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Platinum (Pt) drugs (e.g., oxaliplatin, cisplatin) are applied in the clinic worldwide for the
treatment of various cancers. However, platinum-induced peripheral neuropathy (PIPN)
caused by the accumulation of Pt in the peripheral nervous system limits the clinical
application, whose prevention and treatment are still a huge challenge. To date, Pt-
induced reactive oxygen species (ROS) generation has been studied as one of the primary
mechanisms of PIPN, whose downregulation would be feasible to relieve PIPN. This review
will discuss ROS-related PIPN mechanisms including Pt accumulation in the dorsal root
ganglia (DRG), ROS generation, and cellular regulation. Based on them, some antioxidant
therapeutic drugs will be summarized in detail to alleviate the Pt-induced ROS
overproduction. More importantly, we focus on the cutting-edge nanotechnology in
view of ROS-related PIPN mechanisms and will discuss the rational fabrication of
tailor-made nanosystems for efficiently preventing and treating PIPN. Last, the future
prospects and potential breakthroughs of these anti-ROS agents and nanosystems will be
briefly discussed.
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INTRODUCTION

Platinum (Pt) drugs, such as cisplatin (CP), oxaliplatin (OXA), and carboplatin, are commonly used
in the treatment of colorectal cancer (Saltz et al., 2008), gastric cancer (Shen Q.-D. et al., 2018), breast
cancer (von Minckwitz et al., 2014), and lung cancer (Ferrara et al., 2021) in combination with other
chemotherapy drugs. The antitumormechanisms of Pt drugs are mainly DNA damage and enhanced
reactive oxygen species (ROS) generation (Rottenberg et al., 2021). The excess ROS, including
superoxide anion (·O2

−), singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radical (·OH),
and so on, would induce oxidative damage to biomolecules (e.g., proteins, lipids, and DNA) and,
thus, lead to severe cellular damage (Fasnacht and Polacek, 2021). However, the toxic effects of Pt
drugs affect the quality of life of patients and cause reduction or discontinuation. Among the toxic
effects, platinum-induced peripheral neuropathy (PIPN) has the symptoms including paresthesia,
extremities pain, and cold sensitivity. Herein, PIPN can be divided into acute peripheral neuropathy
and chronic peripheral neuropathy. Acute peripheral neuropathy that usually occurs in a few hours
after Pt drug administration is easily induced by the exposure to cold temperature, whereas chronic
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peripheral neuropathy tends to appear upon reaching a certain
cumulative dose [e.g., OXA of 780 mg/m2 (Rothenberg et al.,
2003), CP of 350 mg/m2 (Krarup-Hansen et al., 2007)] and can be
characterized by sensory neurotoxicity (e.g., sensation loss and
changes) due to the accumulation of Pt drugs at the peripheral
nervous system (Cersosimo, 2005). Notably, the prevention and
treatment of PIPN is an extremely urgent issue to be addressed in
patients treated with Pt-based chemotherapy.

To solve the challenge, numerous researchers devote to exploring
the mechanism of PIPN, which are principally implicated in
transporter overexpression (Sprowl et al., 2013), ROS upregulation
(Leo et al., 2020), ion channel dysfunction (Descoeur et al., 2011),
transient receptor potential (TRP) overexpression (Chukyo et al.,
2018), inflammatory response (Janes et al., 2015), and so on. It is
noteworthy that Pt-induced ROS production impairs antioxidant
enzymes [e.g., superoxide dismutase (SOD) and catalase (CAT)] to
trigger oxidative stress (Khasabova et al., 2019), which participates in
the onset and progression of both acute and chronic PIPN.Moreover,
the Pt-induced ROS production further disturbs the normal function
of DNA,mitochondria, microtubule, ion channels, and biomolecules,
thus, inducing neuroinflammation, demyelination, and neuronal
apoptosis in the process of PIPN (Lim et al., 2010; Areti et al.,
2014; Bas et al., 2019; Stanford et al., 2019). Therefore, ROS is a
double-edged sword, which can bring us antitumor therapeutic
benefits and toxic effects. Herein, how to simultaneously attenuate
PIPN and meanwhile maintain antitumor efficacy by regulating the
ROS level in normal tissues and tumor tissues deserves to be
thoroughly addressed.

Currently, some antioxidant agents have been utilized to treat
PIPN in clinical trials and animal studies by relieving the Pt-
induced ROS upregulation. Moreover, it is noteworthy that
nanotechnology offers immense potential in preventing and
alleviating PIPN via two main strategies: 1) enhancing the
targeting accumulation and/or activity of Pt drugs at tumor
tissues while decreasing the off-target effects and 2) specific
delivery of antioxidant agents toward the peripheral nervous
system. Herein, this review will discuss the ROS-related
mechanism and feasible therapeutic drugs for PIPN. More
importantly, PIPN-tailored drug delivery nanosystems have
been elaborated and discussed by utilizing the cutting-edge
nanotechnologies. Last, the future prospects and potential
breakthroughs of these anti-ROS agents and nanosystems will
be briefly discussed.

