automatic computer-assisted techniques
may provide better understanding of the anatomical structure during surgery for risk-free laser photocoagulation and may
facilitate in improving mosaics from fetoscopic videos.
Methods We propose FetNet, a combined convolutional neural network (CNN) and long short-term memory (LSTM)
recurrent neural network architecture for the spatio-temporal identification of fetoscopic events. We adapt an existing CNN
architecture for spatial feature extraction and integrated it with the LSTM network for end-to-end spatio-temporal inference.
We introduce differential learning rates during the model training to effectively utilising the pre-trained CNN weights. This
may support computer-assisted interventions (CAI) during fetoscopic laser photocoagulation.
Results We perform quantitative evaluation of our method using 7 in vivo fetoscopic videos captured from different human
TTTS cases. The total duration of these videos was 5551 s (138,780 frames). To test the robustness of the proposed approach,
we perform 7-fold cross-validation where each video is treated as a hold-out or test set and training is performed using the
remaining videos.
Conclusion FetNet achieved superior performance compared to the existing CNN-based methods and provided improved
inference because of the spatio-temporal information modelling. Online testing of FetNet, using a Tesla V100-DGXS-32GB
GPU, achieved a frame rate of 114 fps. These results show that our method could potentially provide a real-time solution for
CAI and automating occlusion and photocoagulation identification during fetoscopic procedures.

Keywords Deep learning · Surgical vision · Twin-to-twin transfusion syndrome (TTTS) · Fetoscopy · Video segmentation ·
Computer assisted interventions (CAI)

Introduction

Twin-to-twin transfusion syndrome (TTTS) is a fetal anomaly
affecting 10−15% of identical twins sharing a monochori-
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onic placenta [3]. It is caused by the presence of abnormal
placental vessels that disproportionately transfuse blood
from one twin to the other. The recipient of excessive blood is
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at risk of heart failure,while the twinwith insufficient circula-
tion will have a deficient growth. If left untreated, mortality
is above 90% [3] for both twins. Laser therapy for TTTS
can be done before birth through fetoscopy to significantly
increase survival (between 68 and 85% [4]). Fetoscopic treat-
ment of TTTS aims at photocoagulating the abnormal vessels
in the placenta using a fetoscopic camera with a retractable
laser ablation tool in its working channel, interrupting the
undesired blood transfusion from one twin to the other [20].
The technique has many challenges related to poor visibility
[15], varying placenta position [8], and vessel identification
[18] that can cause some target vessels to be missed [16].
To safely perform photocoagulation, the surgeon requires
a clear view of the placenta and a clear path between the
ablation tool and the target vessels. This can be challeng-
ing in numerous situations as the fetoscopic visibility can
significantly degrade with scene depth changes due to defo-
cus, amniotic fluid turbidity, and high variability in scene
illumination. Additionally, the larger recipient twin is freely
moving, causing unpredictable and frequent occlusions of the
laser ablation tool. Automatic detection and display of feto-
scopic events may help the surgeon in navigating through
the placenta, identifying abnormal vessels, and alerting for
potential risks such as insufficient or unsafe laser ablation.
Fetoscopic event detection can also allow a more effective
retrospective case analysis by retrieving meaningful event
timestamps from long raw videos.

Deep learning architectures have shown promising results
in temporal analysis of laparoscopic videos for tool detec-
tion and tracking, and surgical phase identification [5,14,24].
The primary focus of surgical workflow analysis is to iden-
tify sequential, non-overlapping phases where each phase
usually lasts for several minutes. On the contrary, feto-
scopic events are unordered, overlapping (multiple labels
can co-exist, e.g. “tool” and “occlusion” ), and can occur
in multiple instances, and within very short periods of times.
These factors make it unfeasible to directly incorporate the
temporal constraints from [5,14,24], such as phase relation-
ship priors encoding in the hidden-Markov models (HMM)
and temporal smoothing, into fetoscopic event identifica-
tion.

