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Understanding physical mechanisms underlying seabird foraging is funda-
mental to predict responses to coastal change. For instance, turbulence in the
water arising from natural or anthropogenic structures can affect foraging
opportunities in tidal seas. Yet, identifying ecologically important localized
turbulence features (e.g. upwellings approximately 10–100 m) is limited by
observational scale, and this knowledge gap is magnified in volatile preda-
tors. Here, using a drone-based approach, we present the tracking of surface-
foraging terns (143 trajectories belonging to three tern species) and dynamic
turbulent surface flow features in synchrony. We thereby provide the earliest
evidence that localized turbulence features can present physical foraging
cues. Incorporating evolving vorticity and upwelling features within a
hidden Markov model, we show that terns were more likely to actively
forage as the strength of the underlying vorticity feature increased, while
conspicuous upwellings ahead of the flight path presented a strong physical
cue to stay in transit behaviour. This clearly encapsulates the importance of
prevalent turbulence features as localized foraging cues. Our quantitative
approach therefore offers the opportunity to unlock knowledge gaps in
seabird sensory and foraging ecology on hitherto unobtainable scales.
Finally, it lays the foundation to predict responses to coastal change to
inform sustainable ocean development.
1. Introduction
Understanding how physical processes in our oceans shape the foraging distri-
butions of marine predators is critical to predict responses to environmental
change [1,2]. Identifying the drivers of animal foraging movement can also
help mitigating the ecological impacts of anthropogenic activities [3]. Coastal
environments are undergoing unprecedented anthropogenic change, including
the installation of man-made structures supporting the blue economy (e.g.
ocean and offshore wind energy extraction, mariculture). This coastal change
is undoubtedly leading to new interactions between marine predators and
installations. While we are yet to understand how this may influence foraging
success [4], there is some evidence that installations can even generate new fora-
ging opportunities [5,6]. Foraging strategies may vary in response to physical
changes in local conditions. Assessing how free-ranging animals adjust and
fine-tune their foraging movements in highly complex and dynamic environ-
ments is therefore fundamental to understand how they may respond to
anthropogenic change.

Recent advances in satellite feature extraction and the tracking of coherent
oceanographic features (e.g. fronts and eddies) have revealed their influence
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on near-surface processes and marine predator associations
[7,8]. In the pelagic realm, a diverse range of predators
have been shown to associate with sub-mesoscale (less than
10 km) [9] and mesoscale (approx. 10–100 km) physical
features [10,11]. Mesoscale eddies can provide physical mech-
anisms to transport [12] or aggregate prey [13], thereby
providing foraging opportunities for wide-ranging marine
predators, from seabirds to sharks [14–17].

Apart from mesoscale surface ocean features, it has been
shown that important levels of predator aggregations can
occur at much finer scales, with short internal waves
(approx. 0.1–1 km) playing a major role [18]. In near-coastal
regions, even more local (approx. 10–100 m) turbulence fea-
tures including localized upwellings and eddy vortices can
similarly provide profitable foraging opportunities for preda-
tors, but have rarely been adequately quantified due to
limited observational scales. Such turbulence can provide
physical mechanisms to enhance prey accessibility, possibly
as a result of prey displacement in the water column, through
turbulent vertical transport, or physical aggregation at the
surface (e.g. at the edges of features) [6,19–21].

For seabirds, coastal environments provide important
foraging opportunities [22,23]. Therein, tidal environments
present one of the world’s most dynamic and turbulent
marine habitats [24]. Here, strong currents interacting with
fine-scale heterogeneity in bathymetric features or man-
made structures can give rise to numerous physical pro-
cesses, including localized features (e.g. boils [25] (localized
upwellings), convergences, eddy vortices) and dynamic
boundary waters (e.g. shear lines and flow reversals [26]).
Localized turbulence features such as upwelling boils
(regions of positive divergence) or vortices are highly
dynamic, evolving and dissipating over time scales of min-
utes [25]. After erupting at the surface, boils will increase in
size, decrease in intensity and may evolve into vortical struc-
tures before dissipating. Volant predators, such as seabirds,
must therefore be able to locate such physical cues for prey
across a highly dynamic range of flow features.

