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Abstract

Influenza A virus has caused huge damage to human health and poultry production worldwide, but its global trans-
mission patterns and influencing factors remain unclear. Here, by using the Nearest Genetic Distance Approach
with genetic sequences data, we reconstructed the global transmission patterns of 4 most common subtypes of
influenza A virus (H1N1, H3N2, H5N1, and H7N9) and analyzed associations of transmission velocity of these
influenza viruses with environmental factors. We found that the transmission patterns of influenza viruses and their
associations with environmental factors were closely related to their host properties. H1N1 and H3N2, which are
mainly held by humans, are transmitted between regions at high velocity and over long distances, which may be
due to human transportation via airplane; while H5N1 and H7N9, which are mainly carried by animals, are trans-
mitted locally at short distances and at low velocity, which may be facilitated by poultry transportation via railways
or high ways. H1N1 and H3N2 spread faster in cold seasons, while H5N1 spread faster in both cold and warm
seasons, and H7N9 spread faster in wet seasons. H1N1, H3N2, and H5N1 spread faster in places with both high
and low human densities. Our study provided novel insights into the global transmission patterns, processes, and
management strategies for influenza under accelerated global change.
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INTRODUCTION

Influenza A viruses (IAVs) are enveloped negative-
sense single-strand RNA viruses that can cause infectious
respiratory disease to hosts (Krammer et al. 2018). IAVs
are widely distributed in many hosts, mainly including
birds, pigs, and humans (Kuiken et al. 2006; Tauben-
berger & Morens 2010), and have caused huge dam-
age to human health and poultry production worldwide.
It is estimated that the prevalence of influenza causes
>3 million cases of severe illness to humans every year
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(WHO 2018). The IAV genome has a total of 8 RNA frag-
ments encoding 14 structural proteins, and due to the high
variation of hemagglutinin (HA) and neuraminidase (NA)
fragments (2 major viral antigens), IAVs mutate and in-
fect the host rapidly (Webster et al. 1992; Neumann et al.
2009). According to HA and NA fragments, the IAV is
divided into many subtypes. H1N1 and H3N2 are 2 sub-
types that currently circulate in humans (Krammer et al.
2018). H5N1 and H7N9 mainly infect chicken and birds
(Krammer et al. 2018). IAVs can spread through contact,
droplets, and airborne routes (Brankston et al. 2007), and
its transmission is likely affected by humidity and temper-
ature (Lowen et al. 2007).

Although the temporal dynamic of influenza viruses
have been widely investigated (O’Regan et al. 2013;
Yang et al. 2015; Huang et al. 2016; Wen et al. 2016; Cai
et al. 2019), studies on the spatial-temporal dynamic of
influenza are still limited. Recently, probabilistic model-
based inference for phylogeography such as Bayesian
Evolutionary Analysis Sampling Trees (BEAST) method
is widely used to study the spatial-temporal spread of
pathogens like influenza between geographic locations
(Lemey et al. 2009, 2010 ; Suchard et al. 2018). Several
previous studies suggest that prevalence of influenza is
associated with environmental factors. For example, in
laboratory experiments, cold and dry conditions favor
influenza virus transmission (Lowen et al. 2007). High
temperature (30 °C) blocks aerosol but not contact
transmission (Lowen et al. 2008), and high humidity
constrains both transmission efficiency and influenza
virus survival (Shaman & Kohn 2009). Influenza activity
peaks in the cold-dry season (Tamerius et al. 2013), and
the transmission was negatively associated with the abso-
lute humidity and positively associated with cumulative
precipitation (Gomez-Barroso et al. 2017). However,
these studies are mainly constrained to transmission of
influenza virus between hosts under laboratory conditions
(Lipsitch & Viboud 2009; Neumann et al. 2009; Herfst
et al. 2012; Neumann & Kawaoka 2015; Hill et al. 2016;
Poon et al. 2016) or between locations at a small spatial-
temporal scale (Olsen et al. 2006; Viboud et al. 2006;
Bedford et al. 2010; Gog et al. 2014; Huang et al. 2016;
Pei & Shaman 2017; Pei et al. 2018). The transmission
patterns and influencing factors of IAVs remain unclear
at a global scale. There is an urgent need to reveal the
global transmission patterns and the key factors affecting
their transmission ability, so as to take effective measures
of prevention and control.