REACTIVE OXYGEN SPECIES-RELATED
MECHANISM OF PLATINUM-INDUCED
PERIPHERAL NEUROPATHY
The dorsal root ganglia (DRG), which is composed of sensor cells,
neurons, and effector cells, plays a pivotal role in the process of
PIPN. Pt drugs have been reported to result in mitochondrial
damage and oxidative stress once they accumulate at DRG
(Podratz et al., 2017). The upregulated Pt transporters [e.g.,
organic cation transporters (OCTs), multidrug and toxin
extrusion proteins (MATEs), and copper transporters 1/2
(Ctr1/2)] in DGR increase the accumulation of Pt drugs in

peripheral nerves as the first step to induce PIPN (Sprowl
et al., 2013; Fujita et al., 2019). Moreover, ROS also feed back
to regulate functional residues of PIPN-related proteins, for
instance, ion channels and transient receptor potential ankyrin
1 (TRPA1), whose abnormalities exacerbate Pt-induced cold
allodynia (Chukyo et al., 2018; Argyriou et al., 2019). Overall,
the ROS-related mechanism of PIPN could be elaborated from
the following two aspects: 1) Pt accumulation in DRG and 2) ROS
generation and cellular regulation (Figure 1).

Platinum accumulation in dorsal root
ganglia
The accumulation level of Pt drugs in DRG is 10–20 times higher
than that in other nerve cells, which could be attributed to the
high expression of Pt-related transporters (e.g., Ctr1/2, OCTs) in
DRG (Trecarichi and Flatters, 2019).

Among these transport proteins, Ctr1, composed of three
highly conserved methionine (Met)-rich motifs, is involved in
the transport of CP as a channel-like transporter (Yonezawa and
Inui, 2011). The first two Met-rich motifs and last Met-rich motif
are located at the extracellular N terminus and the end of the
second transmembrane structural domain, respectively. Wherein
CP interacts with the accessible Met-rich motifs to form the
[Pt(Met)Cl(NH3)2] intermediate, which induces a
conformational change in Ctr1 and allows CP to pass laterally
through the axis of the trimeric Ctr1 channel and move inward
via the intermolecular sulfur–sulfur process exchange (Liang
et al., 2009; Kuo et al., 2021). Besides, the cellular uptake of
CP would be reduced by nearly 80% after downregulating the
expression level of Ctr1 in cerevisiae strains and mouse cells
(Ishida et al., 2002).

In addition, OCTs (e.g., OCT1 and OCT2), as the active
transport proteins, mediate the endocytosis and efflux of
organic cations driven by intramembrane negative potentials.
Since OCTs-mediated cellular uptake is concentrative and much
more active than the Ctr1 type (Liang et al., 2009; Yonezawa and
Inui, 2011), OCTs are the key transporter to exacerbate the PIPN
(Jong et al., 2011). Moreover, MATE1, driven by the secretion of
cationic drugs with opposite H+-gradients, is involved in the
efflux of Pt drugs as well as other endogenous or exogenous
organic cations in the DRG (Fujita et al., 2019). In brief, the
enhanced cross-cellular transport of Pt drugs is mediated by the
uptake via OCTs and efflux via MATE1, respectively (Yang et al.,
2021), in which OXA and CP have been found to be substrates of
the human OCT family and the human MATE family (Yokoo
et al., 2007).

In brief, Pt-associated transporter proteins determine the
accumulation of Pt drugs in DRG and, thus, could be
developed as therapeutic targets to prevent the development
of PIPN.

Reactive oxygen species generation and
cellular regulation
Overloaded Pt drugs produce toxic ROS, which are strongly
associated with PIPN (Umeno et al., 2017; Zajaczkowska et al.,
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2019). In detail, ROS are involved in disturbing antioxidant
defenses, the mitochondria, microtubule, ion channels, and
biomolecular functions, as well as inducing
neuroinflammation, demyelination, and neuronal apoptosis in
the process of PIPN (Areti et al., 2014).

Pt-induced ROS production easily breaks the balance of
endogenous ROS and cellular antioxidant systems to trigger
oxidative stress and mitochondrial dysfunction, resulting in the
damage or loss of DRG cells containing abundant ROS-sensitive
phospholipids (Khasabova et al., 2019). In addition, as for DRG
cells, NF-E2-related factor 2 (Nrf2) that upregulates the expression
of antioxidant enzymes (e.g., SOD, CAT, and glutathione-S-
transferase (GST)) to eliminate oxidative stress, would be
disrupted by accumulated Pt drugs (Dos Santos et al., 2021).

Regarding ion channels, TRP play a key role in aggravating
cold abnormal pain, among which, TRPA1 and transient receptor
potential melastatin 8 (TRPM8), as cold-sensitive receptors,
could be activated by ROS (Shimizu et al., 2014; Miyake et al.,
2016). In detail, ROS could activate TRPA1, via oxidizing cysteine
residues (Andersson et al., 2008), and TRPM8, via increasing
Ca2+ influx (Bas et al., 2019) and upregulating ADP-ribose of the
mitochondria (Shimizu et al., 2014). Under oxidation conditions,

TRPV1 can overexpress tumor necrosis factor receptor 1
(TNFR1) in DRG cells through a ROS-mediated signaling
pathway, which could bind with proinflammatory cytokine
tumor necrosis factor α (TNF-α) to increase inflammatory
conditions and nociception (Ma et al., 2009; Westlund et al.,
2010).

