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ABSTRACT Chicken is a major source of dietary pro-
tein worldwide. The dispersion and movement of chick-
ens constitute vital indicators of their health and status.
This is especially evident in Taiwanese native chickens
(TNCs), a local variety which is high in physical activ-
ity when healthy. Conventionally, the dispersion and
movement of chicken flocks are observed in patrols.
However, manual patrolling is laborious and time-con-
suming. Moreover, frequent patrols increase the risk of
carrying pathogens into chicken farms. To address these
issues, this study proposes an approach to develop an
automatic warning system for anomalous dispersion and
movement of chicken flocks in commercial chicken
farms. Embendded systems were developed to acquire
videos of chickens from overhead view in a chicken
house, in which approximately 20,000 TNCs were raised
for a period of 10 wk. Each video was 5-min in length.
The videos were transmitted to a remote cloud server
and were converted into images. A You Only Look Once
—version 7 tiny (YOLOv7-tiny) object detection
model was trained to detect chickens in the images. The
dispersion of the chicken flocks in a 5-min long video was
calculated using nearest neighbor index (NNI). The
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movement of the chicken flocks in a 5-min long video
was quantified using simple online and real-time track-
ing algorithm (SORT). The normal ranges (i.e., 95%
confidence intervals) of chicken dispersion and move-
ment were established using an autoregressive inte-
grated moving average (ARIMA) model and a
seasonal autoregressive integrated moving average with
exogenous factors (SARIMAX) model, respectively.
The system allows farmers to check up on the chicken
farm only when the dispersion or movement values were
not in the normal ranges. Thus, labor time can be saved
and the risk of carrying pathogens into chicken farms
can be reduced. The trained YOLOv7-tiny model
achieved an average precision of 98.2% in chicken detec-
tion. SORT achieved a multiple object tracking accu-
racy of 95.3%. The ARIMA and SARIMAX achieved a
mean absolute percentage error 3.71% and 13.39%,
respectively, in forecasting dispersion and movement.
The proposed approach can serve as a solution for auto-
matic monitoring of anomalous chicken dispersion and
movement in chicken farming, alerting farmers of
potential health risks and environmental hazards in
chicken farms.
Key words: Convolutional neural network (CNN), Embedded system, Simple online and real-time tracking
(SORT), Taiwanese native chickens (TNCs), You only look once (YOLO)
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INTRODUCTION

Chicken is a major source of dietary protein world-
wide. In 2022, 122 million tons of chicken products were
produced globally (Food and Agriculture Organization,
2022). In Taiwan, approximately 680,000 metric tons of
chicken products were produced in 2021, which
accounted for 27.63% of the total animal husbandry
sales for the year and generated revenue of $53.1 billion
New Taiwan dollars (Council of Agriculture, Executive
Yuan, Taiwan, 2022). Notably, Taiwanese native chick-
ens (TNCs) accounted for around 30% of total domestic
chicken production, representing a large industry sector
with different systems than conventional broilers. The
growth of the chicken industry has not seen any signs of
slowing down yet. However, with the increasing empha-
sis on animal welfare, the chicken industry has encoun-
tered some challenges within chicken farming.
The dispersion and movement are 2 preliminary diag-

nostic indicators to assess the health and welfare of
chicken stocks (Ben Sassi et al., 2016; Sakamoto et al.,
2020). TNCs are high in physical activity when healthy,
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Figure 1. Configuration of the chicken farm: (A) feeding pipeline,
(B) nipple drinkers, and (C) cooling pad system.
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and thus are predominantly raised using floor rearing
method with high stocking density (Figure 1). In Tai-
wan, a typical commercial chicken farm is approximately
100 £ 15 m2 in dimension, allowing TNCs to move
around freely. Frequent movement of TNCs is desired
because exercise improves the meat quality of chickens
and improves their economic value. Also, TNCs are usu-
ally raised for 10 wk. Because of the high physical activ-
ity, high degrees of freedom for moving around, and long
raising periods of time, litter in certain areas of a chicken
farm can accumulate moisture or ammonia. Chickens
avoid these areas and distribute unevenly. Also, the accu-
mulated moisture or ammonia increases the chance of
chicken leg deformities, such as lameness and footpad
dermatitis (Karaarslan and Nazl{g€ul, 2018), ultimately
affecting chicken movement (Sørensen et al., 2000) and
eventually influencing the meat quality of chicken (El-
Deek and El-Sabrout, 2019). Thus, monitoring the dis-
persion and movement of chicken flocks is crucial.

Conventionally, evaluating the dispersion and move-
ment of chicken flocks is conducted by experienced farm
patrolmen. The behavior of a chicken flock is dynamic.
Frequent observation of chicken dispersion and move-
ment is needed. However, patrolling is time-consuming
and labor-intensive, and the observation can be subjec-
tive. In addition, frequent manual patrolling increases
the risk of introducing pathogens into the chicken farm
(Hermans et al., 2012). Furthermore, due to a shortage
in the labor force, the frequency of patrols in Taiwan has
decreased significantly (Goh et al., 2023). From 2016 to
2020, the agricultural labor force in Taiwan declined by
1.1% on average annually (Directorate General of Bud-
get, Accounting and Statistics, Executive Yuan, Taiwan,
2021). Moreover, middle-aged and older individuals
accounted for over 80% of the total labor force (Huang,
2015). Therefore, developing an automatic approach for
observing the dispersion and movement of chicken flocks
in chicken farming is an urgent issue.