Here, by following the molecular clock theory (King &
Jukes 1967; Motoo Kimura 1968) and considering the fast
but constant mutation rate of HA of IAV, we developed

a method named as Nearest Genetic Distance Approach
(NGDA) by using available IAV genetic sequence data
in the GenBank database to reconstruct the transmission
routes and estimate the transmission velocity between
2 geographic sites. Using NGDA, we reconstructed the
global transmission patterns for past decades of 4 most
common subtypes (i.e. H1N1, H3N2, H5N1, H7N9) of
IAVs and analyzed their associations of spread velocity
of influenza viruses with environmental factors.

MATERIALS AND METHODS

Sequences and environmental data

We collected the H1N1, H3N2, H5N1, and
H7N9 influenza data from the GenBank database
(https://www.ncbi.nlm.nih.gov/). The datasets used in
this research included all infection events of 4 subtypes
around the world. For each subtype, we extracted the
sequences corresponding to the RNA strand encod-
ing hemagglutinin (HA). The datasets included 76 032
records from the first case reported on May 11, 1918,
to the latest case reported on October 30, 2018, and
included the basic information (reported location and
reported date) for each report. We assigned the sampling
location with the latitude and longitude based on the
administrative center coordinates using the “Geopy”
package in Python 3.6.0 (https://www.python.org/).

We excluded samples without accurate sampling dates
(daily resolution) or strain codes, as well as those with
RNA sequence < 1600 bp (13.7% of the total se-
quences) in length. RNA sequences were aligned us-
ing MEGA7 (Kumar et al. 2016) with default parame-
ters. We excluded country-level samples with too large
area (>3 00 000 km2, 7.6% of the total sequences). Fi-
nally, 6096 samples of H1N1 from 1279 locations, 5750
samples of H3N2 from 796 locations, 1046 samples of
H5N1 from 531 locations, and 239 samples of H7N9
from 85 locations were used (Figs. S1 and S2, Sup-
porting Information). The climatic data were collected
from CRU (http://www.cru.uea.ac.uk/data), including the
monthly average daily temperatures (MT) and monthly
precipitation (MP). The yearly average temperature (YT)
was calculated by averaging all MTs of the year. The an-
nual precipitation (AP) of each year was calculated by
summing all MPs of the year. The seasonal temperature
(TempS) or precipitation (PrecS) of each month of a sam-
ple location was calculated by: MT-YT or MP-AP/12,
representing the seasonal variation of these variables.
The climate data is presented in netCDF4 format at a
0.5° × 0.5° resolution, covering the period of 1901–2017.
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Because the yearly data was limited, we focused on an-
alyzing the effects of seasonal climate on transmission
velocity of IAV. To remove the confounding effects of
regional variation of climate, the seasonal climate was
normalized.

Population density data of humans (person/km2)
with a country-level spatial resolution was ob-
tained from the World Population Review (http://
worldpopulationreview.com). We extracted data of
relevant countries in 2018. Only population density was
used to represent the impacts of human activities because
gross domestic production and poultry farm density are
highly correlated with population density.

Reconstruction of transmission routes of IAVs

We followed 3 rules by order to determine the trans-
mission route from the source location to a focal invaded
location: earlier sampling date, nearest genetic distance,
and nearest geographic distance. We assumed that a previ-
ous sample with nearest genetic distance to a focal sample
was most likely the source sample of transmission as the
ancestor or a proxy ancestor to the focal sample (Fig. 1).
If the genetic distance was equal, the sample with nearest
geographic distance was assumed to be the source sam-
ple. We defined the method as the NGDA. It is notable
that NGDA is different from the traditional phylogenetic
tree analysis, which uses genetic data of extant animal
samples. NGDA maps the spatial-temporal transmission
routes as well as lineages using genetic data of extinct
virus or “fossil virus” because the sequenced virus was
thought to be dead.