Predator–prey interactions are scale dependent [27], but it
remains unanswered how seabirds associate with highly loca-
lized (approx. 10–100 m), ephemeral flow features to find
prey. Strong hydrodynamic processes ultimately determine
the spatial distribution of small prey items and seabirds
may show affinity to areas characterized by physical proper-
ties that enhance or accumulate resources [28]. Direct
measurements of localized predator foraging bouts in relation
to dynamic physical features could therefore give novel
insight into physical cues underlying foraging strategies.
Yet, the required high spatio-temporal resolution (metres
and seconds) to capture such associations is often unattain-
able using traditional approaches, such as associating
coarse-scale satellite-derived data with higher resolution
animal telemetry. For instance, with the rapid dynamics
associated with seabird flight, temporally or spatially aver-
aged oceanographic data leads to a spatio-temporal
mismatch between movement metrics and habitat character-
istics at the visited cell and may thus not capture highly
localized associations. With emerging technologies to track
animals in their natural environment, such as animal-borne
GPS tags and accelerometers [29,30], marine radar [31],
ornithodolites [32] and unmanned aerial vehicle (UAV) or
drone applications [6,33,34], the development of technical
innovations that can link high-resolution animal positions
with dynamic, proximate physical cues and variables is at
the forefront of understanding where predators forage and
why. Specifically, the application of UAV-based approaches
can shed new light on individual movement metrics and
underlying physical variables, as perceived by the animal.
Drone-extracted surface variables and animal displacement
could then be adequately projected onto a two-dimensional
plane [35]. Such visualizations would allow a ‘bird’s-eye
view’ on underlying physical features, thereby aiding the
quantification of context-specific behaviours [36].

When deciding where to search intensively or forage for
prey, during flight, exclusive surface-foraging seabirds (e.g.
gulls and terns) may focus their visual attention either
directly below, or towards upcoming coherent features at
the water surface which may be indicative of a profitable fora-
ging opportunity. We hypothesized that terns (Sternidae) vary
their foraging movement in response to localized coherent sur-
face flow features, predominantly vorticity (the curl of the
surface flow) and upwellings (regions of positive divergence/
boils), which could serve as physical foraging cues.

Here, foraging terns were tracked across the wake of a
monopile structure (similar to wakes of islands experiencing
strong tidal flows [37]) by hovering drones. We mapped the
terns’ trajectories and underlying surface velocity field in
synchrony (figure 1). Subsequently, we used these physical
covariates within a hidden Markov model (HMM) to quan-
tify tern foraging associations with underlying evolving
flow features. Speed and tortuosity of the tracked individuals
differentiated two states, active and transit foraging. We pre-
dicted that state transition probabilities would be affected by
the strength of the underlying turbulent feature as well as its
distance, as perceived by the terns. This allowed us to quan-
tify the influence of prevalent oceanographic features on a
surface-foraging marine predator on hitherto unobtainable
scales (approx. 10–100 m).
2. Methods
(a) Study site
The study was performed in the Narrows, a tidal channel located
in between the Irish Sea and Strangford Lough, Northern
Ireland, UK. The UAV surveys were performed over the flood-
tide wake of a tidal energy structure (SeaGen; 54° 22.144’ N,
5° 32.777’ W), which consisted of a surface-piercing monopile
(3 m diameter) fixed on the seabed (water depth approximately
25 m). SeaGen was fully decommissioned on 25 July 2019. At
the time of data collection (6 July 2018), it was non-operational
and the twin-rotors had already been removed. Characterized
by depth-averaged velocity magnitudes exceeding 5 ms−1

during spring tides [26], the remaining monopile generated a
von Kármán vortex street in the downstream wake, dominated
by turbulent flow features including swirling vortices and loca-
lized up- and downwelling, similar to turbulence arising from
natural wake features. Strangford Lough hosts various nesting
colonies of summer-breeding tern species (Sterna hirundo, S. sand-
vicensis and S. paradisaea), and SeaGen’s floodtide wake was
identified previously as a foraging hotspot, generating the high-
est numbers of terns foraging compared to natural wake features
investigated in the tidal channel [6].