In the case of TTTS laser therapy, deep learning meth-
ods have only been marginally explored. Ablation detection
through a ResNet encoder has been proposed to create time-
lines of the surgical procedure [25]. The method [25] also
inferred when the surgeon is ready for ablating the target ves-
sel, and however, this is only evaluated qualitatively. Overall,
research efforts towards computer-assisted TTTS therapy
have mostly focused on creating navigation maps of the pla-
cental vessels through mosaicking techniques [2,6,17,23].
While promising results have been obtained for short-term
sequences, the mosaicking techniques do not scale well for
longer duration videos. Temporal fetoscopic event segmen-

tation could provide additional context for navigation and
mapping algorithms using the fetoscopic camera, which is
the only source of information currently available in the oper-
ating room.

In this paper, we address the automatic detection of events
that determine photocoagulation conditions. Specifically, we
propose a recurrent convolutional network termed as FetNet
for spatio-temporally identifying fetoscopic events such as
clear view, occlusions, ablation tool visibility, and vessel
ablation in fetoscopic videos. The proposed FetNet per-
forms event prediction in an online manner by integrating
a convolutional neural network (CNN) and a long short-
term memory recurrent neural network (LSTM-RNN) for
simultaneously encoding both spatial (single frame) and tem-
poral (multi-frame) information. This type of architecture
has not been utilised previously for fetoscopic video analy-
sis, where fetoscopic videos pose additional challenges for
network training due to the dominant (sometimes abrupt)
camera movements, floating amniotic fluid particles, and
dynamically changing views. FetNet extends and improves
previous work on ablation detection [25] by additionally
identifying clear view, occlusion and ablation tool pres-
ence events and improving performance through the use
of a recurrent network for multi-frame analysis. We show
through 7-fold cross-validation and comparison that Fet-
Net performs significantly better due to joint encoding
of both spatial and temporal dependencies in an end-to-
end network. We obtain an online prediction rate of 114
fps which shows the potential of using FetNet during live
fetoscopy.

Problem formulation

Given a fetoscopic sequence F = {Ft }Nt=1, where N is the
sequence’s length, we are interested in predicting the feto-
scopic event labels for each frame Ft . We introduce four
event labels, namely clear view, occlusion, ablation tool
presence and vessel ablation (representative images shown
in Fig. 1). Clear view: The placenta surface is visible in
the fetoscopic field-of-view (FoV) without the presence of
any occlusion. Occlusion: The fetoscopic FoV is partially
or completely blocked due to the presence of fetus, heavy
amniotic fluid particles or fetoscopic port. The FoV may
also get occluded when the fetoscope comes very close to
the placenta or fetus, often causing defocus or strong light
reflection. Tool: The ablation tool is present in the FoV of
the fetoscope. This event is identified by the presence of
an opaque notch (tool head) and projection of green light
circle on the placenta surface. Ablation: The vessel pho-
tocoagulation is being performed. This event is identified
by the presence of the ablation tool, projection of blue
light due to increased intensity of the laser and changes

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:791–801 793

Fig. 1 Representative cropped images from the seven fetoscopic videos used in our experiments displaying the four multi-label event classes

in the appearance of the targeted vessels resulting in dis-
connected vessels. While clear view and rest of the three
labels are mutually exclusive, tool and (sometimes) ablation
may occur along with occlusion. Hence, fetoscopic event
identification is considered to be a multi-label classification
problem.

Proposedmethodology

We present a deep learning framework to solve the multi-
label spatio-temporal classification problem in fetoscopic
videos. The proposed FetNet architecture is shown in Fig. 2.
We use a CNN to extract discriminative visual features
from each frame and utilised an LSTM-RNN to model the
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Fig. 2 An overview of the proposed FetNet for event classification
in fetoscopic videos. Spatial representation of each frame is encoded
by a CNN (VGG16 architecture) while the temporal representation is

encoded using LSTM followed by fully connected layers. Differential
learning rate is applied during network training

temporal information in consecutive frames. The CNN and
LSTM-RNN networks are integrated to form an end-to-end
recurrent convolutional network such that the complemen-
tary information of the visual and temporal features can be
sufficiently encoded for accurate classification.