We aligned all the sequences in MEGA7, and then we
compared each sample against all of the other samples
(all-versus-all pairwise comparison) at each variant nu-
cleotide position. The genetic distance between every pair
of samples was defined as:

di, j = mi, j/ni, j (1)

Here, di, j is the distance measured between samples i and
j, ni, j is the total number of aligned nucleotide configura-
tions (A, C, G, and T) between samples i and j, and mi, j is
the total number of different nucleotides between samples
i and j.

According to the molecular clock theory, the evolu-
tionary rate at the molecular level is constant (King &
Jukes 1967; Motoo Kimura 1968; Frost et al. 2018). We
assumed that the mutation rate of the sequence of the IAV
genome was stable over time, and this assumption was
supported by previous studies (Lemey et al. 2009). The
sampling time was the time when influenza virus survived

Figure 1 Illustration of Nearest Genetic Distance Approaches
(NGDA) for reconstructing the transmission routes and calcu-
lating the transmission velocity of IAVs. Solid black and open
circles represent the observed and missing samples of IVAs. The
solid black arrows connecting the open circles represent the true
transmission routes. The solid red arrows connecting the solid
black circles represent the reconstructed transmission routes.
The source sample collected previously to a focal sample was
determined by the nearest genetic distance (for details, see the
main text). Thus, the source sample of transmission represents
either the direct ancestor or relative of the ancestor (proxy ances-
tor) of the focal sample. The mutation rate of virus was assumed
to be constant in time.

because IAV cannot reproduce in vitro. During the study
period, mutations can be accumulated at a high enough
rate to calculate the differentiation of samples because the
mutation rate of IAV is very fast (Drummond et al. 2003).
The genetically nearest and previously collected sample
was mostly likely the ancestor or relatives of the focal
sample. We used the genetic distance (defined in Eqn 1),
sampling date, and locations to determine the transmis-
sion routes.

For sample Si, we first found all samples with a sam-
pling date earlier than Si, and then we calculated the ge-
netic distance between Si and these samples. The sam-
ple with the nearest genetic distance was assumed to be
the transmission source of sample Si (if not unique, the
sample with the nearest geographical distance from these
samples was the source of Si). The source sites of all of
the samples were determined in such a way. Then, the
global spread routes were ultimately reconstructed.

Transmission velocity

After the transmission routes were established, we cal-
culated the transmission velocity by using the geographic
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distance and time between two sampling locations on the
routes. We defined transmission velocity as follows:

vi, j = di, j/(t j − ti) (2)

Here, vi, j is the transmission velocity (km/yr) along a
route linked by samples i and j, di, j is the distance between
sampling locations where samples i and j were sampled,
t j is the sampling time of sample j, and ti is the sampling
time of sample i.

Robustness of the NGDA model

To test whether the sample size would cause biases
in the calculation of the transmission velocity by using
NGDA, we performed random resampling of 25%, 50%,
and 75% of all samples for each subtype of influenza virus
100 times (Fig. 4). The spread routes were then indepen-
dently reconstructed using the resampled dataset, and the
average spread velocity was calculated to make compar-
isons.

Generalized additive models (GAMs)

We analyzed the association of several key environ-
mental factors with the transmission velocity of IAV
by using GAMs by referring to our previous study (Xu
et al. 2019) implemented in R (R Core Team 2018)
with the “mgcv” package. We used Pearson’s correlation
to calculate the correlation coefficients and the t-test to
test the difference in the transmit velocity in this study
(Table 2).

GAM model structure

The initial candidate models of transmission velocity
included variables of human population density (Pop, per-
son/km2), seasonal temperature (TempS, °C), and sea-
sonal precipitation (PrecS, mm).