Recently, convolutional neural networks (CNN) have
become a powerful tool for solving complex machine-
vision problems. CNNs comprise millions of neurons
that execute convolutional and pooling operations
(O’Shea and Nash, 2015). A properly trained CNN can
directly detect specific objects in complex images, such
as images with a high degree of variation in illumination
(Figure 2) (Pal et al., 2021). Zhuang and Zhang (2019)
detected broilers from chicken farm images and identi-
fied the health status of the broilers by applying a CNN
model of an improved feature fusion single-shot multi-
box detector architecture. Wang et al. (2019) detected
egg breeders from self-breeding cage images and identi-
fied their behavior by employing a CNN model of You
Only Look Once—version 3 (YOLOv3; Redmon and
Farhadi, 2018) architecture. Liu et al. (2021) detected
broilers in a poultry house and identified the health of
the broilers by utilizing a CNN model of YOLOv4 archi-
tecture. Jaihuni et al. (2023) detected broilers in an
experimental farm and monitored their behaviors by
using a CNN model of YOLOv5 architecture.
By integrating tracking algorithms with detection

algorithms, a solution is provided for effectively quanti-
fying animal movements. Zhang et al. (2019) utilized 3
CNN algorithms to detect pigs on a commercial pig farm
and tracked their trajectories using a discriminative cor-
relation filter (Danelljan et al., 2017). Cowton et al.
(2019) detected pigs on a farm using a faster region-
based CNN (Faster R-CNN; Ren et al., 2015) model
and tracked them by applying a simple online and real-
time tracking (SORT) algorithm (Bewley et al., 2016)
and DeepSORT algorithm (Wojke et al., 2017). Chick-
ens in a chicken coop were localized using a Faster R-
CNN model and were tracked by executing minimum
distance matching and color feature matching (Lin
et al., 2018). Sun et al. (2019) employed YOLOv3 to
detect broilers in a breeding house and subsequently
tracked them using a Kalman filter (Kalman, 1960) and
the Hungarian algorithm (Kuhn, 1955).
The movement and dispersion of chicken flocks change

with age and the time of day (i.e., time-series data).
Autoregressive moving average models are machine
learning models for analyzing time-series data. Several
studies have applied these models to predict animal
behaviors and production. The migration of silver eels
was forecasted using seasonal autoregressive integrated
moving average with exogenous factors (SARIMAX;
Box et al., 2015). To mitigate the eels’ mortality, tur-
bines of hydroelectric power plants were turned down
when the predicted migration rates exceeded a certain
threshold (Trancart et al., 2013). Salau and Krieter
(2021) determined the resource usage of dairy cows,
including lying cubicles, moving area, licking stone, cow
brush water, and feeding trough, using autoregressive
integrated moving average (ARIMA; Box et al., 2015).
The daily milk production of cows was predicted using
ARIMA (da Rosa Righi et al., 2020). Khatib et al. (2021)
gathered early egg production in India and forecasted
future values using ARIMA. Uzundumlu and Dilli
(2022) employed ARIMA to predict the production of
chicken meat in the top chicken-producing countries.
Given that the dispersion and movement of chicken



Figure 2. Images acquired on a naturally illuminated chicken farm under various illumination conditions: (a) high illumination, (b) high con-
trast, (c) low illumination, and (d) dark illumination. The images also show various chicken dispersion levels.
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flocks show time-series patterns, autoregressive moving
average models should be suitable for modeling and fore-
casting these 2 indicators.

In this study, we propose an approach to develop an
automatic warning system for anomalous dispersion and
movement of TNCs in a commercial chicken farm. For
the remainder of this manuscript, the term “chicken” spe-
cifically refers to red-feathered TNC, which is a popular
variety in Taiwan. A tracking-by-detection strategy was
employed by combining a chicken localization deep
learning model with tracking algorithms. Chicken dis-
persion and movement were then explicitly quantified
and analyzed for 2 batches raised in different seasonal
periods. This study compared the chicken dispersion
and movement between 2 batches and used machine
learning forecasting models to identify outliers. These
forecasting models enable the automatic detection of
Figure 3. Schematic of the proposed automa
anomalous dispersion and movement events that can
assist chicken farmers in identifying potential health
risks and environmental hazards.
MATERIALS AND METHODS

Overview of the Proposed Method

The proposed method for automatically monitoring
chicken dispersion and movement consisted of: a) embed-
ded systems for capturing overhead view videos in
chicken farms, b) deep learning model to localize chicken
in the video, c) 2 algorithms to quantify the dispersion
and movement of chicken flocks, d) machine learning
models to forecast the chicken dispersion or movement,
and e) anomalous dispersion and movement warnings
(Figure 3). A customized embedded system was
tic chicken movement monitoring approach.
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developed to record overhead view videos and collect
environmental information on the farm. The videos and
environmental information were streamed back to a
remote cloud server through 4G cellular connection. The
locations of chickens were identified using YOLOv7-tiny
(Wang et al., 2022). The dispersions of the chicken flocks
were next quantified using nearest neighbor index (NNI;
Clark and Evans, 1954). The movements of chicken
flocks were also quantified using chicken locations in con-
secutive frames and SORT. The dispersion and move-
ment of the chicken flocks throughout their growth were
modeled using an ARIMA model and a SARIMAX
model, respectively. The dispersions or movements out-
side the 95% confidence intervals of the ARIMA and
SARIMAX predictions were considered warnings.
Experimental Site

