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ABSTRACT
BACKGROUND: Children from economically distressed families and neighborhoods are at risk for stress and
pollution exposure and potential neurotoxic sequelae. We examine dimensions of early-life stress affecting
hippocampal volumes, how prenatal exposure to air pollution might magnify these effects, and associations
between hippocampal volumes and visuospatial reasoning.
METHODS: Fifty-three Hispanic/Latinx and/or Black children of ages 7 to 9 years were recruited from a longitudinal
birth cohort for magnetic resonance imaging and cognitive assessment. Exposure to airborne polycyclic aromatic
hydrocarbons was measured during the third trimester of pregnancy. Maternal report of psychosocial stress was
collected at child age 5 and served as measures of early-life stress. Whole hippocampus and subfield volumes were
extracted using FreeSurfer. Wechsler performance IQ measured visuospatial reasoning.
RESULTS: Maternal perceived stress associated with smaller right hippocampal volume among their children
(B = 20.57, t34 = 23.05, 95% CI, 20.95 to 20.19). Prenatal polycyclic aromatic hydrocarbon moderated the asso-
ciation between maternal perceived stress and right CA1, CA3, and CA4/dentate gyrus volumes (B$ 0.68, t33 $ 2.17)
such that higher prenatal polycyclic aromatic hydrocarbon exposure magnified negative associations between stress
and volume, whereas this was buffered at lower exposure. Right CA3 and CA4/dentate gyrus volumes (B $ 0.35, t33
. 2.16) were associated with greater performance IQ.
CONCLUSIONS: Prenatal and early-life exposures to chemical and social stressors are likely compounding.
Socioeconomic deprivation and disparities increase risk of these exposures that exert critical neurobiological
effects. Developing deeper understandings of these complex interactions will facilitate more focused public health
strategies to protect and foster the development of children at greatest risk of mental and physical effects
associated with poverty.

https://doi.org/10.1016/j.bpsgos.2022.05.003
Socioeconomic disparities place children from economically
distressed families and neighborhoods at disproportionate risk
for exposure to stressful life events and to air pollution. Eco-
nomic disadvantage increases the likelihood of experiencing
physical and social stressors, such as inadequate access to
basic resources or living in neighborhoods with increased
violence (1,2). In addition, air pollution is often higher in these
neighborhoods, placing children at increased risk for exposure
both in utero and during development (2,3). Exposures to early-
life stress (ELS) (4–6) and prenatal air pollution (7–9) have been
separately linked to increased risk for behavioral, psychologi-
cal, and cognitive problems, which may derive from the
neurobiological effects of exposure.

The hippocampus is a key region involved in stress regu-
lation and, critically, is vulnerable to the neurotoxic effects of
stress and cortisol, which can lead to deficits in hippocampal
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structure and volume in both animal and human research
(10,11). In addition, psychological stress differentially alters
subfields of the hippocampus with the CA1, CA3, and dentate
gyrus generally found to be most vulnerable (12). Animal
models have shown that psychological stress (e.g., restraint
stress, housing in dominance hierarchies, maternal depriva-
tion) can result in shortened dendrites, neurogenesis sup-
pression, and the loss of spine synapses in subregions of the
hippocampus (10). More specifically, chronic restraint stress
results in neuronal atrophy in CA3 and CA1 (13,14). Other
forms of chronic and acute stress have been shown to
decrease neurogenesis in the dentate gyrus (10,13) and impair
long-term potentiation and synaptic plasticity in CA1 and
dentate gyrus (15). This neuronal remodeling is plausibly
mediated by changes in cortisol and glutamate, both of which
are involved in the stress response and have been linked to
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hippocampal structure and function (10). These changes likely
give rise to the gross morphological differences commonly
observed in human research (16). Socioeconomic disadvan-
tage and its associated stressors, at both the household level
(17–19) and neighborhood level (20), have been consistently
linked to reductions in hippocampal structure, as have
maternal anxiety (21,22) and the lack of maternal support
(23,24). Herein, we examine potentially distinct contributions of
early-life exposure to different types of maternal psychosocial
and socioeconomic stress on hippocampal volumes, specif-
ically, maternal perceived stress, maternal psychological
distress, material hardship, neighborhood quality, and
maternal intimate partner violence.