The initial model formulas are shown as follows:

Vi, j = a + b (Pop) + c (PrecS)

+d (TempS) + e (LAT, LON) (3)

Here, Vi, j is the natural log-transformed transmission ve-
locity (plus 1 to avoid zero logarithm) of influenza virus
from location i to j. a is the overall intercept; b(Pop)
is smooth function of population density of location j;
c(PrecS) is a smooth function of PrecS of location j;
d(TempS) is a smooth function TempS of location j; and
e(LAT, LON) is a smooth function used to control spa-

tial autocorrelation. For details, see Table S1, Supporting
Information.

Model selection

We performed multi-model inferences based on infor-
mation theory (Burnham & Anderson 2002) to quantify
the relative importance of predictors for influenza trans-
mission velocity. We ranked the GAMs models based on
AICc (Akaike’s information criterion corrected for small
sample sizes) and reported the models that were within
2 AICc units (�AICc ≤ 2) of the top model. We chose
the model with the lowest AICc value among the reported
models as the final model and excluded prediction vari-
ables that were not significant (P > 0.05) in the following
analysis (Table S2, Supporting Information). All analy-
ses were implemented in R using the gam function in the
“mgcv” package and the dredge and model.avg functions
in the “MuMIn” package.

RESULTS

NGDA analysis revealed that the transmission pat-
terns of H1N1 and H3N2 were similar, being composed
of highly inter-regional long-distance transmission routes
across different continents (Fig. 2a,b). In contrast, the
transmission patterns of H5N1 and H7N9 were composed
of mainly localized transmission clusters and a number of
inter-regional long-distance transmissions (Fig. 2c,d).

Based on the analysis of NGDA, we found that
the estimated average transmission velocity of H1N1
(59 637 km/yr) was parallel to that of H3N2 (61 952 km/
yr; t = −0.44, P = 0.66) but significantly larger than that
of H5N1 (7672 km/yr; t = 14.5, P < 0.001) and H7N9
(11 682 km/yr; t = 12.5, P < 0.001). H1N1 and H3N2
had a higher proportion of human host (i.e. samples from
humans) than H5N1 and H7N9. The proportion of hu-
man hosts was significantly correlated with the average
velocity (r = 0.996, P = 0.004) and average distance (r =
0.993, P = 0.007) of the IAV (Table 1).

Based on the results of our best selected models
(Table S2, Supporting Information), variables showing
significant associations with the transmission velocity of
influenza are summarized in Fig. 3. The spread velocity
of H1N1 and H3N2 showed a negative associations with
the seasonal air temperature, a U-typed association with
population density (Fig. 3a,b,e,f). The spread velocity of
H5N1 showed a U-typed association with the seasonal
air temperature and population density (Fig. 3c,g). The
spread velocity of H7N9 showed a positive association
with precipitation (Fig. 3d).
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Figure 2 Global transmission patterns of (a) H1N1, (b) H3N2, (c) H5N1, and (d) H7N9 reconstructed based on the Nearest Genetic
Distance Approach (NGDA). The lines indicate the reconstructed transmission routes of the IAVs. Each line represents a propagation
event, and the arrow indicates the transmission direction. The color of the lines indicates the invasion time of the influenza virus.

Table 1 The estimated average transmission velocity (km/yr) and distance (km) of influenza A viruses

Subtype Average
velocity (km/yr)

Average
distance (km)

Number of
transmission routes (n)

Proportion of
human host

H1N1 59637 ± 3423 3152 ± 56 5086 0.77

H3N2 61952 ± 4085 3608 ± 65 4700 0.83

H5N1 7672 ± 1059 850 ± 55 851 0.09

H7N9 11682 ± 1765 982 ± 99 194 0.22

n is the number of samples when we calculated the average value and implemented t-test between different subtypes. The value behind
the “±” sign represents the standard error (SE) of average velocity and average distance. km/yr, kilometers per year.