Chicken images were collected from the Hsin-Ho
chicken farm (size: approximately 113 £ 15 m2) of Lea-
dray Livestock Co., Ltd. (Huwei, Yunlin, Taiwan;
Figure 1). The chicken farm is equipped with feeding
pipelines, nipple drinkers, and a cooling pad system. To
achieve natural illumination, the sidewalls of the chicken
farm are partially composed of transparent glass. Thus,
the illumination conditions of the images collected on
the farm varied considerably (Figure 2). The farm had
approximately 20,000 red-feathered TNCs (Pham et al.,
2013) at the time of the study. The chickens are usually
raised for 80 d before being slaughtered.
Figure 4. Detection results of ArUco markers.
Video Collection and Image Annotation

Six embedded systems were customized to record vid-
eos and collect environmental information on the
chicken farm. Each embedded system comprised a sin-
gle-board computer (Raspberry Pi 3 Model B+; Rasp-
berry Pi Foundation, Cambridge, UK), a wide-angle
distortion-free USB camera (KS2A17; Shenzhen,
China), and a humidity and temperature sensor
(SHT20; Sensirion, St€afa, Switzerland). Given that
chickens are diurnal animals and the chicken house is
naturally illuminated, cameras without night-vision
functions were chosen.

The embedded system was installed 3 m above the lit-
ter in the chicken farm to record videos of the chicken
flocks from an overhead view. The system acquired vid-
eos at a resolution of 1,920 £ 1,080 pixels and a frame
rate of 5 frames per second (fps). A camera covered an
area of approximately 5.3 £ 3 m2. A video of 5 min was
saved as a file. The videos were acquired continuously
between 06:00 and 18:00. However, due to processing
delays for video storage and transmission, only approxi-
mately 9 videos were acquired and stored each hour,
resulting in a total of approximately 108 videos daily
(between 06:00 and 18:00) per embedded system. The
humidity and temperature of the chicken farm were
measured at 1-min intervals. The videos and
environmental information were uploaded to cloud stor-
age via 4G cellular connection.
Videos were collected in 2020 and 2021. In 2020, the

videos of chicken flocks were collected to train the model
for chicken detection and tracking. A total of 11,712 h of
videos were collected when the chickens were at the ages
between 4-wk-old and 10-wk-old. Subsequently, images
were converted from the videos. To prevent overfitting,
structural-similarity index measure (SSIM; Wang
et al., 2004) was used to exclude images with high levels
of similarity. A threshold of 0.8 was used for SSIM. A
1,000 images were collected. Among the images, 800 and
200 were used for training and testing, respectively. The
chickens visible in the images, whether entirely or par-
tially, were annotated. A total of 146,516 chickens were
annotated in the images. On average, each image con-
tained 162.43 chickens, with a standard deviation of
36.79 chickens. The annotation was performed by the
authors using LabelImg (Tzutalin, 2015).
In 2021, videos of chicken flocks were collected to

develop the proposed method for long-term modeling
and warning of chicken dispersion and movement. In
2021, 2 batches of chickens were raised: winter batch
(January to March) and summer batch (May to July).
Videos of chicken flocks aged between 4 and 10 wk were
collected. The collection was performed continuously
between 06:00 and 18:00 throughout these 2 periods.
The chicken flocks younger than 4-wk-old were raised in
a specific area with heat lamp. The chicken flocks older
than 10-wk-old were gradually sent for slaughter. Thus,
the video collected when the chicken flocks younger than
4-wk-old or older than 10-wk-old were disregarded. Cer-
tain videos were missing due to unstable internet con-
nection or maintenance of the embedded system. A total
of 371.0 h of videos were collected. The dispersion and
movement of each 5-min video were subsequently quan-
tified using the proposed approaches.
Image Calibration

The conversion factor from pixel to physical distance
was determined to quantify the spatial dispersion of
chicken flocks and their movement. For this process, 4
binary square fiducial markers were placed in the field of
view of a camera (Figure 4). The positions of the
markers were detected using the OpenCV library ArUco
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(Garrido-Jurado et al., 2014). The conversion factor a
was defined as:

a ¼ lr
lp
; ð1Þ

where lr and lp are the physical distance and pixel dis-
tance, respectively, between 2 markers. The average
conversion factor of the marker pairs was used.
Automated Chicken Detection

YOLOv7-tiny, a lightweight version of YOLOv7
(Wang et al., 2022), was used to detect chickens in the
collected images. YOLOv7-tiny was chosen because of
its optimized memory usage, efficient processing time,
and satisfactory performance. With these characteris-
tics, YOLOv7-tiny has great potential to be used on
edge devices. See Discussion section for more details.
YOLOv7-tiny comprises a backbone CNN, a neck, and a
head (Figure 5). The backbone CNN and neck generate
feature maps from an input image. The head then makes
predictions for classes, bounding boxes, and confidence
scores of objects of interest (i.e., chickens) using the fea-
ture maps. Subsequently, nonmaximum suppression
(Neubeck and van Gool, 2006) with a threshold of 0.65
was applied to the output of the head to reduce the num-
ber of bounding boxes for the same object. The dimen-
sions of the input images to the YOLOv7-tiny model
were set to 416 £ 416 pixels.