Some voltage-gated ion channels, namely, the potassium (K+),
calcium (Ca2+), and sodium (Na+) channels, could also be
oxidized by ROS to consequently affect DRG neuronal
excitability and conduction. For example, when voltage-
dependent potassium channels-1 (KVS-1) are oxidized, they
conduct more current and thus, affect DRG neuronal output.
When KCNB1 (a homolog of KVS-1) contacts with ROS, Src/
JNK-meditated apoptotic program in mitochondria would be
initiated to produce more ROS (Patel and Sesti, 2016). In
addition, the ryanodine receptor (RyR), a well-established
redox-sensitive Ca2+ channel, would open more readily and
thus, leak Ca2+ after oxidation (Oda et al., 2015). ROS also
induce the release of Ca2+ by activating inositol 1,4,5-
trisphosphate receptors (IP3R) to open the permeability
transition pore, thereby changing the permeability of
mitochondria to further release more ROS as a vicious cycle

FIGURE 1 | Reactive oxygen species (ROS)-related mechanism of platinum-induced peripheral neuropathy (PIPN). I. Pt drug accumulation is mediated by the
uptake via OCTs and Ctr1, and efflux via multidrug and toxin extrusion protein 1 (MATE1). II. Pt drugs cause mitochondrial dysfunction and oxidative stress, leading to the
imbalance in the endogenous ROS and cellular antioxidant systems. Moreover, Pt-induced ROS result in the damage to biomolecules, such as phospholipids and
proteins [e.g., ryanodine receptor (RyR), NF-E2-related factor 2 (Nrf2), and tumor necrosis factor receptor 1 (TNFR1)], downregulation of antioxidant enzymes [e.g.,
SOD, CAT, and glutathione-S-transferase (GST)], the activation of transient receptor potentials (TRP), the oxidization of ion channels (e.g., K+, Ca2+, and Na+), as well as
the release of inflammatory cytokines, ultimately aggravating the progress of PIPN.
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(Csordas and Hajnoczky, 2009; Kiselyov and Muallem, 2016).
Moreover, voltage-gated sodium (NaV) channels play a role in
initiating action potentials in DRG neurons, whose surface
modification affects neuronal electrical excitability and
participate in the development of cold abnormal pain
(Furgala-Wojas et al., 2020). For example, Pt drugs prolong
Nav1.6 open times and increase persistent current in DRG
neurons, which aggravate cold abnormal pain (Sittl et al., 2012).

Furthermore, Pt-induced ROS production can also promote
the secretion of proinflammatory cytokines, for example, TNF-α,
interleukin-1β (IL-1β), interleukin-6 (IL-6), chemokine ligand 2
(CCL2), and so on (Ozturk et al., 2005). These inflammatory
cytokines sensitize peripheral pain receptors via promoting
macrophage infiltration and neuroinflammation (Celik et al.,
2020).

Overall, the accumulation of Pt drugs in the DRG intensifies
DNA damage and ROS production. Pt-induced ROS production
further induces cellular dysfunction (i.e., ion channels, organelles,
and biomolecules), neuroinflammation, demyelination, and
neuronal apoptosis in the process of PIPN. Notably, regarding
the specific types of PIPN-related ROS, H2O2 has been confirmed
to induce oxidative DNA damage in sensory neuronal cells and
cause PIPN (Jiang et al., 2008). Besides, Pt-generated ·O2

−

(Pongjit and Chanvorachote, 2011) and ·OH (Sumkhemthong
et al., 2021) might also play pivotal roles in the development of
PIPN. Obviously, the specific ROS probes, for instance, 2′,7′-
dichlorodihydrofluorescein diacetate (H2DCFDA) for various
ROS (Guler et al., 2021), dihydroethidium (DHE) for ·O2

−

(Pongjit and Chanvorachote, 2011), and rhodamine nitroxide
for ·OH detection (Cao et al., 2014) could be applied to determine
the ROS generation in the PIPN study. More importantly,
antioxidant drugs (to scavenge these specific ROS) and Pt-
clearable drugs in the DRG are two main promising strategies
for the prevention and treatment of PIPN.

THERAPEUTIC STRATEGIES OF
PLATINUM-INDUCED PERIPHERAL
NEUROPATHY
Antioxidant drugs
Small molecular drugs with anti-ROS activity could alleviate, in
some degree, the symptoms of PIPN. Agnes et al. evaluated three
antioxidants (N-acetylcysteine, α-lipoic acid, vitamin E; p.o.)
upon the peripheral neuropathy and antitumor efficacy of
OXA in a tumor-bearing mice model. These antioxidants
decreased ROS production and abolished neuroinflammation
in OXA-treated mice without affecting antitumor activity nor
hematological toxicity of OXA in vivo (Agnes et al., 2021).
Besides, 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) with
antinociceptive, antioxidant, and neuroprotective effects has
also been studied. As reported, 4-PSQ (1 mg/kg, p.o., days
2–14) not only reversed the increased levels of ROS in the
spinal cord, cerebral cortex, and hippocampus, but also
normalized the activity and expression of antioxidant enzymes
[e.g., CAT, SOD, and glutathione peroxidase (GPx)] and
acetylcholinesterase (AChE) in OXA-exposed mice (Reis et al.,

2020). In addition, donepezil (1 mg/kg, p.o., five times per
week for 4 weeks) could ameliorate OXA-induced mechanical
allodynia and sciatic nerve axonal degeneration in a rat model,
whose neuroprotective effect was attributed to its free-radical
scavenging ability (Kawashiri et al., 2019). Additionally,
dimethyl fumarate (DMF) and its metabolite monomethyl
fumarate (MMF) show a neuroprotective effect on oxidative
stress and could relieve OXA-induced neurite degenerations via
activating the Nrf2 pathway in PC12 cell lines (Kawashiri et al.,
2018). Coadministration of DMF (200mg/kg, p.o., five times per
week for 4 weeks) relieved mechanical allodynia and axonal
degeneration caused by OXA (4mg/kg, i.p., twice per week for
4 weeks). It is worth noting that DMF neither affected the
antitumor activity in C26, HCT116, MKN45, and MIA PaCa-2
cancer cell lines nor exacerbated the potential effects (e.g., body
weight loss or bone marrow suppression) in C26-bearing mice
(Miyagi et al., 2019).