DISCUSSION

By using NGDA, we reconstructed the global trans-
mission patterns of 4 subtype of influenza A viruses.
We found H1N1 and H3N2 showed faster, inter-regional
transmission, likely facilitated by human transportation
via airplane; while H5N1 and H7N9 showed lower lo-
calized transmissions, likely facilitated by poultry trans-
portation via railways or high ways. We found influenza
viruses that were mainly carried by human spread faster
in cold seasons, while H5N1, which were mainly carried
by animals, spread faster in both warm and cold seasons.
Some of the findings (e.g. seasonal climatic impacts) were
consistent with those of previous results as revealed in

laboratory or small-scale studies, however, global analy-
sis revealed the nonlinear impacts of environmental fac-
tors on transmission velocity of influenza viruses.

Our analysis showed that the proportion of human
hosts was 77% for H1N1 and 83% for H3N2, support-
ing previous observations that human transportation was
important in their spatial transmission (Krammer et al.
2018). Based on NGDA analysis, we found that H1N1 and
H3N2 mainly displayed inter-regional, long-distance, and
high-speed transmissions, and their patterns were similar,
likely facilitated by the similar aviation routes (Fig. 2a,b;
Table 1). In contrast, H5N1 and H7N9 are known to be
mainly transmitted by wildlife or domestic animals like
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Figure 3 The significant associations of ln-transformed transmission velocity of (a, e) H1N1, (b, f) H3N2, (c, g) H5N1, and (d)
H7N9 with seasonal temperature (TempS), seasonal precipitation (PrecS), and population density (Pop). The solid line on the canvas
indicates the fitted curve, and the gray interval indicates the 95% confidence interval. For definition of these variables, see Table S1,
Supporting Information, and the main text.

Table 2 Significant associations of the transmission velocity of influenza A virus with environmental factors

Predictor variable H1N1P-value H3N2P-value H5N1P-value H7N9P-value

PrecS None None None < 0.01(+)

TempS < 0.01(-) < 0.01(-) < 0.01(U) None

Pop < 0.01(U) < 0.01(U) < 0.01(U) None

LAT, LON None < 0.01 < 0.01 None

“U” represents overall U-shaped association between transmission velocity and variables within the range of most samples. Signif-
icance level was set as: P < 0.05. Pop, population density; TempS, seasonal temperature; PrecS, seasonal precipitation; LAT, LON,
spatial autocorrelation; none, no significant associations.

chickens (Krammer et al. 2018) and the proportion of an-
imal hosts was 91% and 79%, respectively, supporting the
previous observations (Balcan et al. 2009; Chattopadhyay
et al. 2018; Pei et al. 2018). The global transmission pat-
terns of H5N1 and H7N9 were mainly composed of clus-
ters with local short-distance transmission, likely driven
by local or regional poultry transportation as suggested
before (Fournie et al. 2013) (Fig. 2c,d; Table 1), or by
resident birds. However, they also displayed a number of
long-distance transmission routes, likely driven by migra-
tory birds or international transportation of poultry prod-
ucts (Olsen et al. 2006).

In this study, we quantified associations of transmis-
sion velocity of influenza virus with the seasonal temper-
ature and precipitation. We found that H1N1 and H3N2
spread faster in cold seasons (Table 2; Fig. 3a,b), which
is consistent with our knowledge and the results of pre-
vious studies (Lowen et al. 2007; Tamerius et al. 2013;
Huang et al. 2016; Gomez-Barroso et al. 2017). How-
ever, we found that H5N1 spread faster in both cold and
warm seasons (Table 2; Fig. 3c); the nonlinearity might
be caused by migrations of wild birds which travel back
and forth between cold and warm seasons for breeding
and foraging (Olsen et al. 2006). We found H7N9 spread
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faster in wet seasons (Table 2; Fig. 3d), which is contra-
dicting with some observations that influenza virus favors
dry conditions (Lowen et al. 2007; Tamerius et al. 2013;
Huang et al. 2016; Gomez-Barroso et al. 2017).