The YOLOv7-tiny model was trained using the
PyTorch framework. During training, a region of inter-
est (RoI; e.g., a region in an input image that com-
prised a chicken) was labeled as positive if the
intersection-over-union (IoU) between the RoI and
ground truth (GT) was higher than 0.65. Online image
augmentations were implemented to enhance the
Figure 5. Architectu
robustness of the YOLOv7-tiny model to be trained.
The augmentation operations included hue, satura-
tion, brightness, horizontal flipping, mosaic, and mix-
up. The augmentation operations of hue, saturation,
and brightness were applied to increase the diversities
of the images in color. The 3 operations were applied
by multiplying random values of 1 § 0.71, 1 § 0.458,
and 1 § 0.015, respectively, to the hue, saturation, and
brightness of a training image. The augmentation
operations of horizontal flipping, mosaic, and mix-up
were applied to increase the diversities of the images in
object (i.e., chickens) arrangements. The 3 operations
were applied to a training image with probabilities of
0.415, 0.8, and 0.0362, respectively, in horizontal flip-
ping, mosaic, and mix-up. Stochastic gradient descent
(SGD; LeCun et al., 1989) was used as the optimizer.
The momentum and weight decay of SGD were set to
0.9 and 0.0005, respectively. The batch size was set to
16. The model was trained for 200 epochs with an ini-
tial learning rate of 0.001. The learning rate decay fac-
tor of 0.01 was applied at the third training epoch. A
graphics processing unit (GeForce Titan RTX, NVI-
DIA; Santa Clara, USA) was used to expedite the
training process.
Spatial Dispersion of Chicken Flocks

The spatial dispersion of chicken flocks was quantified
using the NNI proposed by Clark and Evans (1954). The
NNI represents the ratio of the mean observed distance
between chickens do 2R to the expected mean distance
between chickens de 2R in an image:

Dispersion ¼ do=de; ð2Þ
The mean observed distance between chickens do is

defined as:
re of YOLOv7-tiny.



Figure 6. Dispersion values of chicken images with various spatial dispersion levels.
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d0 ¼
PN

i¼1 di
N

; ð3Þ

where di is the distance between a chicken and its near-
est neighbor, and N 2N is the number of chickens in the
image. The expected mean distance between chickens de
2R is defined as:

de ¼ 0:5ffiffiffi
N
A

q ; ð4Þ

where A2R is the total number of pixels in the image.
Figure 6 presents the dispersion values derived from
chicken images with different levels of spatial dispersion,
ranging from sparsely populated to densely populated
images. A dispersion value was calculated for a video of 5-
min in length by averaging the dispersion values of each
frame, yielding a total of 108 dispersion values daily.
Movement of Chicken Flocks

Chickens detected in consecutive frames by the
YOLOv7-tiny model were tracked using the SORT algo-
rithm. The SORT algorithm comprises a Kalman filter
and Hungarian algorithm. In this study, the Kalman fil-
ter was used to estimate the centroid coordinates,
bounding box dimensions (area and aspect ratio), and
changes in the centroid coordinates and bounding box
dimensions of chickens in a subsequent frame by using
the same information on chickens in the previous frame.
The Hungarian algorithm was implemented to optimize
the linear assignment of the same chickens in 2 consecu-
tive frames. The distances between the chicken bound-
ing boxes in the specific IoU were used as the metric for
executing the tracking algorithm. The threshold of IoU
was set to 0.3 to distinguish 2 chickens in consecutive
frames. The association between 2 chickens in consecu-
tive frames was rejected if the IoU was less than 0.3.
Each tracking iteration was performed for a video of 5-
min length, yielding a total of 108 movement readings
daily.
Long-Term Analysis of Chicken Dispersion
and Movement

An ARIMA model was used to predict chicken disper-
sion and the dispersion’s safe zone throughout the
chickens’ growth period. According to the observed data
(Figure 10), dispersion values increased along with the
growth of chickens. Thus, dispersion was considered as a
time-series variable. The ARIMA model predicted the
mean dispersion value of a day using the daily mean dis-
persion values of the past days. An ARIMA model has 3
parameters: the order of the autoregressive model, the
degree of differencing, and the moving-average model.
The degree of differencing was set to 1, since the disper-
sion values were not stationary. The order of the autore-
gressive model and the order of the moving-average
model were set to 3 and 4, respectively, using the partial
autocorrelation function, autocorrelation function, and
Akaike information criterion. The ARIMA model also
predicted the 95% confidence interval of the mean dis-
persion value of a day based on the distribution of the
dispersion values of the past days. The 95% confidence
interval of the mean dispersion value was defined as the
safe (green) zone. The dispersion values outside the 95%
confidence interval were defined as yellow warnings. If
the yellow warnings persisted for an hour, the dispersion
values were further redefined as red warnings.
A SARIMAX model was employed to predict chicken