Spatial information encoding

For spatial information encoding, we use the VGG16 [21]
network as the backbone. Due to its simplistic architecture
which introduces more convolutional layers with smaller fil-
ters resulting in increased depth of the network and network
performance. The network consists of an input (224×224×
3), 13 convolutional layers and 5 max-pooling layers (Fig. 2,
with filters having a receptive field of 3 × 3, a stride of 1
and same spatial padding for preserving the spatial resolu-
tion after convolution. Max pooling is performed after some
of the convolutional layers over a 2× 2 pixel window with a
stride of 2 to down-sample the input representation. Block5
(Fig. 2) of VGG16 outputs 7× 7× 512 dimensional feature
maps which are then fed into a global average pooling (GAP)
layer. GAP computes the average output of each feature map

in the last layer to significantly reduce the data. This results
in a 512-dimensional visual descriptor that forms the input
of the LSTM layer for temporal information encoding.

Temporal information encoding

Sequential data in fetoscopic videos carry contextual infor-
mation for event category identification. For example, an
ablation event is enclosed within the tool event. Likewise,
during fetoscopic environment exploration in the initial phase
of the procedure, clear view interlaces with the occlusion cat-
egory. Jointly learning of such spatio-temporal relationships
can provide better prediction compared to learning from only
spatial (single frame) data.

Our proposed network utilises LSTM [10] to encode
temporal information since LSTMs are robust for learning
temporal dependencies. We use sequence-to-sequence con-
figuration of LSTM, which has been used extensively for
sequential data modelling (e.g. sample-to-sample activity
recognition [9], machine translation [1,22]). In our proposed
network, the visual descriptor from GAP forms the input of
the LSTM layer having hidden layers with 128 units. The
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fetoscopic procedure can last for several minutes (e.g. 30
min of video has 45,000 frames). Retaining the memory for
the complete duration of the procedure is not resource effec-
tive. Therefore, time frames (TF) are defined within which
the information of past frames are retained and are reset
in every new TF. The LSTM layer is followed by a fully-
connected (FC) layer with 128 units and an output layer with
3 units with sigmoid activation. It is possible to havemultiple
possible labels at each frame as the labels are not mutually
exclusive, and therefore, sigmoid activation is used to get
independent output probabilities. For training, we use binary
cross-entropy loss,

L(p, p̂) = 1

N

N∑

t=0

(
pt log( p̂t )+ (1− pt ) log(1− p̂t )

)
(1)

penalising each output unit independently. p̂t is the predicted
output and pt is the ground-truth and N is the total number of
samples.We train the FetNet onOcclusion,Tool andAblation
event categories. A clear view, p̂cvt , occurs when none of the
other events ( p̂occlusiont , p̂toolt , p̂ablationt ) exist, and its output
at frame t is computed as

p̂cvt = 1− max( p̂occlusiont , p̂toolt , p̂ablationt ). (2)

Differential learning

Using pre-trained model weights for transfer learning gives
early convergence with better performance compared to
when training a model from scratch [12]. Differential learn-
ing implies having a smaller learning rate for earlier layers
and relatively larger learning rate for the latter ones. This is
useful because the latter layers are initialised randomly and
need significant updates compared to earlier layers that are
initialised with the pre-trained weights [26].We use this con-
cept for training our network. The spatial encoder layers are
initialised using the pre-trained ImageNet [7] weights and
the remaining layers are initialised using Xavier initialisa-
tion [11]. We split our network into three parts (as indicated
in Fig. 2), i–e, split 1 is from Block1 to Block4, split2 is from
Block4 to GAP and split 3 is from LSTM to FC (output). We
then applied a smaller learning rate, lr1 = 10−7, on the first
split and gradually increased learning rates of lr2 = 10−5

and lr3 = 10−3 on the second and third splits, respectively.