Some manganese (Mn)-based MRI contrast agents, such as
mangafodipir and calmangafodipir, possess a mimic
mitochondrial enzyme manganese superoxide dismutase
(MnSOD) activity and, thus, could be utilized as a
cytoprotector in PIPN. For example, Coriat et al. studied
preventive and curative effects of mangafodipir, a chelate of
Mn and ligand fodipir (a vitamin B6 derivative), where Mn is
an MRI contrast and vitamin B6 is known for its neuroprotective
activity in cancer patients with PIPN (grade ≥2). As results,
neuropathy improved or stabilized in 77% OXA +mangafodipir-
treated patients after four cycles. Moreover, mangafodipir-treated
patients successfully tolerated a cumulative OXA dose of
1,426 ± 204 mg/m2, compared with an average dosage of
880 ± 239 mg/m2 before enrollment. All the above results
demonstrated that mangafodipir could prevent and/or relieve
PIPN in cancer patients (Coriat et al., 2014). Calmangafodipir
(PledOx®) that is developed frommangafodipir, could relieve the
oxidative stress via mimicking the activity of MnSOD and thereby
prevent OXA-induced mechanical allodynia, cold thermal
hyperalgesia, and the reduction in intraepidermal nerve fiber
(IENF) density in a BALB/c mouse model of PIPN. Besides, their
dose–response for the treatment effect on the behavioral and
IENFs density revealed a clear U- or bell-shape (Canta et al.,
2020). Moreover, calmangafodipir (5 mmol/kg)-treated patients
had significantly less physician-graded neurotoxicity, cold
allodynia, or other sensory symptoms without apparent
influence on tumor outcomes (Glimelius et al., 2018).

Regarding the antioxidant natural products, Yehia et al.
studied the protective effects of L-carnosine (an endogenous
dipeptide composed of β-alanine and L-histidine) that could
scavenge both reactive oxygen and nitrogen species, in PIPN
in colorectal cancer patients. Daily oral L-carnosine (500 mg, p.o.,
daily for 3 months) significantly ameliorated the
pathophysiological triad of inflammation, oxidative stress, and
apoptosis in patients receiving FOLFOX-6 regimen
(OXA + 5FU + leucovorin), for instance, decreasing the
molondialdehyde (MDA) level (51.8%), nuclear factor-κB (NF-
κB) (27%), and TNF-α (36.6%), while increasing Nrf-2 (38.7%)
(Yehia et al., 2019). Moreover, phosphatidylcholine (300 mg/kg,
p.o., five times a week for 4 weeks) reduced the level of MDA and
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prevented the OXA-induced decreases of SOD, GPx, as well as
GSH levels in SD rats (Kim et al., 2015).

Therefore, antioxidant drugs, including small molecular drugs,
Mn-based MRI contrast agents, and natural products could
alleviate, to some extent, the symptoms of PIPN. Exploring
more drugs with anti-ROS activity is needed in paving the
way for the prevention and treatment of PIPN.

Traditional medicines and active
ingredients
Some antioxidant traditional medicines have been proved to open
new horizons for promising therapeutics in PIPN. For example,
the Jiawei Huangqi Guizhi Wuwu Decoction (JHGWD) with
multifunctional activities (e.g., antioxidation, anti-inflammation,
and neuroprotection) was evaluated to prevent and reduce the
occurrence and intensity of acute PIPN in a clinical study. As a
result, 20 patients (64.5%) suffered from neurosensory toxicity in
the treated group, much lower than the control group (27 cases,
87.1%) with more serious symptoms (Yuan et al., 2006). A clinical
trial of Huangqi Guizhi Wuwu decoction (HGWD) is being
carried out, and 360 patients would be enrolled
(NCT04261920) (Wei et al., 2020). Besides, green tea
(300 mg/kg, p.o., daily for 6 weeks) with antioxidative
properties alleviated sensory symptoms of PIPN in rats,
whereas it prevented morphometric or electrophysiological
alterations (Lee et al., 2012). Moreover, goshajinkigan (GJG)
could treat numbness, vibration sensation, cold sensation, and
limb pain associated with diabetic neuropathy and prevent the
cold hyperalgesia induced by repeated administration of OXA,
without affecting its antitumor effect in vivo (Ushio et al., 2012).
Furthermore, since inflammation is associated with the injury or
damage of neurons (Yamanouchi et al., 2017), anti-inflammatory
danggui Sini decoction could remarkably increase the amounts of
Nissl bodies (the biomarker for the normal morphology of
neurons) and improve the morphology of DRG cells, thus,
alleviating the pathogenesis of peripheral neuropathy (Ding
et al., 2020).