(b) Unmanned aerial vehicle surveys
To record fine-scale tern foraging behaviour in relation to under-
lying coherent flow features, unmanned aerial vehicle (UAV)
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Figure 1. Methods overview of data collection, tracking and flow feature extraction. (a) Drone hovers were performed at 100 m altitude over a von Kármán vortex
street resulting from the floodtide wake of a monopile structure set in a tidal channel. (b) Individual terns were tracked using machine learning and manual post-
processing (where magenta star marks the start of the track, the wake feature shows a time-average) and flight characteristics (speed and tortuosity) were extracted.
(c) Surface velocity fields were extracted using PIV techniques. (d ) A correlation threshold of 0.6 (60%) was used for velocity calculations and subsequent extraction
of regions of (e) divergence and ( f ) vorticity. (Online version in colour.)
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surveys were performed using a DJI Phantom 3 quadcopter
recording 2 K video at 30 Hz. The UAV was flown manually
using the DJI Go application. In order to comply with best prac-
tices and minimize potential disturbance, sampling was
performed at a height of 100 ± 1 m above-surface level, as
measured by the on-board altimeter. Missions included hovers
(holding station with a vertically downward-facing camera)
varying between 68 and 153 s in duration (total sampling
time = 557 s; see electronic supplementary material, table S1)
over half a tidal cycle on 6 July 2018 recording the floodtide
wake of SeaGen to capture seabird flight tracks over time. All
missions were completed in accordance with local regulations
and flown by the same qualified (UK Civil Aviation Authority)
pilot. The UAV camera was calibrated in the laboratory using a
standard checkerboard method and video sequences post-pro-
cessed using MATLAB (R2017b; Mathworks). At 100 m
altitude, each video frame recorded an area of 166.1 × 94.5 m2

with the major axis orientated with the mean flow direction.
(c) Tern tracking, post-processing and extraction
of tack parameters

Machine learning approaches were used to identify, count and
track terns over the turbulent floodtide wake [6]. Briefly,
moving objects were detected using frame-to-frame differencing
of the red channel of the raw drone video; red being selected as
having the highest contrast to the green water colour. Following
cleaning by dilation and erosion, using a 9-pixel radius disk
structuring element, objects were segmented and then filtered
by size to remove sun-glint speckles (area < 20 pixels) and large
foam patches (area > 500 pixels). Images of potential targets
were then passed through a trained ‘Bag of Features’ classifier
[38] before using Kalman filters to compile tracks of those targets
identified as terns only. The classifier was trained using 806
manually identified images each of foam and terns, with an
average accuracy of 93% when applied to a validation set of
3764 images.

Individual tracks were then subjected to manual quality
control. False-positive targets were removed from the track,
and tracks were split or truncated where the Kalman filter
failed to follow the same target. Track segments were then
spliced together, with a subsequent filling of missing targets
(electronic supplementary material, figure S1). Following
manual post-processing, there were 657 tern tracks in the data-
set which were further filtered to only keep those with a
minimum of 15 s duration and discarding ‘transiting’ trajec-
tories. As this study’s objective was to analyse terns deemed
to be foraging, birds that were solely transiting through the
area were identified and excluded. For this, tortuosity, a
measure of the curvature of an animal’s path (how much the
animal is turning), for each overall track was calculated and
those with a value less than 1.1 removed (electronic supplemen-
tary material, figure S2). Finally, the track positions were
corrected for camera lens distortion and scaled according to
the UAV’s altitude.
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The instantaneous velocity and tortuosity along each track
were all calculated using an 11 element window (±5 frames,
centred on each position), where the raw positions within this
window were smoothed by fitting a cubic spline to each
window, and the velocity being the first differential of this
spline. This represents a low-pass filtering operation with a cut-
off frequency at 2.73 Hz. This approach removes higher frequency
variation in the instantaneous positions associated with changing
body shape during wingbeats (which occur in the frequency range
of 3.1 to 3.7 Hz in common and Sandwich terns, respectively [39]).
The tortuosity was calculated as the total distance travelled (sum
of the distances between the 11 points) divided by straight-line
distance between the first and last position.