movement and determine the safe zone for their move-
ment throughout their growth period. The chicken’s
movement displayed a seasonal pattern, with peak activ-
ity in the morning and a decrease around noon daily
(Figure 10 and Figure 11). Therefore, the movement
was recognized as a time-series variable characterized by
seasonal patterns. The SARIMAX model predicted the
mean movement values of an hour using the hourly
mean movement values of the past days. The hourly
mean movement values fluctuated throughout the day,
along with the temperature changes. Therefore, the tem-
perature was considered an external variable to forecast.
Moreover, the SARIMAX model includes 7 parameters,
the order of the autoregressive model, the moving-aver-
age model, the seasonal autoregressive model, the sea-
sonal moving-average model, the degree of differencing,
seasonal differencing, and the period of the seasonality.
The degree of differencing and seasonal differencing
were set to 0 and 1, respectively, since the movement
values with seasonal patterns were not stationary. The
order of the autoregressive model, moving-average
model, seasonal autoregressive model, and seasonal mov-
ing-average model were set to 0, 0, 3, and 2, respectively,
using partial autocorrelation function, autocorrelation
function, and Akaike information criterion. The period
of the seasonality was set to 12 due to the maximum
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amount of hourly mean movement values collected per
day. The SARIMAX model predicted the 95% confi-
dence interval of the movement values of a day based on
the distribution of the movement values of the past
days. The 95% confidence interval of the movement val-
ues was defined as the safe (blue) zone. The movement
values outside the 95% confidence interval were defined
as yellow warnings. If the yellow warnings persisted for
an hour, the movement values were further redefined as
red warnings.
Figure 7. Training loss and accuracy of YOLOv7-tiny model.
RESULTS

Training of the Chicken Detection Model

The total loss, bounding box loss, classification loss,
an average precision at an IOU threshold of 0.5
(AP@50; Everingham et al., 2010) and classification
accuracy during the training of the YOLOv7-tiny model
were illustrated (Figure 7). The total loss and classifica-
tion accuracy reached 0.3 and 98.2%, respectively, by
the end of the training. This observation provides evi-
dence that the model successfully acquired and assimi-
lated the discernible attributes of the chickens depicted
in the images.
Performance of the Chicken Detection Model

The performance of the trained YOLOv7-tiny model
was evaluated using the 200 test images and receiver
operating characteristic (ROC) analysis (Fawcett,
2006). In the analysis, the threshold for the confidence
score was set to 0.25. A detection was considered a true
positive if the IoU between a bounding box proposed by
Figure 8. Detection results under various illumination conditions: (a)
illumination.
the model and a GT exceeded 0.65; otherwise, it was
considered a false positive (FP). Figure 8 illustrates the
chicken detection performance of the model. Chickens
were successfully detected under various illumination
and contrast. The trained YOLOv7-tiny model achieved
an overall precision of 89.78%, an overall recall of
93.33%, an overall F1-score of 91.48%, and an AP@50 of
94.24% (Table 1).
Performance in Chicken Tracking

The performance of the SORT algorithm (Table 2)
was evaluated using a video, multiple object tracking
(MOT) metrics (Milan et al., 2013), and identification
(ID) metrics (Ristani et al., 2016). The video contained
225 consecutive frames (45 s). A total of 114 GT objects
high illumination, (b) high contrast, (c) low illumination, and (d) dark



Table 1. ROC analysis of trained YOLOv7-tiny model.

Illumination
conditions Precision (%) Recall (%) F1-score (%) AP (%)

High illumination 90.26 93.67 91.93 94.52
High contrast 90.22 91.36 90.79 93.48
Low illumination 90.12 95.52 92.74 95.72
Dark illumination 88.53 92.46 90.45 93.26
Overall 89.78 93.33 91.48 94.24

ROC = receiver operating characteristic; F1-score = harmonic mean of
precision and recall; AP = Average precision.
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(i.e., chickens) appeared in the video. Since the field of
view of the camera could not encompass the whole
chicken farm, chickens moving in and out the view area
of the camera affected the number of GT chickens in
each frame. In the video, the number of GT chickens in
each frame ranged between 95 and 101, with an average
of 98.0. Figure 9 depicts the SORT results. Regarding
the MOT metrics, SORT achieved a MOT accuracy
(MOTA) of 94.5% and MOT precision (MOTP) of
84.4%. For the ID metrics, SORT achieved an identifica-
tion precision of 94.5%, identification recall of 93.9%,
and identification F1-score (IDF1) of 94.3%. The proc-
essing speed for chicken tracking using an Intel Xeon
E5-2620 CPU was 19.1 fps.
Long-Term Observation of Chicken
Dispersion and Movement

The mean dispersions, mean movements, and their
95% confidence intervals for the videos collected in 2021
were illustrated (Figure 10). The results indicate that
the mean dispersions increased gradually (Winter batch:
r = 0.933; Summer batch: r = 0.892) and the mean
movement decreased gradually (Winter batch:
r = �0.314; Summer batch: r = �0.303) as the chickens
grew. The mean movement decreased steadily on a
weekly basis (ANOVA; Winter batch: F = 135.935, P <
0.001; Summer batch: F = 320.524, P < 0.001) (t test;
Winter batch: twk 4 vs. wk 10 = 20.289, Pwk 4 vs. wk 10 <
0.001; Summer batch: twk 4 vs. wk 10 = 17.777, Pwk 4 vs. wk

10 < 0.001).
The movements and temperatures by hour from 06:00

to 18:00 in the 2 batches were illustrated (Figure 11).
The figure shows that the movements peaked in the
morning and bottomed around noon. Scheff�e’s multiple
comparison tests indicated that the mean movements of
the chickens between 12:00 and 14:00 were significantly
lower than that of those between 6:00 and 10:00
Table 2. Performance of SORT on chicken video sequence.