Some extracts of traditional medicines with the antioxidant
activity could also be applied to overcome PIPN. As for astragali
radix, the total extract, main constituent (e.g., polysaccharides),
or other characteristic compounds (e.g., saponins and flavonoids)
possess antioxidant properties (Augusto et al., 2018). The
aqueous and two hydroalcoholic (20% and 50% HA) extracts
revealed protective effects against OXA-induced lipid
peroxidation (MDA levels), proteins (carbonylated proteins),
as well as DNA oxidation (8-OH-2-dG levels) in the SH-SY5Y
cell line, none of which affected the OXA-induced toxicity in the
HT29 cell line (Di Cesare Mannelli et al., 2015). In addition, the
extract of Forsythiae suspensa fruits (EFSF, 60–200 mg/kg, p.o.,
daily for 3 weeks) significantly alleviated themechanical allodynia
and loss of IENFs in the OXA-induced peripheral neuropathy
C57BL/6 models. Forsythoside A, a major component of EFSF,
also exerted remarkable neuroprotective effects in neural PC12
cells (Yi et al., 2019). The aqueous extracts of Forsythia
viridissima fruits (EFVF) attenuated OXA-induced
neurotoxicity and inhibited neurite outgrowths in PC12 and

DRG cells. EFVF (50 mg/kg, p.o., daily for 6 weeks) effectively
recovered hypersensitivity to mechanical stimulation and loss of
IENFs in mice. Besides, AC591, as a standardized extract of
HGWD, effectively alleviated cold hyperalgesia, mechanical
allodynia, and morphological damage of DRG in OXA-treated
rats (Cheng et al., 2017).

Active ingredients of traditional medicine, such as curcumin
(CUR), AC591, rosmarinic acid, quercetin, and rutin have also
been studied for the prevention and treatment of PIPN. CUR as
an important active ingredient in Curcuma longa L shows various
biological activities including antioxidant, anti-inflammatory,
neuroprotective, and antitumor activities. CUR
(12.5–50 mg/kg, p.o., for consecutive 28 days) could notably
increase motor nerve conduction velocity (MNCV) and sense
nerve conduction velocity (SNCV), as well as repair the injured
neurons of the spinal cord in SD rats. It could not only upregulate
antioxidant enzymes but also inhibit the oxidative stress-
mediated activation of inflammatory factors (e.g., NF-κB,
TNF-α, IL-1β, and IL-6) (Zhang Q. et al., 2020). Rosmarinic
acid (25 and 50 mg/kg, p.o., 4 weeks) effectively relieved oxidative
stress (e.g., lipid peroxidation, nitrite levels, and DNA
fragmentation), improved mitochondrial function, prevented
the loss of ATP levels, reduced spinal cord inflammation (e.g.,
TNF-α and IL-6), and, meanwhile, maintained the levels of
phosphorylated adenosine 5′-monophosphate-activated protein
kinase (AMPK) in the sciatic nerves, thus, significantly reversing
the mechanical allodynia and cold hyperalgesia in rats of PIPN
(Areti et al., 2018). In addition, quercetin and rutin (25, 50, and
100 mg/kg; i.p., twice per week for 4.5 weeks) pretreatment before
each OXA injection decreased the levels of MDA, Fos, and
nitrotyrosine, and inhibited inducible nitric oxide synthase
(iNOS) expression in the dorsal horn of the spinal cord in
OXA-treated mice. They relieved the thermal and mechanical
nociceptive response of OXA-induced painful neuropathy using
the tail immersion test in cold water (10°C) and the von Frey test
(Azevedo et al., 2013).

Overall, antioxidant drugs, traditional medicines, extracts, as
well as active ingredients have been proven to open new horizons
for overcoming PIPN. Moreover, more potential molecules and
traditional medicines/extracts with antioxidant activity are
needed to be identified, which would lay the foundation for
developing PIPN-tailored drugs.

NANOTECHNOLOGY-BASED STRATEGIES
TO OVERCOME PLATINUM-INDUCED
PERIPHERAL NEUROPATHY
Recent advances in nanotechnology have great potential in cell-
specific targeting and the therapeutic efficacy improvement. By
learning from the cutting-edge nanotechnology, some
nanostrategies, including markedly improving the tumor-
targeting efficiency of Pt drugs (e.g., OXA, CP, and prodrugs)
and delivering anti-ROS agents (e.g., antioxidant drugs and
inorganic NPs), have been developed to prevent and/or treat
PIPN. Here, this section will give detailed instructions and
feasible enlightenment from these two aspects.
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Tumor-targeting platinum nanosystems
Pt-incorporating polymeric micelles, liposomes (Zhang et al.,
2017; Shen et al., 2020), microemulsions (Guo et al., 2020),
DNA nanosystems (Zhong et al., 2020), and inorganic
nanosystems (Lu et al., 2017) have been developed for
promoting the antitumor effects and, meanwhile, reducing the
accumulation in normal tissues. For example, Yamamoto et al.
designed a novel Pt-based polymeric micelle (NC-4016,
30–40 nm in diameter) that is spontaneously assembled with
1,2-diaminocyclohexane Pt (II) (DACHP, the OXA parent
complex) and the carboxylic moieties of polyethyleneglycol-
poly (glutamate) block copolymer. NC-4016 not only
enhanced the antitumor activity and intratumor
concentrations in the subcutaneous tumor model but also
elongated overall survival in the orthotopic tumor model. As

for mechanical allodynia, the mice in the OXA group showed a
significantly lower mechanical threshold than the mice in the
control group (p < 0.001) and NC-4016 group (p � 0.002),
revealing the lower neurotoxicity of NC-4016 (Yamamoto
et al., 2014). Liposomal formulation of OXA (Lipoxal™) could
also increase the maximum tolerated dose (MTD) with 30 μg
(OXA, 10 μg) and reduce the systemic toxicity (Shi et al., 2016).
Nanotechnology could also be applied to improve Pt-based
combination therapy via co-packaging Pt drugs with other
drugs. For example, OXA derivative and folinic acid were
coloaded into water-in-oil reverse microemulsions (Nano-
Folox) via the nanoprecipitation technique. Compared with
FOLFOX, the combination of Nano-Folox and 5-Fu achieved
significantly stronger therapeutic responses and lower toxicity for
the treatment of colorectal cancer (Guo et al., 2020).