(d) Particle image velocimetry
Water surface velocity fields (speed and direction of the flow)
were extracted every 0.25 s through each video sequence using
particle image velocimetry (PIV) techniques. At each instant,
four consecutive video frames were used. The green channel
(selected as most representative of the water colour) of each
were extracted and then corrected for camera lens distortion.
A standard cross-correlation technique, including sub-pixel
localization, between consecutive frames was then applied
using 65 × 65 pixel windows with 50% overlap and 128-pixel
clear border [40]. This results in fields of 20 × 39 velocity vectors
extracted per frame-pair with a correlation coefficient reported
for each vector indicating its quality. These raw velocity fields
are adversely affected by local spurious artefacts (sun glint,
birds). To reduce these effects, a 3 × 3 × 3 median filter was applied
across the three vector fields extracted from the four consecutive
video frames providing one clean velocity field every 0.25 s
through the video sequence that were then scaled according to
the UAV’s altitude. There were no static reference points within
the camera’s field of view so that whole-field contamination
from the relative motion of the UAV cannot be removed. However,
turbulence parameters (vorticity and divergence), derived from
local velocity gradients, are minimally impacted by this. These
were calculated using the standard MATLAB functions from
each velocity field after the application of a minimum correlation
threshold of 0.6.

(e) Matching between tracks and turbulence
Flow parameters (vorticity and divergence) were extracted
for each instantaneous position along each track using three-
dimensional interpolation in space and time through the
corresponding sequence of more sparsely spaced flow fields. A
bird’s visual perception during foraging is primarily driven by
the timing of arrival at a target [41]. However, we did not
know a priori if terns would respond to environmental cues
directly underneath their flight path or slightly ahead and
whether this relationship faded with increased temporal distance
to the feature. To investigate such ‘time-to-contact’ effects, time-
offsets (delay d ∈ {0, 0.25, 0.5, …, 5} in seconds) were applied,
where d = 0 indicates that the vorticity/divergence values were
extracted directly underneath the tern’s xy position, and d > 0
represents values ahead along the tern’s flight path. To ensure
parity between time-offsets, all tracks were truncated by the
maximum offset of d = 5.

( f ) Hidden Markov model
We used the extracted physical variables, vorticity magnitude
(absolute(curl)) and upwelling (positive divergence), as covari-
ates within a HMM to quantify tern foraging associations with
evolving, spatio-temporally explicit surface flow features. When
applied to animal movement data, HMMs can reveal underlying
(hidden) behavioural states such as ‘resting’, ‘foraging’ or ‘travelling’
[42,43]. They can further quantify state-switching probabilities as a
function of covariates, thereby relating the behavioural states to
underlying environmental factors [44,45].

In an HMM [46], a time series of observations is modelled
dependent on underlying, non-observable states, with the state
sequence evolving according to a Markov chain. We modelled
the bivariate time series of tern speed and log(tortuosity) depen-
dent on two underlying states, which could be related to active
and transit foraging, respectively (as adapted from definitions
of continuous behaviour categories, differentiating between
direct flight, active and transit search, applied by JNCC during
visual tracking of tern species [47]). Assuming conditional inde-
pendence of speed and log(tortuosity), given the current state,
we used univariate gamma state-dependent distributions for
both (non-negative) variables. The evolution of the two states
over time, as governed by a two-state Markov chain, was further
investigated by relating the state transition probabilities to the
covariates absolute(curl) and divergence:

logit(Pr (i ! j)) ¼ b
(ij)
0 þ b

(ij)
1 � absolute(curl)þ b

(ij)
2 � divergence,

for i,j ¼ 1,2, i = j : To assess how tern state-switching and
stationary state probabilities were influenced by the physical
variables, also in relation to ‘time-to-contact’, a range of scenarios
were tested within the HMM framework using covariates
extracted directly underneath and along the path (d ). This two-
state HMM was fitted in R (R Core Team, 2020) via numerical
optimization of the likelihood function, using multiple random
initial values as starting points to decrease the risk of missing
the global maximum. From the fitted model, stationary state
probabilities were extracted using the Markov chain’s steady-
state distribution under fixed covariate values [43]. The model
selection involved AIC comparisons with models without
either of the two covariates.

3. Results
(a) Foraging state-dependent distributions
Following the removal of transiting trajectories, there were
143 tern foraging tracks with a minimum of 15 s duration
in the dataset, used for subsequent analyses and presented
herein. The mean duration of tern tracks was 28.62 s, with a
maximum track duration of 98.96 s (see a histogram of track
duration in electronic supplementary material, figure S3).
Speed and log(tortuosity) of all tracked terns were used as
observed variables in the HMM to decompose the tracking
data into two states, which could be interpreted as proxies
for active (state 1) and transit (state 2) foraging, respectively.
Active foraging was indicative of actively searching for food,
including instantaneous foraging behaviours of plunge
diving and surface feeding, characterized by more erratic
flight, including swooping (mean log(tortuosity) = 0.066 ±
0.068 s.d.) and lower flight speeds (mean speed= 3.981 ms−1±
1.360 s.d.). Transit foraging was indicative of opportunistically
searching while in transit, characterized with flight speeds
faster than active search (mean speed = 7.191 ms−1 ± 2.097 s.d.)
and less erratic directional changes (mean log(tortuosity) =
0.009 ± 0.008 s.d.). The state-dependent distributions, shown in
figure 2a,b, reflect distinct movement patterns for the two
behavioural states. Figure 2c,d displays an example track two-
dimensional projection and time series, respectively, and
associated decoded states.

(b) Effects of turbulence features on foraging states
The state transition probabilities (Pr(i->j), for i,j = 1,2) and as a
consequence also the stationary state probabilities (Pr(i), for i =
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1,2) were modelled as functions of vorticity magnitude (abso-
lute(curl)) and divergence as covariates in the HMM to
investigate how active and transit foraging varied with the
underlying physical features. The model with both covariates
included was favoured by the AIC over models excluding
either of the two covariates (ΔAIC = 9.24 for the model without
divergence, ΔAIC = 5.46 for model without absolute(curl)).

Following the assessment of the various absolute(curl)
and positive divergence (upwelling) delay combinations
(time-to-contact), the optimal values (yielding the best fit as
measured by the maximum log-likelihood) were d = 0.25 for
absolute(curl) and d = 2.0 for positive divergence (see
electronic supplementary material, table S2). It was not
known a priori how terns would perceive dynamic cues
during flight, and these values identified the scales at
which the variation in the data, and specifically the probabil-
istic switching between the two states was best explained.
Vorticity extracted almost underneath the terns and diver-
gence ahead of the flight path thus yielded the model with
the best goodness-of-fit. This does not necessarily imply
that terns primarily respond to features at these time-to-
contact values, and several other delay combinations yielded
maximum log-likelihood values not much smaller than the opti-
mum. Maximum log-likelihood values were in fact substantially
lower when using higher delays d for absolute(curl), but not
much lower for any d from 0 to 5 for divergence (electronic
supplementary material, table S2).
(i) State transition probability [Pr(i->j)]
With an increased strength in the vorticity feature underneath
(d = 0.25), terns were more likely to switch into the active
foraging state as depicted in figure 3a [P(2->1)], thus exhibit-
ing shorter travelling bouts (figure 3a; [P(2->2)]). Conversely,
for strong positive divergence extracted ahead of the terns’
flight paths (d = 2.0), the probability of a transition into the
active foraging state [Pr(2->1)] decreased (figure 3b); in
other words, the sojourn times in the transit foraging state
increased with the detection of a distant, strong upwelling
(positive divergence) feature (figure 3b; [Pr(2->2)]).