Training details

We present implementation details of the VGG16 (fine-
tuned) and FetNet architectures. For fine-tuning, the VGG16
architecture on our dataset, the FC layers are modified with
output units of 2048, 512 and 3, and the model is initialised
with the pre-trained ImageNet weights. A dropout of 0.2 is

applied to the FC layers, and a learning rate of 5e−5 and
Adam optimiser with a momentum of 0.9 is used. During
FetNet end-to-end training (Fig. 2), we use the ImageNet pre-
trainedweights for theCNNmodule, randomly initialised the
remaining weights using [11], and use differential learning
rates (Sect. 3.3) with Adam optimiser. A dropout of 0.2 is
used for the latter layers to avoid over-fitting. A TF of 150
frames (equivalent to 12 s of video) is used for the LSTM.
Note that this TF is selected such that it is larger than themax-
imum duration of an ablation event; ablation events are of the
shortest interval compared to other events. This ensured that
the TF is neither too small that it misses covering the tempo-
ral dynamics of the sequence nor too large to limit the GPU
resources.

Data augmentation is performed at run-time as this allows
adding relatively more variations compared to a fixed size
preprocessed augmentation set. Augmentation is performed
by applying rotation, horizontal and vertical flip, and illumi-
nation intensity change. We randomly (with a 50% chance)
augment each frame in every epoch during VGG16 fine-
tuning. Likewise, augmentation is applied to eachTF in every
epoch during FetNet training. During training, we use early
stopping, i.e., if the validation loss does not decrease any
further in the latest 5 epochs (iterations), the training is ter-
minated. Due to early stopping, the training generally lasted
between 50 and 120 epochs. The network weights that gave
the best validation accuracy before early stopping are used
for testing. The use of validation dataset and early stopping
ensured that we are not over-fitting the model. We perform
7-fold cross-validation on left-out (unseen) test videos to
demonstrate the robustness of our model. Our framework
is implemented in Keras with TensorFlow backend using a
single Tesla V100-DGXS-32GB GPU of an NVIDIA DGX-
station.

Experimental analysis

Dataset description

We perform validation of the proposed FetNet using seven in
vivo fetoscopic sequences (138,780 frames) acquired at 25
fps with a display resolution of 720×576 pixels. Each video
captured a separate real operation performed on a different
patient. We cropped each video into a square to remove the
black left and right margins of the display. As a result, the
cropped frame resolution is different in each sequence due
to different settings of the fetoscope in each case (Table 1).
All frames are resized to 224 × 224 to form the input to
the FetNet. Some representative frames from our dataset are
shown in Fig. 1. When observing frames from a particular
class across different videos in Fig. 1, we can notice the intra-
class variability due to different visual appearance, changing
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Table 1 Distribution of
fetoscopic videos (in frames) for
each event label

Video# Resolution #Frames Clear view Occlusion Tool Ablation

Video 1 470× 470 25,900 5604 13,167 7903 3163

Video 2 540× 540 17,030 5643 2439 8877 1498

Video 3 550× 550 12,000 1896 6570 6846 306

Video 4 570× 570 17,450 1886 5227 12,113 1273

Video 5 570× 570 22,000 9370 2900 7336 2458

Video 6 550× 550 27,000 8020 7474 10,155 5064

Video 7 550× 550 17,400 8328 8112 2522 156

Total 138,780 40,747 45,889 55,752 13,891

lighting, and changing views due to moving fetoscope. For
example, the clear view within a sequence can have a signif-
icantly different appearance. Though there is no tool present
in video 4 (clear view) yet a strong tool light is visiblemaking
such frames very similar to the tool class. Occlusion blocks
a significant amount of the FoV most of the times but some-
times only cover a very small region (as visible from video 2
and video 6 frames) making it very similar to the clear view
category. Such light occlusions are usually observed when
transiting from the clear view to the occlusion category. The
operating port can also occlude the view (video 3). Tool and
ablation are interlacing events and can sometimes have a very
similar appearance (video 5 and video 6).