Exposure to air pollution also alters the hippocampus and
exhibits differential effects on hippocampal subfields.
Decreased structural integrity across the hippocampus (25),
decreased neurogenesis in the dentate gyrus, and activated
microglia in the dentate gyrus and CA1 subfields (26) have all
been observed following perinatal air pollutant exposure in
animal models. Decreased dendritic branching in CA1 and CA3
subregions (27) and reductions in hippocampal brain-derived
neurotrophic factor (BDNF) expression (28) have been shown
to follow prenatal particulate matter (PM) 2.5 (PM2.5) exposure.
Prior human research has also focused on exposure to poly-
cyclic aromatic hydrocarbons (PAHs)—a group of air pollutants
resulting from the incomplete combustion of organic matter
and tobacco smoke, grilling, oil- and coal-burning power
plants, and vehicular emissions (29). Prenatal PAH exposure—
estimated by land use regression models or directly measured
personal exposure—has been associated with structural al-
terations in the brain, specifically cortical thinning in brain re-
gions in both hemispheres (30), volume reductions in the
corpus callosum (31), and reduced left hemisphere white
matter (32). In addition, consistent with findings from animal
models, infants born after the closing of a coal-burning factory
in China had decreased markers of exposure to PAH and
increased level of mature BDNF (33). Yet, few human studies
have focused on the effects of air pollution exposure on spe-
cific neuroanatomical regions implicated in cognitive devel-
opment and, of particular interest here, the hippocampus.
Such findings would enhance our understanding of the etio-
logic mechanisms by which air pollution affects neuro-
development. Consistent with the findings from animal models,
extant human research demonstrates an association between
concurrent air pollution exposure in adulthood and smaller
hippocampal volume, while controlling for socioeconomic
status (29,34–37), which was further supported in a meta-
analysis (38). Similarly, prenatal exposure to air pollution
(estimated by land use regression models) was shown to
associate with smaller left hippocampal volumes in school-age
children (39). The effects of air pollution on hippocampal
subfields remain understudied.

Overall, the hippocampus may represent a common site of
the neurotoxic effects of air pollution and stress, particularly
experienced prenatally and in early life, which can lead to
deleterious downstream cognitive and neurodevelopmental
outcomes. Conceptual work suggests that models describing
threats to neurodevelopment must account for the amplified
effects of multiple exposures (40). Specifically, recent findings
indicate that the effects of exposure to ELS and air pollution on
Biological Psychiatry: Glob
brain and behavior may be compounding (41–43). Herein, we
investigate potential interactions between prenatal exposure to
PAH and ELS on the hippocampal structure in school-age
children. Understanding these aggravated effects may facili-
tate a comprehensive public health campaign that targets
distinct patterns of risk for child development.

Finally, structural and functional neuroimaging studies have
demonstrated an integral role for the hippocampus in learning,
remembering, and flexibly navigating spatial information
(44–48). This relationship has been observed bilaterally (49)
and across different subfields (47). Larger hippocampal volume
has been associated with greater navigational experience in
taxi drivers (50,51), and both severe hippocampal damage (45)
and CA1 atrophy in patients with multiple sclerosis (52) are
correlated with impaired spatial recall. Structural differences
have been similarly identified in children with nonverbal
learning disorder, which is characterized by visuospatial defi-
cits (53). These visuospatial deficits are independently asso-
ciated with differences in stress and air pollution exposure in
early life (54–56), with 1 study reporting that higher PAH DNA-
adducts, a biological marker of exposure, were associated with
lower visuospatial intelligence among children who experi-
enced material hardship (41). Importantly, additional animal
research has begun to place hippocampal subfields as po-
tential mediators in the relationship between adversity and vi-
suospatial cognitive skills (57,58).