Object GT MT ML
IDsw
(%) #

Frag
(%) #

FP
(%) #

Chicken 114 108 2 0.3 0.5 1.9

GT = number of ground truths; MT = number of mostly tracked trajecto
switches; Frag = track fragmentations; FP = number of false positives; FN =
MOTP = multiple object tracking precision; IDP = identification precision; ID
lower scores denote better performance.
(ANOVA; F = 1515.007, P < 0.001). The indoor mean
temperatures, however, had an opposite trend.
Long-Term Modeling and Warning of
Chicken Dispersion and Movement

The proposed approach was applied to model the
chicken dispersions and to generate warnings when
anomalous chicken dispersions were observed
(Figure 12). The ARIMA model achieved a mean
absolute percentage error (MAPE) of 3.71%. The
predicted dispersions followed the increasing trend of
dispersion values when the chickens grew. Anomalous
(i.e., yellow- and red-warning) dispersion values were
also successfully identified. In the winter batch, 7.4%
of the dispersion values were in the yellow-warning
zone. Within the summer batch, 5.4% of the disper-
sion values fell within the yellow-warning zone, while
1.4% of the values crossed into the more critical red-
warning zone.
The proposed approach was applied to model the

chicken movements and to generate warnings when
anomalous chicken movements were observed
(Figure 13). The SARIMAX model achieved a MAPE of
13.39%. The predicted movements followed the decreas-
ing trend of movement values as the chickens grew. As a
result, anomalous (i.e., yellow- and red-warning) move-
ment values were successfully identified. In the winter
batch, 11.6% and 1.2% of the movement values were in
the yellow-warning zone and red-warning zone, respec-
tively. In the summer batch, 5.2% of the movement val-
ues were in the yellow-warning zone.
DISCUSSION

Performance of the Chicken Detection Model
Under Various Illumination

The precision−recall curves (Manning and Schutze,
1999) of the trained YOLOv7-tiny chicken detection
model under various illuminations were illustrated
(Figure 14). Based on the precision−recall curves, the
performance of the trained YOLOv7-tiny chicken detec-
tion model was slightly affected by illumination condi-
tions. The model exhibited suboptimal performance
under the low-illumination condition (Table 1). Never-
theless, chickens are diurnal animals; therefore, detect-
ing chickens under dark conditions may not be necessary
if natural illumination is used.
FN
(%) #

MOTA
(%) "

MOTP
(%) "

IDP
(%) "

IDR
(%) "

IDF1
(%) "

2.6 95.3 84.4 94.5 93.9 94.3

ries; ML = number of mostly lost trajectories; IDsw = number of identity
number of false negatives; MOTA = multiple object tracking accuracy;
R = identification recall; IDF1 = identification F1-score; "/# = higher/



Figure 9. Chicken tracking using SORT algorithm.

Figure 10. Dispersion observations in the (a) winter and (b) summer batches and movement observations in the (c) winter and (d) summer
batches.
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Figure 11. Daily chicken movement and temperature distributions in the (a) winter and (b) summer batches. The alphabets at the top of the
box plots denote the groups of Scheff�e’s multiple comparison tests.
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Analysis in False-Negative Chicken
Detection

False-negative (FN) detection of chickens were exam-
ined (Figure 15). Overlapping and occlusion were the 2
major sources of FN detections. Occasionally, a high
degree of overlap between 2 chickens in an image caused
these 2 chickens to be misidentified as 1 chicken (blue
dashed boxes in Figure 15a−c). The chickens occluded
by pipelines, pillars, or drinkers in the images were often
undetected (yellow dashed boxes in Figure 15d−f).
Additionally, when several chickens were clustered
together in an image, 1 chicken may be repeatedly
detected as multiple chickens (black dashed boxes in
Figure 15g−i).
Figure 12. Dispersion monitoring results in the (a) winter and (b) sum
below the safe zone. The dispersion value of ii was a yellow warning above th
zone. The dispersion values of v was a red warning above the safe zone.
Analysis in Unsuccessful Chicken Tracking

Unsuccessful tracking of the chickens in the tracking eval-
uation video was further examined (Figure 16). The track-
ing errors included FPs, FNs, and identity switches (IDsw).
FPs were mainly caused by multiple detections of the same
chicken by the trained YOLOv7-tiny model (I and II in
Figure 17a). FNs occurred when the trained YOLOv7-tiny
model failed to detect chickens because of occlusions (III and
IV in Figure 17b). These FPs and FNs could be reduced by
improving the performance of the chicken detection model.
Occasionally, chicken detection bounding boxes exhibited a
high degree of overlap with each other, causing IDsw of the
chickens (V and VI in Figure 17c). The phenomenon of IDsw
may not be avoidable in a crowded chicken farm.
mer periods. The dispersion values of i, iii, and iv were yellow warnings
e safe zone. The dispersion value of vi was a red warning below the safe