FIGURE 2 | Tumor-targeting Pt nanosystems. (A) PEGylated OXA prodrug (DiPt-TK-PEG2K). Reprinted with permission from Feng et al. (2019). Copyright
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Photoactivatable Pt prodrug-backboned nanosystem [CNP PtCP/si(c-fos)] for light-controlled gene/drug
codelivery. Reprinted with permission from Zhang Q. et al. (2020). Copyright 2020 American Chemical Society. (C) AuNC-Pt for the eradication of hepatocellular
carcinoma (HCC). Reprinted with permission from Yang et al. (2020). Copyright 2020 American Chemical Society. (D) pH-sensitive Pt nanocluster assembly (Pt-
NA) for HCC-targeting delivery. Reprinted with permission from Xia et al. (2016). Copyright 2016 American Chemical Society.
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Pt prodrugs have attracted wide attention because they present
low toxicity in normal tissues and can be activated by stimulus to
release cytotoxic Pt drugs. Up to now, various types of
endogenous/exogenous stimulus-sensitive Pt prodrugs have
been reported, such as pH-sensitive (Feng et al., 2018), ROS-
sensitive (Feng et al., 2019), light-sensitive (He et al., 2018), and
nitroreductase-sensitive prodrugs (Li et al., 2020). For example,
Feng et al. synthesized PEGylated OXA prodrug (DiPt-TK-
PEG2K) via a ROS-liable thioketal spacer and assembled them
with reduction-responsive heterodimer of photosensitizer
pheophorbide A (PPa) and indoleamine 2,3-dioxygenase 1
(IDO-1) inhibitor (NLG919) (Figure 2A). After NIR laser
irradiation (671 nm), PPa generated ROS to trigger the PEG
cleavage, and ∼98% of ROS-liable DiPt-TK-PEG2k could be
degraded after 30-s irradiation. The nanosystem eradicated
67% of the 4T1 tumors and significantly suppressed lung
metastasis of the 4T1 tumor cells without inducing obvious
body weight change or histopathological organ damage of the
tumor-bearing mice (Feng et al., 2019). Moreover, Zhang et al.
developed the photoactivatable Pt(IV)-azide complexes (Pt(IV)
prodrugs) to encapsulate the small interfering RNA of c-fos
(DNA repair-related gene), which was then modified by PEG-
grafted hyaluronic acid (HA-PEG) as a CD44 receptor-targeting
polymer (Figure 2B). The nanosystem exhibited excellent
antitumor efficacy and commendable safety on the
subcutaneous xenograft nude mice under light irradiation,
benefitting from its tumor accumulation ability (Zhang X.
et al., 2020).

Mesoporous silica NPs (MSNs) and metallic NPs as promising
inorganic nanocarriers have been used to capsulate Pt drugs for
enhancing specific uptake by tumor cells and reducing side
effects. Ceresa et al. loaded CP into folic acid (FA)
functionalized-MSNs and found they were highly internalized
in A549 and IGROV-1 tumor cells rather than in neuronal-like
cellular systems (e.g., differentiated SH-SY5Y human
neuroblastoma cells and rat embryonic dorsal root ganglia
sensory neurons). The result suggested that FA-MSNs can
significantly reduce CP-induced neurotoxicity (Ceresa et al.,
2013). In addition, biodegradable magnesium (Mg) and its
alloy with neuron repair ability have attracted increasing
attention. For example, carbon nanotube–calcium phosphate/
chitosan-coated AZ91D Mg alloy (CNTs-CaP/CS-AZ91D)
promoted axon outgrowth of DRG neurons via activating ERK
signaling pathway (Liu T. et al., 2021) and demonstrated its
potential in PIPN treatment. Therefore, Pt-based inorganic
nanosystems for tumor-specific delivery provide a prospective
strategy to delay and even avoid the PIPN via reducing the
accumulation of Pt drug in the peripheral nervous system.

Pt and its prodrugs could be conjugated on the surface of
inorganic NPs, for instance, via the chemical reaction between
specific functional groups (e.g., –NH2 and –COOH) (Yang et al.,
2019). For example, AuNC-Pt could be fabricated by conjugating
the Pt(IV) prodrug to the amine group on the surface of AuNCs
and proved to be effective in limiting Pt toxicity while effectively
maximizing chemotherapeutic efficacy via depleting intracellular
GSH (Yang et al., 2020) (Figure 2C). Besides, Shen et al. reacted
CP with poly(acrylic acid) (PAA)-stabilized Fe3O4/Gd2O3 hybrid

NPs (FeGd-HN) via the reaction between CP and –COOH of
PAA (Shen Z. et al., 2018).