Herein, we use structural magnetic resonance imaging (MRI)
data acquired from Black and/or Latinx children from
economically disadvantaged families enrolled in a prospective
longitudinal birth cohort to examine several hypotheses.
Though these longitudinal data are powerful, our sample size
was limited, and thus we opted for analyses to minimize mul-
tiple testing. First, we hypothesized that individual differences
in ELS, measured by maternal report at child age 5, would
associate with reduced children’s hippocampal volumes at
ages 7 to 9. We aimed to parse which of the 5 measured do-
mains of ELS would have the most potent influence. Next,
given prior work showing interactions between prenatal
exposure to air pollution and ELS on children’s neuro-
developmental outcomes (42), we hypothesized that greater
prenatal PAH exposure would potentiate stress-related re-
ductions in hippocampal volumes. Last, given the effects of air
pollution and stress on cognitive development and the role of
the hippocampus in visuospatial processing (44–49), we
explored the extent to which hippocampal volume associated
with performance IQ (PIQ) scores, as a measure of visuospatial
abilities.

METHODS AND MATERIALS

Participants

As described previously (59), we recruited N = 53 children of
ages 7 years and older from the Sibling-Hermanos birth cohort
at Columbia University for a neuroimaging visit (see
Supplemental Methods). Mothers were nonsmokers. Five
children opted out of the study, 5 were unable to complete the
MRI scan, and 3 were excluded during quality control checks.
In total, n = 40 children had available hippocampal subfield
volumes and ELS data, n = 37 of those participants had pre-
natal air pollution exposure data, and n = 35 had visuospatial
al Open Science July 2022; 2:292–300 www.sobp.org/GOS 293
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ability data (n = 64 children had available PAH, ELS, and IQ
data). The Institutional Review Boards at Columbia University
and New York State Psychiatric Institute approved the study;
children and guardians provided written informed assent and
consent.

Early-Life Stress

Each participant’s mother completed validated scales
measuring 5 aspects of ELS at child age 5: maternal perceived
stress over the past month (60), maternal psychological
distress (61), material hardship (62), neighborhood quality
(63–65), and intimate partner violence (66). All items were
rescaled 0–1 and averaged for each scale so that each scale
yields a continuous score, with higher scores indicating more
stress. These scales have good reported reliability and psy-
chometric properties and have been reported on extensively in
our prior work (42). Our primary analyses used maternal reports
of stress to measure 5 distinct domains of ELS.

Air Pollution

Maternal personal exposure to air pollution was measured and
analyzed as previously described (67,68). Briefly, during the
third trimester of pregnancy, mothers wore an air monitoring
backpack for 48 continuous hours. The backpack contained a
filter that collected airborne vapors, aerosols, and PM2.5 from
which 8 PAHs (benz[a]anthracene, benzo[a]pyrene, chrysene,
benzo[b]fluoranthene, benzo[k]fluoranthene, indeno-[1,2,3-cd]
pyrene, disbenz[a,h]anthracene, and benzo[g,h,i]perylene)
were extracted and measured at Southwest Research Institute.
Exposure was computed as the sum of these 8 carcinogenic
PAHs (see Supplemental Methods). The distribution of expo-
sure was assessed, and participants were subsequently
grouped by a median split of total PAH exposure (median =
1.60 ng/m3) (Figure S1) as our predictor of interest, aligned with
previous work (59,69). The median split separates higher and
lower exposure groups minimizing measurement error in the
estimate of exposure, i.e., how well the 48-hour assessment
captures cumulative exposure. Furthermore, we did not expect
the individual variance at the low end, reflecting minimal to no
exposure, to systematically relate to biological/psychological
outcomes. Exploratory analyses using PAH as a continuous
variable are reported in Supplemental Results.

Visuospatial Reasoning

As part of the cohort study, participants completed neuro-
psychological assessment at age 7 to 9, including the
Wechsler Abbreviated Scale of Intelligence, Second Edition
(70). The Wechsler Abbreviated Scale of Intelligence assesses
verbal IQ (VIQ) reflecting verbal reasoning and PIQ reflecting
visuospatial reasoning, such that VIQ and PIQ can be com-
bined into a full-scale IQ score. VIQ is composed of the Vo-
cabulary subtest, measuring word knowledge, and the
Similarities subtest, measuring analogical reasoning. PIQ is
composed of the Matrix Reasoning and Block Design subtests
and is considered a gold standard measure of visuospatial
abilities (70). Each Index score is a continuous variable with a
mean of 100 and SD of 15 points. Two participants were
missing PIQ data.
294 Biological Psychiatry: Global Open Science July 2022; 2:292–300
MRI Acquisition and Processing