(ii) Stationary state probability [Pr(i)]
Overall, the probability of terns actively foraging (state 1)
increased with the strength of the vorticity features as
shown in figure 3c. This relationship was strongest when
the vorticity feature was extracted almost directly underneath
the tern’s position (d = 0.25). Conversely, strong positive
divergence ahead of the flight path (d = 2.0) increased the
probability of terns to occupy the transit foraging state
(figure 3d ).
4. Discussion
Our drone-based approach, tracking seabirds and underlying
physical features in synchrony, revealed new insights into



0

0.975

0.980

P(
1-

>
1)

P(
2-

>
1)

0.985

0.990

0.995

1.000

0.02 0.04 0.06

0

0.975

0.980

P(
2-

>
2)

0.985

0.990

0.995

1.000

0.02 0.04 0.060 0.02 0.04

abs(curl) abs(curl)

0 0.02 0.04 0.06
abs(curl)

divergence divergence
0.06

0.975

0.980

P(
1-

>
1)

P(
2-

>
1)

0.985

0.990

0.995

1.000

P(
1-

>
2)

0 0.02 0.04 0.06 –0.10 –0.05 0.05 0.100 –0.10 –0.05 0.05 0.100

–0.10 –0.05 0.05 0.100 –0.10 –0.05 0.05 0.100

divergence
–0.10 –0.05 0.05 0.100

0.975

0.980

P(
2-

>
2)

0.985

0.990

0.995

1.000

P(
1-

>
2)

0.005

0

0.010

0.015

0.020

0.025

0.005

0

0.010

0.015

0.020

0.025

0.005

0

0.010

0.015

0.020

0.025

0.005

0

0.010

0.015

0.020

0.025

1.00

0.75

0.50

0.25
states

state 1
state 2

states
state 1
state 2

st
at

io
na

ry
 s

ta
te

 p
ro

ba
bi

lit
y

0

1.00

0.75

0.50

0.25
st

at
io

na
ry

 s
ta

te
 p

ro
ba

bi
lit

y

0

(a) (i) (ii)

(iii) (iv)

(i) (ii)

(iii) (iv)

(b)

(c) (d)

Figure 3. State switching and stationary state probabilities as a function of the covariates. (a,b) Probabilities of switching between the two behavioural states, active
(state 1, orange) and transit foraging (state 2, blue), respectively, as a function of the covariates absolute(curl) (d = 0.25) and divergence (d = 2.0). (c,d) Stationary
state probabilities of occupying the two behavioural states as a function of the covariates. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210592

6

localized tern foraging strategies among turbulence. We
hypothesized that terns may vary their foraging movement
in response to localized coherent surface flow features,
which could serve as physical foraging cues. As predicted,
tern movement patterns showed associations with specific
evolving turbulence features, and these varied with the
time-to-contact (as expressed in delays), indicating the scale
at which most variation in the data was explained.