We manually annotated the in vivo fetoscopic sequences
for the four event categories using the video labeller appli-
cation.1 A single annotator first annotated these sequences,
whichwere then verified by a clinician. The definition of each
category as detailed in Sect. 2 is used for creating the anno-
tation labels. When manually annotating sequential data, it
is easier for a human annotator to distinguish between tool
and ablation due to the ablation light intensity and colour
change. Moreover, these two categories are interlacing with
each other. Likewise, occlusion and clear view are interlacing
for most of the duration of the video. A clear view transition
into occlusion as soon as the placental view is even slightly
blocked by the presence of fetus, umbilical cord, operating
port or tool. Creating multi-label frame-level annotations for
138,780 frames is a time-consuming task and took on average
10 h to annotate a single fetoscopic sequence. The distri-
bution of each label, in terms of the number of frames, is
reported in Table 1.

Evaluation protocol

For the experimentation, all fetoscopic sequences are sub-
sampled at 12.5 fps givingus a total of 69,390 frames from the
seven fetoscopic videos.We perform 7-fold cross-validation,
wherein each fold training is performed using 6 videos and

1 Video labeller from Matlab https://uk.mathworks.com/help/vision/
ref/videolabeler-app.html: Last accessed—07/04/2020.

testing is performed using the left-out (unseen) video. The
training set is sub-divided into the train (5 videos) and val-
idation (the shortest video from the training set) sets. The
validation set is needed during training to avoid over-fitting
(as discussed in Sect. 3.4). An input frame size of 224× 224
is used for all methods under analysis.

To quantitatively evaluate the performance of our pro-
posed method, we report the precision, recall and F1-score at
a chosen operating point (obtained by thresholding the output
probabilities at 0.5 for each event category). We also report
the precision-recall curves, area under the curve (AUC) and
bar plots for each event category for all 7-folds.

Comparisonmethods

We compare FetNet, with and without differential learning,
against an existing ablation detection [25] and three CNN-
based [21] methods similar to the one proposed in [5].
VGGFE_SVM used features extracted from the VGG16 for
training a support vector machine [5], VGG16_fine is the
fine-tuned network (detailed in Sect. 3.4) andVGG_temporal
applied temporal smoothing to VGG16_fine predictions.
Details about the configuration of different methods under
comparison are reported in Table 2. All methods mentioned
are initialised with the pre-trained ImageNet weights, since
through experimentation we found that random initialisa-
tion always resulted in comparatively lower performance. An
ablation detectionmethod using histogram feature extraction
and support vector machine was also tested in [25]. How-
ever, the reported results are significantlyworse than the deep
learning-based methods, and therefore we do not include it
in our experimental comparison.

Results and discussion

Table 3 reports the results of the 7-fold cross-validation,
while the corresponding precision-recall curves along with
the AUCs are presented in Fig. 3. Bar plots of F1-scores
for each event category and fold are reported in Fig. 4.
We start by comparing the results of spatial-only methods.
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Table 2 Configuration details of different methods under comparison

Method Network details Learning rate

Ablation_detect [25] ResNet50 [13] with binary output layer for ablation detection Fixed to 10−5

VGGFE_SVM [5] Features from the VGG16 [21] FC2 layer classified using SVM –

VGG16_fine [21] VGG16 network with FC layers having 2048, 512 and 3 units Fixed to 10−6

VGG16_temporal [5] Temporal averaging with a median filter of size 6 (samples)
applied to the VGG16 predictions

–

FetNet_noDL Proposed FetNet (Fig. 2) without differential learning Fixed to 10−6

FetNet_DL Proposed FetNet (Fig. 2) with differential learning lr1 = 10−7, lr2 = 10−5, lr3 = 10−3