Participants completed MRI scanning on the same day as the
neuropsychological assessment. Data were acquired on a 3T
GE MR750 scanner (GE Healthcare) with a 32-channel head
coil. Two structural T1 images were collected for each partic-
ipant using a 3D-FSPGR sequence (flip angle = 11�, echo
time = 2.588 ms, repetition time = 6.412 ms, 180 slices, 1-mm
isotropic resolution). Structural data were processed using the
standard FreeSurfer version 6.0 pipeline (recon-all) (71,72)
including hippocampal subfield segmentation (73). Based on
prior animal model findings on the effects of stress, we
focused on the CA1, CA3, and CA4/dentate gyrus subfields.

Statistical Analyses

Distributions of continuous variables were examined
(Figures S2 and S3). Cases with missing data were excluded
per analysis. We report standardized regression coefficient
estimates, significance tests were two-tailed, and a was set at
p , .05. Tables S1 and S2 show simple correlations between
prenatal PAH and postnatal socioeconomic and stress-related
factors (child age 5): maternal perceived stress over the past
month, maternal psychological distress, material hardship,
neighborhood quality, intimate partner violence, and income-
to-needs ratio. One participant exhibited right hippocampal
total and subfield volumetric outliers (z . 3), which were win-
sorized to the next most extreme nonoutlier value. A sensitivity
analysis examined whether removing this participant had any
effect on the results (Supplemental Results).

Given our sample size and interest in parsing the distinct
contributions of different types of maternal psychosocial and
socioeconomic stress, our first analysis tested which ELS
variables were associated with left or right hippocampal vol-
ume. We sought to delineate the domains of ELS at age 5
years (maternal perceived stress, maternal psychological
distress, material hardship, intimate partner violence, or
neighborhood instability) that were associated with children’s
hippocampal volumes. To do this, we entered these ELS var-
iables into 2 multiple linear regression models (n = 40) pre-
dicting either left or right whole hippocampal volumes
(residualized for age, sex assigned at birth, and intracranial
volume to preserve degrees of freedom). We corrected for
multiple comparisons using false discovery rate (FDR) across
the 10 tested terms (5 domains; 2 hemispheres).

Our second analysis evaluated whether prenatal PAH
exposure potentiated stress-related reductions in hippocampal
volumes. We used multiple linear regression (n = 37) to test
whether ELS, PAH, and the ELS 3 prenatal air pollution
interaction associated with whole or subregional hippocampal
volumes of that hemisphere (residualized for age, sex assigned
at birth, and intracranial volume). To limit multiple testing given
our sample size, we only examined domains of ELS that
significantly related to whole hippocampal volumes rather than
testing the interaction between prenatal PAH and all 5 ELS
variables. We corrected for multiple comparisons using FDR
across the number of tested interaction terms (4 volumes
[whole, CA4/DG, CA3, and CA1] 3 number of domain-
hemisphere associations identified in analysis 1).

Finally, in a third analysis, we explored whether visuospatial
reasoning as measured by PIQ was associated with
www.sobp.org/GOS
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hippocampal subregions (n = 35). We restricted planned
regression analyses to testing associations between PIQ and
hippocampal subregions that were associated with the PAH 3

ELS interaction term in analysis 2. Control analyses evaluated
the specificity of any observed associations between subfield
volumes and PIQ versus VIQ. For completeness, we also
present Supplemental Results from models testing associa-
tions between left hippocampal subregions and VIQ and PIQ.
Furthermore, because brain structure and cognitive outcomes
were measured at a single time point, we did not conduct a
formal test of mediation PAH and ELS effects on PIQ by hip-
pocampal subregions but did test the effect of the PAH 3 ELS
interaction term on PIQ in a subset of children with available
data (n = 64).

RESULTS

Participants

Hispanic/Latinx and/or Black children of ages 7 to 9 years
participated in this study. Table 1 presents demographic,
psychosocial, and cognitive data that describe the sample.