Terns were more likely to switch to (and occupy) the
active foraging state as near-underlying (d = 0.25) vorticity
magnitude increased (figure 3a,c). Regions of strong vorticity,
patches of swirling flow, tend to accumulate buoyant material
at their centres due to secondary circulation patterns [48],
which could explain the importance of underlying vorticity
to cue active foraging behaviour. Further, terns tended to
increase the occupancy of the transit foraging state when
strong positive divergence (upwellings/boils) laid ahead of
their movement paths (d = 2.0). Therefore, conspicuous
upwellings may provide a strong physical cue even at some
distance, leading to the investigation of such features. This
makes sense in terms of visual perception, as newly erupting
boils (strong positive divergence) are easily detectable from a
distance, producing smooth patches at the sea surface. How-
ever, these flow structures are continuously evolving. For
instance, a few seconds after a boil erupts, it will increase
in size at the water surface, with surface convergences, associ-
ated downwelling and vortex structures evolving at its
peripheries [25]. Over time, buoyant material (e.g. small
prey items) will accumulate over and within any region of
local downwelling. This means that the same boil, on
approach, will already have changed in scale, intensity and
distribution of potential prey items. Conspicuous boils have
previously been hypothesized to be linked to foraging
activity [24], but until now, we have lacked the high spatio-
temporal resolution to quantify this adequately. Data gaps
remain, specifically, the ecological importance of upwelling
boils and how they may contribute to foraging success.
Therefore, future research will investigate if seabirds prefer-
entially forage within boils [19], target the edges of boils, or
if seabirds may even track boils during flight, taking into
account various wind and flow conditions (e.g. electronic
supplementary material, figure S4).

While several mechanisms may be in place for seabirds to
switch into an active foraging state (e.g. intra- and inter-
specific kleptoparasitism ‘prey stealing’ [49], conspecific
attraction or ‘local enhancement’ [50,51]), our findings indi-
cate that terns are likely to adjust their foraging strategies to
localized physical cues at the sea surface. In fast-moving
tidal flows, surface-foraging predators must locate patchily
distributed prey that moves in space and time, thereby con-
stantly adjusting their behavioural strategies in relation to
underlying physical cues.

Previous studies have found seabirds tracking more
persistent oceanographic features on larger spatio-temporal
scales [9], however, the underlying mechanisms in this
study’s findings may differ substantially. For instance, it
has been found that procellariform seabirds may use
olfaction-mediated foraging to track high concentrations of
dimethyl sulfide, where olfactory landscapes mark large-
scale areas where prey is likely to be found [52]. However,
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these odour cues are suggested to operate at larger scales and
have not been investigated in tern species. At the localized
scales we investigated, terns are more likely to rely on
visual cues rather than on olfaction (biogenic cues), alone.
Our observed movement associations with underlying vorti-
city and at a distance, positive divergence, might offer some
insight into the visual sensory ecology of terns, as localized
and ephemeral by nature, these features could be regarded
as direct cues for enhanced prey accessibility through phys-
ical accumulation. The physical environment affects signal
properties and without quantifying the different kinds of
information that an animal can extract information from, it
is challenging to obtain a mechanistic understanding of fora-
ging behaviour [53,54]. Ultimately, investigating how an
animal’s perceptual abilities determine how it extracts infor-
mation from the environment is an essential component of
their foraging ability and thus, the animal’s ecological func-
tion [55]. Therefore, our local-scale study can help
formulate new hypotheses regarding sensory ecology [55],
optimal foraging [56] and potential group dynamics [57]
and collective motion [58].

In-flight terns must continually extract and process infor-
mation from their environment which includes the visual
challenge of locating an environmental cue at some distance
which may be indicative of prey items. One of the central
pieces of information that vision provides is the direction in
which the target lies and the time it will take to arrive at
the target (i.e. ‘time-to-contact’) while the actual distance to
a target is of less importance [41]. This information is deter-
mined by optic flow which describes the way in which the
image of the world moves across the retina as the head
moves through space, which is essentially the perception of
a non-uniform surface that changes continuously over time
[41,59]. That birds use optical flow field information has
been demonstrated in northern gannets Morus bassanus
during plunge-diving manoeuvres [60]. Therefore, when a
bird is lunging at an object, its movement and time-to-contact
needs to be determined accurately [41]. It has been estab-
lished that for most birds, distant prey is detected using
lateral high-resolution vision, while at close range, the control
of the bill close to the time of prey capture (including lun-
ging) facilitates frontal/binocular vision [41]. For gull-billed
terns Gelochelidon nilotica, there is evidence that they use
lateral vision for the locating and tracking of potential prey
[61]. The highly tortuous movements identified in our
study during active foraging (state 1), also shows similarity
to peregrine falcons Falco peregrinus that use curved paths
to keep tracked prey in the central view of a single eye (lateral
vision), before switching to binocular vision used for final
prey capture [62]. In terns, the latter may be the case when
its speed reduces to near-zero, indicating hovering, which
often precedes a plunge dive at close range to the target.