All networks are initialised with the pre-trained ImageNet weights

Table 3 7-fold cross-validation
results of the proposed FetNet
and its comparison with the
existing methods

Method Class

Clear Occlusion Tool Ablation Average

Ablation_detect [25] Precision – – – 0.81 0.81

Recall – – – 0.71 0.71

F1-score – – – 0.76 0.76

VGGFE_SVM Precision 0.52 0.55 0.68 0.32 0.52

Recall 0.42 0.70 0.50 0.19 0.45

F1-score 0.46 0.62 0.58 0.24 0.47

VGG16_fine Precision 0.66 0.69 0.76 0.96 0.77

Recall 0.47 0.69 0.73 0.61 0.63

F1-score 0.55 0.69 0.74 0.75 0.68

VGG16_temporal Precision 0.72 0.70 0.76 0.96 0.79

Recall 0.46 0.68 0.73 0.56 0.61

F1-score 0.56 0.69 0.74 0.71 0.68

FetNet_noDL Precision 0.72 0.70 0.86 0.95 0.81

Recall 0.78 0.60 0.90 0.69 0.74

F1-score 0.74 0.65 0.88 0.80 0.77

FetNet_DL Precision 0.86 0.69 0.92 0.96 0.86

Recall 0.84 0.79 0.94 0.95 0.88

F1-score 0.85 0.74 0.93 0.95 0.87

Ablation_detect gave an overall F1-score of 0.76 for the
ablation event, which is comparable to the ablation event of
VGG16_fine with an F1-score of 0.75. VGGFE_SVM per-
formed poorly compared to all other spatial-only methods
which show that using CNN features alone is not sufficient.
End-to-end parameter learning and fine-tuning is needed for
adapting the pre-trained CNN features to the distribution of
new data.

Next, we analyse the effect of adding temporal con-
straints. Introducing temporal filtering VGG16_temporal [5]
inVGG16_fine helped in improving the performance of clear
view and occlusion events but resulted in decreased perfor-
mance for the tool and ablation events; because the instances
of clear view and ablation events are of much longer dura-
tion compared to the tool and ablation events. In surgical
phase recognition [5,14,24], applying temporal smoothing
helps since the phases are generally of longer duration and

sequential. However, this is not the case in fetoscopic event
detection. We observe from Table 3 and Fig. 3 that the
proposed FetNet outperformed other methods due to joint
spatial and temporal encoding. The use of differential learn-
ing helped in further improving the performance along with
early convergence of the model compared to FetNet_noDL.
FetNet_DL resulted in an overall performance gain of 19%
over VGG16_fine and VGG16_temporal, and of 10% over
FetNet_noDL.

The performance of each event category can be observed
from the precision-recall curves in Fig. 3 and the bar plots
of F1-scores (along with the standard deviation over the 7-
folds) in Fig. 4a. Note that occlusion has a lower F1-score of
0.74 (AUC = 0.75) compared to the clear view (0.85, AUC
= 0.91), tool (0.93, AUC = 0.95) and ablation (0.95, AUC
= 0.94) for the proposed FetNet_DL because of the intra-
class variability and transition frames. There are frames in
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Fig. 3 Precision-recall curves along with AUCs of different methods under comparison for a clear view, b occlusion, c tool and d ablation classes.
e The micro-average precision-recall over all the classes

Fig. 4 Performance comparison of different methods. F1-scores and standard deviations; a over 7-folds for each event; b over 4 events for each
fold

which occlusion only spans over 2−3% of the FoV, hence
making it challenging to classify such frames at a resolu-
tion of 224× 224 pixels. Compared to the transition frames,
partial or heavy occlusion frames are more accurately classi-
fied. Likewise, tool and ablation have a significantly different
visual appearancewith less variability compared to the occlu-
sion. Hence, the tool and ablation classes are inferred with
high confidence as depicted in Figs. 3c, d and 4a. The overall
superior performance of FetNet_DL (AUC = 0.89) is fur-
ther verified from Fig. 3e which shows the micro-averaged
precision-recall curves of the methods under comparison.