Domains of ELS and Hippocampal Volume

Greater maternal perceived stress at child age 5 associated
with smaller right hippocampal volume at child age 7 to 9
(B = 20.57, t34 = 23.05, 95% CI, 20.95 to 20.19, pFDR = .04).
Maternal psychological distress, material hardship, neighbor-
hood quality, and intimate partner violence were not signifi-
cantly associated with hippocampal volume after FDR
correction was applied (pFDRs . .14) (see Table S3). Variance
inflation factors were sufficiently low to determine that collin-
earity was not a concern, and simple linear regressions
confirmed our findings (variance inflation factor # 1.75)
(Table S4). We tested hemispheric specificity in a mixed-effect
model and found a main effect of maternal perceived stress on
smaller hippocampal volumes across hemispheres (B = 20.30,
t76 = 21.98, p = .05) and no significant maternal perceived
stress 3 hemisphere interaction (p = .71) (Table S5).

Joint Effects of Air Pollution and ELS on
Hippocampal Volume

The maternal perceived stress 3 prenatal PAH interaction was
associated with right CA1 (B = 0.68, t33 = 2.24, 95% CI, 0.06 to
Table 1. Demographic, Psychosocial, and Cognitive
Characteristics of the Sample (n = 40)

Characteristics n (%) or Mean (SD) [Median]

Sex Assigned at Birth, Male 17 (42.5%)

Race/Ethnicity

Black 18 (45%)

Hispanic/Latinx 22 (55%)

Age, Months 103.62 (9.03) [106.00]

VIQ Score 94.73 (14.44) [92.00]

PIQ Score 89.14 (11.82) [90.00]

Maternal Education, Years 12.25 (1.6) [12.00]

Total PAH, ng/m3 1.98 (1.22) [1.60]

n = 2 missing PIQ. n = 2 missing VIQ. n = 3 missing total PAH.
PAH, polycyclic aromatic hydrocarbon; PIQ, performance IQ; VIQ,

verbal IQ.
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1.29, pFDR = .049), CA3 (B = 0.82, t33 = 2.86, 95% CI, 0.23 to
1.40, pFDR = .029), and CA4/dentate gyrus volumes (B = 0.68,
t33 = 2.17, 95% CI, 0.04 to 1.32, pFDR = .049). Right whole
hippocampus volume was not associated with the perceived
stress 3 prenatal PAH interaction term (B = 0.49, t33 = 1.57,
95% CI, 20.15 to 1.13, pFDR = .126), although there was still a
significant main effect for maternal perceived stress
(B = 20.66, t33 = 22.64, 95% CI, 21.17 to 20.15). Specifically,
among individuals with higher prenatal PAH exposure, greater
stress was associated significantly with smaller hippocampal
subfield volumes; among individuals with lower prenatal PAH
exposure, stress and hippocampal subfield volumes were not
significantly associated (Figure 1 and Table 2). Results from all
4 models, including nonsignificant findings, are reported in
Table S6.

Hippocampal Volume and Visuospatial Reasoning

PIQ was significantly associated with right hippocampal sub-
field volumes CA3 (B = 0.38, t33 = 2.39, 95% CI, 0.06 to 0.71,
p = .02) and CA4/dentate gyrus (B = 0.35, t33 = 2.16, 95% CI,
0.02 to 0.68, p = .04) (Figure 2) but not with CA1 (B = 0.16, t33 =
0.95, 95% CI, 20.19 to 0.51, p = .35) (Table S7 and Figure S4).
Right hippocampal subfield volumes did not predict VIQ in
simple linear regressions (Table S7), nor did left hippocampal
subfield volumes predict PIQ or VIQ (Table S8). For
completeness, a model containing PAH, ELS, and their inter-
action term (PAH 3 ELS) did not significantly predict PIQ or
VIQ (Table S9).