The use of drones for optical sensing and tracking of sur-
face flows using similar PIV techniques is now common
practice [63,64]. Therefore, combining PIV methods with
multi-target tracking is an attractive option when investi-
gating ecological interactions. Our drone-based approach to
quantify animal-environment interactions offers major
advantages unobtainable with more traditional methods
[65]. For instance, animal-borne telemetry applied to a few
individuals may not capture movement within a specific
area of interest if they do not frequent the site. Shore obser-
vations or vantage point surveys may quantify the relative
number of birds using an area, but the oblique angle of the
observer hinders the matching of a bird’s spatial position to
a feature underneath. Previously applied on bird colonies,
drone enumerations have also been shown to be more precise
than human counts [33,34,66]. While our approach can be
applied to any surfacing marine vertebrate, seabirds pose a
particular post-processing challenge. Seabirds in flight (com-
pared to more static objects [67]) present a challenge for
machine learning approaches, due to their small size, changing
shape characteristics and especially when the spectral range of
background turbulence is similar to that of the seabirds.

While our analytical approach explicitly acknowledges
the time series nature of the observations, the relatively
simple two-state HMM still is a strong simplification of the
actual flight process observed at a very high resolution
(30 Hz). In particular, figure 2d indicates strong momentum
of both the speed and the log(tortuosity) also within either
of the two HMM states. At the very fine (sub-second) scale
considered, changes in speed and directionality are effec-
tively continuous, such that the discretization into two
states is indeed more plausible at a slightly coarser scale.
This hierarchical structure of the variation in movement is
not captured by our HMM, which assumes observations
within the two discrete states to be conditionally indepen-
dent. Including autoregressive terms in the observed
process [68], or hierarchical model formulations that dis-
tinguish fine-scale and coarse-scale states [69] could
improve the model’s realism, but corresponding models are
numerically much less stable, and are unlikely to give sub-
stantially different state classifications (which are highly
plausible already when using our simpler approach). Alter-
natively, the very high serial correlation in the data could in
principle be reduced by subsampling the time series at a
lower resolution. Given the focus on highly localized scales,
we preferred not to do this as to avoid any potential infor-
mation loss. In the electronic supplementary material,
figure S5, we do however show the results obtained when
subsampling to 2.73 Hz (chosen to remove any additional
correlation induced by the 11 element windows used for
smoothing), and further an alternative analysis using the
more common turning angles instead of log(tortuosity) to
model the directional persistence. All of these approaches
identified the same covariate effects. Overall, our methodo-
logical approach identified interesting correlations between
behavioural modes and environmental cues, but did not
explicitly model the choice of the target—this could for
example be investigated using movement models with direc-
tional bias [70] or step-selection functions [71].

In conclusion, understanding how highly mobile marine
predators extract information from their underlying environ-
ment may help us predict the potential impacts of
environmental change [72]. This also concerns the introduc-
tion of man-made structures in our coastal seas [73], as
these can influence the occurrence, scale and intensity of
hydrodynamic features on local scales [74], thereby affecting
foraging opportunities [6].

Ethics. No animals were sampled or approached. In order to minimize
potential disturbance to foraging seabirds during the UAV hovers,
the take-off and landing point of the UAV missions was chosen at
a 200 m distance from at-sea foraging birds and the UAV was flown
at 100 m above-sea level. Correspondence with the local department
of environment (DAERA) prior to the study confirmed that no permits
for the UAV surveys were necessary. The UAV surveys were
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