Figure 4b shows the bar plots of the F1-scores for each
video (fold) and the standard deviation over the 4 classes.
Video 5 and 6 are the most challenging ones with a signifi-
cantly different appearance (as evident fromFig. 1) compared
to other videos and contain fetoscopic lens artefacts (creating
a honeycomb-like pattern over each frame). Likewise, video
7 frames are out of focus resulting in blur artefacts, hence
contributing to its relatively lower performance. Neverthe-
less, we can observe from Fig. 4b that the proposed FetNet
with differential learning helped in significantly improving
the prediction results. Video 4 is an interesting case, where
the F1-scores of VGG_fine (0.88), FetNet_noDL (0.89) and
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Fig. 5 A snapshot of timeline showing predictions for video 1. Groundtruth (top) and correct predictions from VGG_fine (middle) and FetNet_DL
(bottom) are shown in blue. The erroneous predictions are shown in red

FetNet_DL (0.89) are comparable, the reason being the
low illumination, highly visible tool and ablation events
(Fig. 1), and 76% of frames belonging to the tool and abla-
tion events (Table 1); thus resulted in predictions with high
accuracy. Figure 5 shows the comparison of FetNet_DL
(bottom) and VGG16_fine (middle) on a snapshot of time-
line. VGG16_fine struggled in correctly predicting events on
consecutive frames and heavily misclassified clear view as
occlusion while fluctuating a lot from one class to the other.
On the other hand, FetNet_DL resulted inmuch better predic-
tions with fewer erroneous classifications. A supplementary
video is included with this paper depicting the visualisation
of the qualitative results.

The online prediction rate of FetNet_DL is recorded to
be 114 fps, which is higher than Ablation_detect (106 fps)
and VGG16_fine (70 fps). This is because FetNet_DL has
fewer network parameters (15,059,779) compared to Abla-
tion_detect (23,589,761) and VGG16_fine (67,147,587).
Since we use LSTM with sequence-to-sequence configu-
ration (mentioned in Sect. 3.2), there is no delay in the
prediction. This shows the potential of using FetNet in
real-time clinical systems. Overall, the proposed FetNet out-
performed existing methods due to the additional temporal
information encoding, which shows that such a network may
serve as a useful tool for assisting and automating occlusion
and photocoagulation identification during fetoscopic proce-
dures. Moreover, FetNet can provide additional context for
navigation andmapping algorithmsusing the fetoscopic cam-
era and can help in generating better mosaics from fetoscopic
videos [2] by focusing only on frames with occlusion-free
views. FetNet can also assist in designing in vivo fetoscopic
vessel segmentation [19] strategies by initially focusing only

on occlusion-free frames. Additionally, vessel segmented
prediction masks can be utilised for generating vascular
mosaics (an expanded FoV image of the placental vascular
structure) which may support the identification of abnormal
vessels during the TTTS laser therapy.

Conclusion

We proposed a recurrent convolutional network for feto-
scopic event identification in in vivo fetoscopic videos. Our
proposed FetNet architecture jointly encoded the spatial (sin-
gle frame) and temporal (multi-frame) cues by integrating
the VGG16 architecture with LSTM-RNN in an end-to-end
manner. We evaluate by performing 7-fold leave-one-out
cross-validation on 7 in vivo fetoscopic videos. We showed
that FetNet outperformed the existing methods and better
encodes the spatial and temporal dependencies when trained
using a pre-trained on ImageNet with differential learning
rates on the four-event classes. Qualitative results showed
that the proposed FetNet better handled the challenges in
the fetoscopic environment and resulted in improved predic-
tion for multi-label frames compared to the other methods.
This showed that unlike spatial-only encoding methods, a
spatio-temporal encoding method is better suited for video
data analysis. Additionally, FetNet is able to operate at a
high frame rate, which suggests that such a network could be
integrated into real-time systems.
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