DISCUSSION

Our study reports on the effects of different aspects of ELS on
children’s hippocampal volumes, as well as the moderating
effects of prenatal exposure to PAH in a community sample of
Black or Latinx children from economically disadvantaged
backgrounds. Of the 5 aspects of ELS that we have previously
investigated (42), maternal perceived stress was negatively
associated with right hippocampal volume. Over and above
the effects of perceived stress, maternal psychological
distress, material hardship, neighborhood quality, and intimate
partner violence were not significantly associated with hippo-
campal volumes. Critically, maternal perceived stress was
associated with reduced right hippocampal subfield volumes
(CA1, CA3, and CA4/dentate gyrus) when children had higher
levels of prenatal exposure to air pollution. Finally, in explor-
atory analyses, hippocampal CA3 and CA4/dentate gyrus
volumes were positively associated with visuospatial abilities.
Overall, our results point to the need to measure and consider
multiple exposures when studying threats to neuro-
development, particularly in the context of socioeconomic
deprivation.

Prior studies have examined associations between house-
hold (17–19) and neighborhood (20) socioeconomic status and
hippocampal volumes; here, we extend this work with a pre-
liminary study of the contributions of different aspects of so-
cioeconomic status–related stress and stressors on the
hippocampus. In our study, maternal perceived stress was
associated with smaller right hippocampal volume. Effects
were not significant for maternal psychological distress, ma-
terial hardship, neighborhood quality, or intimate partner
al Open Science July 2022; 2:292–300 www.sobp.org/GOS 295

http://www.sobp.org/GOS


Figure 1. Prenatal polycyclic aromatic hydrocar-
bon (PAH) exposure moderates the association be-
tween maternal perceived stress (0–1 scale) at age 5
and right hippocampal (A) CA1, (B) CA3, and (C)
CA4/dentate gyrus subfield volumes (mm3), winsor-
ized and residualized for age, sex assigned at birth,
and intracranial volume (n = 37: nhigher = 19, nlower =
18).
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violence (though some were trend-level significant). Note that
maternal stress effects on the left hemisphere were significant
but did not pass FDR correction; we also did not see signifi-
cant differences in the strength of this effect in the left versus
right hemisphere. Our findings are consistent with prior work
showing inverse associations between maternal anxiety or psy-
chosocial stress and hippocampal volume in animal models
(10,12–15) and in newborns and children (21,22). Our measure
may reflect the effect of maternal stress on children’s neuro-
development or may act as a proxy for stress in the home envi-
ronment, each of which could have separate biological
mechanisms; we are limited in our ability to discern this as the
cohort study did not include direct report of children’s experience
of stress. Our findings are further limited by the measurement of
maternal stress at child age 5, as we have recently shown that the
effects of poverty on hippocampal volumes in these children were
most salient prior to age 4.5 (74). Timing-specific effects on the
hippocampus have additionally been found for general adverse
experiences and maternal support (24,75,76). Future research
should interrogate the timing for critical periods of vulnerability,
neuroanatomical change, and the manifestation of symptoms.

Consistent with prior studies showing that prenatal PAH
exposure moderates effects of ELS on neurodevelopmental
Table 2. Simple Slopes Analysis for the Maternal Perceived Stre
and CA4/Dentate Gyrus Subfield Volumes

Subfields PAH Exposure B

CA1 Lower 20.13

Higher 20.81

CA3 Lower 20.12

Higher 20.94

CA4/Dentate Gyrus Lower 20.10

Higher 20.78

Each simple slope was independently tested for significance using a t te
PAH, polycyclic aromatic hydrocarbon.
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outcomes (41,42), we detected a significant interaction be-
tween prenatal PAH exposure and maternal perceived stress
on the right CA1, CA3, and CA4/dentate gyrus volumes. Our
analyses focused on these hippocampal subregions because
of the converging evidence in animal models linking both air
pollution and ELS to these regions. A full multivariate model
would better address the aims of the project but would be
underpowered with n = 40 participants. Neurobiological find-
ings converging on hippocampal subregions provide a
coherent framework to understand the mutual effects of ELS to
maternal perceived stress and air pollution, which may give
rise to the cognitive and behavioral deficits observed in
hippocampus-dependent tasks. Animal models and human
epidemiological findings point to a potential biological mech-
anism underlying the associations observed herein. We hy-
pothesize that effects of prenatal exposure to air pollution on
hippocampal BDNF may cause increased vulnerability to
stress via reductions in hippocampal BDNF, which buffers
against the deleterious effects of stress (77–79). This proposed
mechanism requires further study and may offer future di-
rections for both pharmacological and public health interven-
tion/prevention strategies. In addition, we did not detect a
significant interaction between prenatal PAH exposure and
ss 3 Prenatal PAH Exposure Interaction Effect on CA1, CA3,