Figure 13. Movement monitoring results in the (a) winter batch and (b) summer batch. The movement values in ii and iii were yellow warnings
below the safe zone. The movement value of iv was a yellow warning above the safe zone. The movement value of i was a red warning above the safe
zone. See the Appendix for the videos of i, ii, iii, and iv.
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Patterns in Chicken Dispersion and
Movement

An increasing pattern in chicken dispersion was
observed (Figure 10). The space of the chicken farm was
limited, and the space between the chickens reduced as
they grew. Consequently, the reduction in space avail-
ability resulted in an increasing trend in dispersion and
a decreasing trend in movement. A decreasing pattern in
chicken movement was observed (Figure 10a and b). On
average, the mean movement values of the chickens
aged between 4 and 7 wk were 92.4 mm/s and
67.3 mm/s, respectively, for the winter and summer
batches. By contrast, the mean movement values of the
chickens aged between 8 and 10 wk were 83.2 mm/s and
Figure 14. Precision−recall curves derived for YOLOv7-tiny
model.
51.3 mm/s, respectively, for the winter and the summer
batches. A negative correlation between movement and
temperature was observed (Figure 10c and d). Statisti-
cal test indicates that the summer and winter move-
ments significantly differed (t test: t = 31.362, P <
0.001). The indoor mean temperatures of the summer
and winter batches were 28.4°C and 25.2°C, respectively.
The high temperatures in summer may reduce the move-
ment of chicken flocks. By contrast, the temperature did
not seem to have caused any variation in chicken disper-
sion. A negative correlation between hourly movement
and temperature was observed (Figure 11). The correla-
tion coefficients between hourly movement and tempera-
ture were �0.500 and �0.298, respectively, for the
winter and summer batch. These observations support
that dispersion is time-series data and movement is
time-series data with seasonal patterns.
Case Analysis in Anomalous Chicken
Dispersion and Movement

Given the inherent active nature of TNCs, our study
specifically examines warning cases involving dispersion
and movement values falling beyond the safe zone.
Drawing from chicken management experience, instan-
ces categorized as yellow warnings may pose potential
threats to the chicken flock or individual birds, whereas
red warning cases could lead to irreversible damage.
Analyzing these warning cases provides demonstrations
of enabling timely actions to secure chicken welfare.
In chicken dispersion, certain dispersion values below

the safe zone were observed. Figure 12i, iii, and iv dem-
onstrates numbers of chickens grouped on one side of
the farm, resulting in low dispersion values of 0.703,
1.171, and 0.721, respectively, which fell in the yellow-
warning zone. Nonetheless, it was the presence of a farm-
worker (indicated by blue circles in Figure 12i and iii)



Figure 15. False detection cases: (a), (b), and (c): 2 overlapping chickens falsely recognized as 1 chicken; (d), (e), and (f): chickens blocked by a
pipeline, pillar, or drinker were not detected; And (g), (h), and (i): 1 chicken was repeatedly detected as multiple chickens when several chickens
gathered together.

Figure 16. Chicken tracking errors in each frame. The red, green, and purple dots denote FNs, FPs, and IDsw, respectively.
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Figure 17. Tracking errors: (a) FPs, (b) FNs, and (c) IDsw. The roman numerals correspond to the roman numerals in Figure 16.
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passing by the flock of chickens that led to their tempo-
rary dispersion. In Figure 12vi, chickens clustered for an
hour, resulting in a dispersion value 1.068, which fell in
the red-warning zone. Certain dispersion values above
the safe zone were observed. In Figure 12ii, chickens
were spread evenly in the farm, leading to a dispersion
value 1.268, which fell on the yellow-warning zone. In
Figure 12v, a group of chickens were overcrowded for 2
h, resulting in a high dispersion value of 1.375, which fell
in the red-warning zone.

In chicken movement, certain movement values below
the safe zone were observed. The mean movement value
of all the chickens was calculated for each video. In
Figure 13ii and iii, most chickens were stationary on the
litter, resulting in mean movement values of 22.6 mm/s
and 15.4 mm/s per chicken, respectively. See the Appen-
dix for the videos. Certain movement values above the
safe zone were also observed. In Figure 13iv, a flock of
chickens ran from the right side of the camera view to
the left side, leading to a mean movement value of
118.8 mm/s per chicken. In Figure 13i, a flock of chick-
ens kept moving in the camera view, resulting in a high
mean movement value of 141.8 mm/s per chicken.