Pt inorganic NPs can serve as a chemotherapeutic agent via
leaching Pt ions. For example, Pt nanocluster (∼2.5 nm)
nanoassembly (Pt-NA) could be constructed by using a pH-
sensitive polymer and hepatocellular carcinoma (HCC)-targeting
SP94 peptide (Figure 2D). Upon exposure to weakly acidic tumor
microenvironment, Pt-NA dissociated and then accelerated Pt
ion release. Pt-NA showed superior therapeutic efficacy and
biocompatibility compared with both CP and sorafenib in CP-
resistant hepatocellular carcinoma orthotopic tumor xenografts
(Xia et al., 2016). Moreover, Pt inorganic NPs also possess CAT-
like activity to relieve tumor hypoxia. For instance, Liu et al.
encapsulated Pt inorganic NPs and hydrophobic clinical
photosensitizer verteporfin in the inner aqueous cavity and
lipid bilayer of liposomes, respectively, which were then
hybridized with RAW264.7 macrophage (Mφ) membranes.
The obtained nano-Pt/VP@MLipo that could convert H2O2

into O2 for enhanced PDT and chemotherapy inhibited the
aggressive 4T1 tumor growth and the lung metastasis, and
prolonged animal survival rate without leading to overt
toxicity (Liu X. L. et al., 2021).

Therefore, the recent revolution in tumor-targeting Pt
nanosystems, including Pt-incorporated/conjugated
nanosystems, Pt prodrugs, and Pt inorganic NPs, provides
many opportunities to improve the tumor-targeting efficiency
of Pt drugs and meanwhile decreased the indiscriminate toxicity
to normal tissues, especially peripheral nervous systems. Indeed,
continuous efforts to develop endogenous/exogenous stimulus-
sensitive tumor-targeting Pt nanosystems are much in need to
bring nanotechnology-enabled toxicity regulation and PIPN
treatment to great success.

Anti-reactive oxygen species nanosystems
Anti-ROS agents, including antioxidant drugs and inorganic NPs,
could be nano-formulated to prevent and treat PIPN. For
example, Khadrawy et al. prepared CUR NPs using HA and
found that CUR NPs (50 mg/kg, p.o., daily for 2 weeks) could
ameliorate the CP-induced neurotoxic effect. CUR NPs
suppressed the increase in cortical levels of lipid peroxidation,
TNF-a, caspase-3, and acetylcholinesterase activity, and reduced
histopathological changes (Khadrawy et al., 2019). Lin et al.
focused on hydroxysafflor yellow A (HSYA), icariin, epimedin
B, and 3,4-dihydroxybenzoic acid (DA), which are the main
neuroprotective ingredients identified in Chinese medicinal
topical formulation of Wen-luo-tong. Considering the poor
solubility of the four neuroprotective compounds, they
developed ethosome gels by employing ethanol,
cinnamaldehyde, phospholipon 90G, and carbopol 980
(Figure 3A). The ethosome gel not only significantly alleviated
the OXA-induced mechanical allodynia and hyperalgesia but also
decreased the numbers of eccentric nuclei of DRG neurons
compared with rat model groups (Figures 3B–D) (Lin et al.,
2020).

Cerium oxide (CeO2) NPs, where Ce as a rare chemical
element can exist in two valence states (i.e., oxidized Ce4+ and
reduced Ce3+), possess excellent ROS scavenging capability (like
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SOD and CAT enzymes) and relieve the oxidative stress in disease
sites (Kim et al., 2019). CeO2 NPs (60 mg/kg, i.p., daily for
4 weeks) offer protection against PIPN in rats since they
significantly increased myelin protein zero (MPZ) expression,
decreased the MDA levels, and reversed the histopathological
changes in sciatic nerves and lumbar spinal cord caused by OXA.
It also attenuated the OXA-induced changes in some key markers
[e.g., myelination (MBP), oxidative stress (nitrotyrosine), and
astrocyte glial cell activation (glial fibrillary acidic protein

(GFAP)] and enzymatic activity (SOD and GPx) (Abdelhamid
et al., 2020). Some CeO2-based therapeutic agents [e.g., CeO2-
decorated MSNs (Wu H. et al., 2018), CeO2-integrated
microneedle patches (Yuan et al., 2021)] and theragnostic
agents (e.g., Fe3O4/CeO2 core–shell NPs) (Wu Y. et al., 2018),
Fe3O4/CeO2-coated layered double hydroxide (LDH)
nanocomposites (Liu et al., 2019), and Fe3O4/CeO2 chitosan
nanococktails (Wu et al., 2021)] have been developed to
scavenge ROS for the treatment and/or diagnosis of ROS-

FIGURE 3 | The four compounds-loaded ethosome gels for PIPN treatment. (A) Schematic illustration of the ethosome gels. (B–D) The neuroprotective effect on
rat in vivo. Behavior response to mechanical stimulation (B), the numbers of eccentric nuclei and multinucleated neurons (C), the morphology of DRG neurons (D); white
arrow, normal nucleoli; orange arrows, eccentric nuclei and multinucleated neurons in different groups.
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related inflammatory diseases. Moreover, Gao et al. synthesized
basalin-coated silver (Ag) NPs in aqueous medium using silver
nitrate, which alleviated neuropathic pain of OXA-treated mice by
decreasing the aluminum (Al) levels in the DRG via chelation (Gao
et al., 2017). Therefore, versatile inorganic NPs could be designed
to eliminate the level of ROS or Al for synergistic treatment
of PIPN.