SE t p 95% CI

0.18 20.70 .487 20.50 to 0.24

0.24 23.34 .002 21.30 to 20.32

0.17 20.71 .484 20.47 to 0.23

0.23 24.12 ,.001 21.40 to 20.47

0.19 20.53 .598 20.48 to 0.28

0.25 23.13 .004 21.29 to 20.27

st (n = 37: nhigher = 19, nlower = 18).
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Figure 2. Hippocampal subfield volumes CA3 (A) and CA4/dentate gyrus
(B), winsorized and residualized for age, sex assigned at birth, and intra-
cranial volume, predict visuospatial reasoning (performance IQ).
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maternal perceived stress on the whole hippocampal volume,
suggesting that those subfields not included in our analyses
are not implicated in the PAH 3 stress interaction.

Finally, we observed associations between hippocampal
subfield volumes and visuospatial abilities, as measured by
PIQ. The contemporaneous measurement of hippocampal
volume and PIQ limits our ability to establish a directional
mechanism by which the compounding effects of social and
physical stressors impact visuospatial abilities. Still, animal
models have shown effects of stress and air pollution on vi-
suospatial learning and memory and on hippocampal structure
(57,58). Future studies should examine whether alterations to
specific hippocampal subfields mediate the effects of these
exposures on visuospatial processing.

Effects of prenatal exposure to air pollution can be trans-
mitted across generations. In animal models, maternal expo-
sure to PM2.5 during pregnancy induced deficits in spatial
learning and memory for a subsequent second generation not
exposed to PM2.5 in utero. Such findings suggest that early-life
exposure to PM2.5 may shape the intergenerational risk for neu-
robehavioral alterations (28). Multiple potential mechanisms may
account for this intergenerational effect, e.g., maternal stress may
influence the child’s development via parenting or other home
environment factors and/or via direct effects of maternal stress
on the placenta during critical periods of brain development.

Although we account for certain factors that could have
confounded our findings, there may be additional unmeasured
factors that associate with living near pollution sources, such
as noise or vibrations near roadways (80–82), that could
contribute to the observed effects of prenatal PAH on brain
Biological Psychiatry: Glob
structure. Prior animal and human work also suggests the
potential for sex-specific effects (55), but our study was limited
in sample size, and thus we could not test sex-specific effects.
Future studies should investigate sex-specific effects of pre-
natal exposure to air pollution on visuospatial processes and
their intergenerational transmission. Current findings may also
inform potential etiologic pathways to nonverbal learning
disability [alternatively called developmental visuospatial dis-
order (83)] or other neurodevelopmental disorders that are
sometimes characterized by visuospatial deficits, such as
autism spectrum disorder (84). Future studies should investi-
gate this potential underlying mechanism and should attempt
to measure and control for additional factors such as roadway
noise and vibrations to isolate the specificity of observed ef-
fects. Given that we conducted our study in a birth cohort of
Black and Latinx children from economically disadvantaged
backgrounds, our results may not generalize to children from
more diverse socioeconomic (parent education, occupation,
income), ethnic, or racial backgrounds.

Prenatal and ELS to chemical and social stressors are likely
compounding, acting through complex biological mechanisms
causing the increased risk of these exposures to exert critical
biological effects. These interactions likely extend beyond
exposures studied herein. For example, maternal anxiety or
psychosocial stress is associated with reductions in hippo-
campal volumes (21,22), but maternal support associated with
increased hippocampal volumes (23), perhaps indicating a
buffering effect of support. These effects have additionally
been shown to interact with prenatal risk factors at the hip-
pocampus such as preterm birth (85). By developing a deeper
understanding of these complex interactions, we may develop
more focused public health prevention strategies that will help
protect the developmental trajectory of those children at
greatest risk for mental and physical health effects associated
with socioeconomic disadvantage.
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