Compared with manual patrol method, the proposed
method objectively quantifies essential behaviors (i.e.,
dispersion and movement) of chicken flocks and provides
warning to farmers when anomalous behaviors are
observed. This method reduces labor costs and improves
chicken welfare.
Comparison Between Three YOLOv7 Models
in Chicken Detection

Three models were trained to compare their perfor-
mance in chicken detection, including YOLOv7,
YOLOv7x, and YOLOv7-tiny. The models were trained
using the images and methods mentioned in Materials
and Methods. The trained models were hosted on a
graphics processing unit (RTX A6000, NVIDIA; Santa
Clara) for comparison purposes (Table 3). YOLOv7-
tiny required considerably lower memory consumption
compared with YOLOv7x and YOLOv7. YOLOv7-tiny
also had the shortest inference time. Considering that a
5-min video is composed of 1,500 images (e.g., frames),
the cumulative inference time of YOLOv7 and
YOLOv7x for a video can be considerably large.
YOLOv7 outperformed YOLOv7-tiny in AP@50; how-
ever, the difference is less than 1%. Thus, YOLOv7-tiny
was selected as the model in this study due to its opti-
mized memory usage, efficient processing time, and sat-
isfactory performance.
Comparison With Related Studies

Several systems that monitor chicken farms have been
proposed. Certain studies focused on monitoring envi-
ronmental factors, such as temperature, humidity,
ammonia concentration, and carbon dioxide concentra-
tion (Syahrorini et al., 2020; Liani et al., 2021). By con-
trast, our study directly monitored chicken behaviors (i.
e., dispersion and movement) using machine vision,
which are 2 direct indicators that reflect the wellness of
chickens. Certain other studies quantified the dispersion
(Yang et al., 2023) and movement (Neethirajan, 2022)
of chickens using machine vision (YOLOv5). By con-
trast, our approach further forecasted the dispersion
and movement of chickens and developed a warning sys-
tem using autoregressive moving average models. Cer-
tain other studies monitored chickens in small-scale
experimental coops (Lin et al., 2020; Tao and Xiaoyan,
2020). By contrast, our study was conducted in a com-
mercial chicken farm, where thousands of chickens were
raised.
Practical Implications of the Proposed
Method

The proposed system enables automatic monitoring
the dispersion and movement of chicken flocks in com-
mercial chicken farms. The monitoring of the 2 vital
traits is continuous and is in real-time. The system facili-
tates the early detection of potential issues in chicken
farms. Alerts can be generated in a timely manner when
the dispersion or movement values move out from the
safe zone to the warning zone, ensuring that farmers can
take prompt actions to minimize negative impacts to



Table 3. Performance of 3 YOLOv7 models.

Performance metrics YOLOv7 YOLOv7x YOLOv7-tiny YOLOv7-tiny (no augmentation)

AP@50 0.9853 0.9828 0.9824 0.9241
Memory consumption (MB) 74.8 142.1 2.2
Inference time (ms) 12.7 15.3 7.8
Processing time for quantifying a 5-min video (s) 24.62 26.95 15.27
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chicken flocks from potential health risks or environmen-
tal hazards. Also, the dispersion and movement of
chicken flocks can be recorded automatically and can be
available to chicken farms. These data can help chicken
farmers to further improve their management in chicken
farming.
Future Work

The proposed approach provides a solution for moni-
toring chicken dispersion and movement and for deter-
mining unusual chicken dispersion and movement
automatically. Although this study proves that monitor-
ing chicken flocks and detecting unusual events in
chicken farms via machine vision is practical and useful,
future research is still needed for chicken farmers to
receive warnings when the events occur. One possibility
is to develop a mobile application to receive alerts of
unusual events. The mobile application can then push
the alerts to chicken farmers in real-time. Another
approach is to send the alerts through short message ser-
vice of cell phones. Once chicken farmers can monitor
their chickens without entering chicken farms, the risk of
carrying pathogens into chicken farms can be minimized.
CONCLUSIONS

The dispersion and movement of TNCs are 2 essential
factors that concern chicken farmers. Manually observ-
ing chicken dispersion and movement is time-consuming
and labor-intensive. To address the challenges of labor
shortage in chicken farming, this study proposed a sys-
tem for automatically detecting anomalous dispersion
and movement of chicken flocks in commercial chicken
farms. A YOLOv7-tiny model was trained to localize
chickens in images of overhead view and reached an
AP@50 of 98.2%. The dispersion and movement of
chicken flocks, respectively, were subsequently quanti-
fied using NNI and SORT algorithms. The SORT algo-
rithm achieved a MOTA of 95.3%, a MOTP of 84.4%,
and an IDF1 of 94.3%. Chicken dispersion and move-
ment were observed as time-series data in a long-term
experiment. ARIMA and SARIMAX models, respec-
tively, were thus implemented to model chicken disper-
sion and movement and to automatically detect
anomalous dispersion and movement events. ARIMA
and SARIMAX models achieved a MAPE of 3.71% and
13.39%, respectively, in predicting the trends of chicken
dispersion and movement. Dispersion and movement
values, respectively, beyond the 95% confidence inter-
vals predicted by ARIMA and SARIMAX were regarded
as anomalous events. The anomalous events in the long-
term experiment were successfully detected. The pro-
posed approach objectively and automatically records
and monitors the dispersion and movement of chicken
flocks. The records can help chicken farms to improve
their management in chicken farming. Also, chicken
farmers only need to visit their farms when alerts of
anomalous dispersion or movement values are triggered.
Thus, the proposed approach can alleviate labor costs in
chicken farming.
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