Stem cells with neuroprotective and neuroregenerative
properties (Puertas-Neyra et al., 2020) have presented
promising therapeutic effects toward experimental sensory
neuropathy associated with sciatic nerve ligation (Gama et al.,
2018) and spinal cord injury (Allahdadi et al., 2019). Santos et al.
found that bone marrow-derived mesenchymal stem/stromal
cells (MSC) completely reverted mechanical allodynia and
thermal hyperalgesia of OXA-treated C57BL/6 mice only by a
single administration, while repeated oral treatment with
gabapentin (70 mg/kg) induced only transient antinociception.
MSCs increased the levels of anti-inflammatory cytokines [IL-10
and transforming growth factor-β (TGF-β)] and the gene
expression of antioxidant factors (SOD and Nrf-2) in the
spinal cord of neuropathic mice, as well as reduced the nitrite
and MDA spinal levels, thus, reestablishing the redox
homeostasis in the spinal cord (Dos Santos et al., 2021). In
addition, the mitochondrial atypia that was observed in sciatic
nerve and DRG of PIPN mice was markedly decreased after MSC
treatment (Oliveira et al., 2021). Besides activating anti-
inflammatory and antioxidant pathways, MSCs can also serve
as a promising drug carrier and, thus, be further developed to
improve therapeutic effect toward PIPN.

By utilizing the cutting-edge nanotechnology, strategies
including markedly improving the tumor-targeting efficiency
of Pt drugs or delivering anti-ROS agents have been developed
to prevent and/or treat PIPN. To further ultimately overcome
PIPN, we can focus on developing synergistic strategy of tumor-
targeting Pt nanosystems and anti-ROS agents. Additionally,
ROS-sensitive theragnostic nanosystems are in demand for the
selective diagnosis and treatment of ROS-related PIPN.

CONCLUSION

By focusing on the ROS-related PIPN mechanism, both
antioxidant drugs (e.g., small molecular drugs, traditional
medicines/active ingredients) and tailor-made nanosystems
(e.g., tumor-targeting Pt nanosystems and anti-ROS
nanosystems) have demonstrated to be effective in the
prevention and treatment of PIPN. Despite the rigorous
efforts, PIPN that affects the quality of life of patients and
leads to dose reductions or discontinuation, still remains a
significant clinical problem. Thus, there are some issues that
still need to be addressed in order to improve the preventive and
therapeutic outcomes in PIPN.

First, the distinction between acute and chronic PIPN in terms
of recruitment, animal models, and assessment methods is

needed, where the majority of clinical and animal studies
focused on the chronic PIPN as a dose-limiting toxicity.
Additionally, since neurons are permanent cells with active
functions (e.g., signal transduction via both electric signals and
chemical signals), researchers could pay attention to the influence
of Pt drugs and overproduced ROS to signal conduction and
transduction processes as well as synapse damage.

Second, how to reduce the Pt accumulation in the
peripheral nervous system is extremely critical to prevent,
treat, and even overcome the PIPN. Regarding the
antioxidant agents, their impact on therapeutic effect of Pt
drugs after continuous administration cannot be ignored.
Besides, active agents that could eliminate Pt in the
peripheral nervous system need doubtlessly to be explored.
More importantly, Pt-based tumor-targeting nanosystems and
activatable nanosystems have broad prospects and huge
potential in improving the therapeutic efficiency exclusively
at tumor sites, while avoiding the possible toxic effect toward
the peripheral nervous system. Also, their clinical applications
should be taken into consideration to promote translational
research.

All in all, the prevention and treatment of PIPN still remain a
significant and unmet clinical need, and consequently, high-
quality researches toward related mechanisms, therapeutic
drugs, and corresponding nanosystems are intensely expected
for reliable and effective results. We hope this review can inspire
the design and fabrication of PIPN-tailored drug and
nanosystems for prevention and individualized treatment to
raise the clinical benefits in patients treated with Pt-based
chemotherapy.
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GLOSSARY

AChE Acetylcholinesterase

AMPK adenosine 5′-monophosphate-activated protein kinase

CAT catalase

CCL2 chemokine ligand 2

CeO2 cerium oxide

CP cisplatin

Ctr1/2 copper transporters 1/2

CUR curcumin

DA 3,4-dihydroxybenzoic acid

DMF dimethyl fumarate

DRG dorsal root ganglia

EFSF extract of Forsythiae suspensa fruits

EFVF extracts of Forsythia viridissima fruits

FA folic acid

GFAP glial fibrillary acidic protein

GJG goshajinkigan

GPx glutathione peroxidase

GST glutathione-S-transferase

HCC hepatocellular carcinoma

HGWD Guizhi Wuwu decoction

HSYA hydroxysafflor yellow A

IDO-1 indoleamine 2,3-dioxygenase 1

IENFs intraepidermal nerve fibers

IL-1β interleukin-1β

IL-6 interleukin-6

iNOS inducible nitric oxide synthase

JHGWD Jiawei Huangqi Guizhi Wuwu decoction

MATE multidrug and toxin extrusion proteins

MBP myelination

MDA molondialdehyde

Mg magnesium

MMF metabolite monomethyl fumarate

MNCV motor nerve conduction velocity

MnSOD manganese superoxide dismutase

MPZ myelin protein zero

MSC mesenchymal stem/stromal cells

MSNs mesoporous silica nanoparticles

MTD maximum tolerated dose

NF-κB nuclear factor kappa-B

Nrf2 NF-E2-related factor 2

NPs nanoparticles

OCTs organic cation transporter

OXA oxaliplatin

PAA poly (acrylic acid)

PIPN platinum-induced peripheral neuropathy

PPa photosensitizer pheophorbide A

Pt platinum

ROS reactive oxygen species

RyR ryanodine receptor

SNCV sense nerve conduction velocity

SOD superoxide dismutase

TGF-β transforming growth factor-β

TNFR1 necrosis factor receptor 1

TNF-α tumor necrosis factor α

TRP transient receptor potentials

TRPA1 transient receptor potential ankyrin 1

TRPM8 transient receptor potential melastatin 8
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