We analyzed associations of influenza transmissions
with human population density. We found that human
population density had a U-shaped association with
H1N1, H3N2, and H5N1, indicating that they spread
faster in regions with both high and low human activities
(Table 2; Fig. 3e–g). It is reasonable that influenza virus
spread faster in high-density places due to frequent con-
tact of people facilitated by modern transportation (Gao
2014; Dalziel et al. 2018). The plausible explanation to
the high spread velocity of influenza virus in sparsely
dense places was that the countries with low population
density like Australia, Mongolia, and Canada heavily de-
pended on air transportation, which might facilitate the
spread of the influenza virus. This observation needs fur-
ther investigation in future studies.

The direct estimation of transmission velocity of
pathogen is important but still rare in literature. The av-
erage transmission velocity of rodent-borne plague was
estimated to be 40.1 km/yr in China from 1772 to 1964
(third pandemic) (Xu et al. 2014), 45–87 km/yr in USA
from 1900 to 1966 (third pandemic) (Adjemian et al.
2007), and 341.9–643.7 km/yr from 1347–1350 in Europe
(Black Death) (Noble 1974). In this study, the transmis-
sion velocity of H1N1 (59 637 km/yr), H3N2 (61 952 km/
yr), H5N1 (7672 km/yr), and H7N9 (11 682 km/yr) was
estimated to be much higher than that of plague. This is
because plague was mainly transmitted by animal hosts
or less advanced human transportation systems in an-
cient time, while the current transmission of influenza
was facilitated by modern fast transportation tools, such
as airplanes and railways. The higher transmission ve-
locity of influenza virus indicated that airplane and rail-
way or high-way transportation were the major driving
forces of geographic transmissions of influenza virus. Un-
fortunately, we did not have inter-location route data of
airplane, railways, or high way, and were not able to qual-
ify their associations with the transmission velocity of
influenza viruses.

Our NGDA method has several advantages in recon-
structing transmission patterns of influenza virus. The
genomic data of influenza virus accumulated quickly in
the public database, which impose a challenge of calcu-
lation efficiency using traditional modeling approaches.
Missing data are common in disease sampling which
may cause serious biased estimations. Using a resample
approach with NGDA method, we found the results of

Figure 4 Comparisons of estimated average velocity of H1N1,
H3N2, H5N1, and H7N9 using resampling data of 25%, 50%,
75%, and 100% of all data. This analysis indicates that the
NGDA was robust to missing samples in calculating the trans-
mission velocity.

resampled data of 25%, 50%, and 75% were similar to
that of the whole data (Fig. 4), indicating NGDA is robust
to missing data in calculating transmission velocity of
influenza viruses. However, it should be pointed out that
the transmission route was mapped using NGDA based on
its genetically closest relatives, which were not necessary
the real ancestors but “proxy ancestors” of transmission.
Thus, as shown in Fig. 1, missing data would cause errors
in reconstruction of real transmission routes of some sam-
ples. We should be very cautious in explaining the sources
and routes of disease transmission in the circumstance of
missing data in both time and space.

Considering the huge amount of damage caused by
influenza, it is necessary to develop effective strategies
for prevention and control of IAVs. Our results pro-
vide some cues for managing influenza transmission. For
viruses mainly carried by human-like H1N1 and H3N2,
we should take quarantine measures for passengers at the
airports, particularly for those located within the trans-
mission hotpots, to prevent cross-wired long-distance
transmission. Due to highly frequent global transmission
of H1N1 and H3N2 across different regions of the world,
it is necessary to develop polyvalent vaccines for prevent-
ing the influenza pandemic based on monitoring informa-
tion of variants of influenza virus from the source regions.
For viruses mainly carried by animals like H5N1 and
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H7N9, prevention measures such as monitoring poultry
transportation along railways and high-ways and closing
live poultry market in pandemic period should be taken,
so as to prevent localized transmissions. For control of
H5N1, careful monitoring of water habitats along the ma-
jor pass ways of migratory birds are necessary to reduce
contact with domestic animals or people, particularly in
autumn.
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