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The development of integrative methods is one of the main challenges in bioinformatics.
Network-based methods for the analysis of multiple gene-centered datasets take into
account known and/or inferred relations between genes. In the last decades, the
mathematical machinery of network diffusion—also referred to as network propagation—
has been exploited in several network-based pipelines, thanks to its ability of amplifying
association between genes that lie in network proximity. Indeed, network diffusion provides a
quantitative estimation of network proximity between genes associated with one or more
different data types, from simple binary vectors to real vectors. Therefore, this powerful data
transformation method has also been increasingly used in integrative analyses of multiple
collections of biological scores and/or one or more interaction networks. We present an
overview of the state of the art of bioinformatics pipelines that use network diffusion processes
for the integrative analysis of omics data. We discuss the fundamental ways in which network
diffusion is exploited, open issues and potential developments in the field. Current trends
suggest that network diffusion is a tool of broad utility in omics data analysis. It is reasonable to
think that it will continue to be used and further refined as new data types arise (e.g. single cell
datasets) and the identification of system-level patterns will be considered more and more
important in omics data analysis.

Keywords: integrative analysis, omics data, biological networks, precision medicine, network-diffusion
INTRODUCTION

“Omics” technologies provide data related to different types of molecular entities (e.g. DNAs, RNAs,
proteins) at increasing sensitivity, down to single-cell level (Hu et al., 2018). This offers the
opportunity for integrative analyses that lead to a more comprehensive view of a biological system
(Higdon et al., 2015; Karczewski and Snyder, 2018). However, integrative analyses involve several
issues due to types of biological information considered, coverage of the pool of molecular entities
under investigation, data distribution types, noise and research questions that need to be addressed
(Ritchie et al., 2015; Ahmad and Fröhlich, 2016; Huang et al., 2017), just to mention a few.
Therefore, the development of integrative methods is one of the main challenges in bioinformatics.

Integrative methods can be classified in three groups by objective (Figure 1A): understanding of
the molecular mechanisms (e.g. genes prioritization, function prediction, module detection),
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clustering of samples (e.g. identification of disease subtypes) or
prediction of samples' outcome/phenotype (e.g. survival)
(Kristensen et al., 2014). These three objectives can be achieved
using a single type or multiple types of omics, possibly combined
with data about molecular networks (Figure 1B), in a supervised
or unsupervised settings.

From a methodological point of view, the arising importance of
interaction networks and the type of statistical approach pave the
way for a first broad classification of integrative methods. In
particular, these can be divided into four broad classes depending
on whether they use molecular networks and Bayesian theory:
network-free non-Bayesian, network-free Bayesian, network-based
non-Bayesian and network-based Bayesian (Bersanelli et al., 2016a).

Molecular networks represent a powerful framework to
integrate and explain omics datasets (Bersanelli et al., 2016a;
Yan et al., 2017; Su et al., 2018). Indeed, the interactome, a term
that designates the whole set of macromolecular interactions
within a cell, could underlie most genotype to phenotype
relationships (Vidal et al., 2011) and can be used to guide our
understanding of how alterations detected by omics technologies
perturb the system as a whole (Caldera et al., 2017). A known
system-level pattern is, for instance, the presence of gene networks
that are “hot” spots of mutations in cancer and reflect the several
possible combinations of mutations that are likely to lead to the
similar pathological phenotype, because affect the same pathways
(Barabási et al., 2011; Boyle et al., 2017). More generally, network-
based approaches enable the study of the relation between the
topological and dynamical properties of a network and the
biological system modelled by means of the network. For
Frontiers in Genetics | www.frontiersin.org 2
example, the distance between genes in a gene network is related
to the functional similarity of the genes (Sharan et al., 2007) and
their involvement in the same disease (Barabási et al., 2011). It is
important to underline that network-based and network-free
approaches to multi-omics data analysis can be combined
within the same pipeline. For instance, a multivariate analysis
for disease stratification can be performed using a (network free)
classic multivariate regression and, then, the results can be further
refined considering a network-based method.

In the last decades, the mathematical machinery of network
diffusion (ND)—also referred to as network propagation—has
been exploited in many network-based pipelines with different
aims, like gene prioritization, gene module identification, drug
target prediction and disease subtyping, thanks to its ability of
amplifying association between variables (e.g. genes) that lie in
network proximity (Cowen et al., 2017). Another important class
of network-based approaches is the one inspired by percolation
theory (Aleta and Moreno, 2019). One of the main applications
of this theory is the study of robustness of biological systems, but
also in finance and social networks (Reis et al., 2014; Brummitt
and Kobayashi, 2015; Baggio et al., 2016; Gao et al., 2016).

ND has been incorporated in many pipelines that jointly
analyse biological networks and multiple collections of scores
(“layers”) derived from omics assays. These ND-based methods
for multi-omics data analysis will be the main focus of this review.

The success of ND can be brought back to a series of benefits.
Considering gene-centric datasets as a practical example, first of
all, ND is a powerful way to embed the information about
molecular interactions among genes into a gene-wise dataset.
FIGURE 1 | Classification of integrative methods. Criteria: (A) Goals; (B) Input data; (C) Network Diffusion (ND) model: Random Walk (RW), Random Walk with
Restart (RWR), Insulated Heat Diffusion (IHD), Diffusion Kernel (DK); (D) Molecular network; (E) ND usage.
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ND quantifies the proximity between genes in a global way, that
is considering all possible paths among the genes, capturing the
complexity of biological networks beyond the limits of local
approaches (e.g. shortest path length) (Wang and Marcotte,
2010). ND highlights genes in network proximity and with
high input scores. By so doing, it amplifies genetic associations
according to the architecture of the molecular network, a result
that offers insights in agreement with the so-called local
hypothesis; that is, the hypothesis that genes that lie in
network proximity within molecular networks co-work in the
development of cellular functions and are therefore co-
responsible for pathological phenotypes (Barabási et al., 2011).
Moreover, by a data analysis perspective, ND transforms sparse
input vectors into dense vectors. This operation eliminates
missing values and ties, two situations that are often difficult to
handle. This imputation step facilitates the joint analysis of
different data types and is particularly important in the
integration of multiple omics that vary in scope and coverage.
For instance, mutations may affect just a few tens of genes of a
tumor cell, while gene expression changes are observed for a
much higher number of genes. More generally, in a multi-omic
analysis of a biological process, only a subset of the genes is
associated with the various types of measured alterations. In this
context, ND can be used to highlight common network regions
where different types of omics signals converge. ND can be
performed not only at early stages of the integration pipeline (e.g.
data imputation), but also at later stages, for instance to refine the
results on the basis of molecular network data. Lastly, ND is
suitable to analyse patient-level molecular profiles, promoting
studies within the scope of precision medicine.

Recently, Cowen et al. (2017) provided a general overview of
the unifying mathematical machinery of ND, showing its broad
utility in several problems of genetic research, while, previously,
Wang and Marcotte (2010) described the application of ND to
the problem of predicting gene function and phenotype. Here,
we focus on the use of ND in multi-omics data analysis. We
extend previous studies by adding recent developments in the
field. We will give hints on molecular networks, the scaffolding
on which ND takes place. Then, we will summarize the
mathematical machinery of ND. Lastly, we will review the
integrative methods that use ND by aim, input data type,
molecular network, way in which ND is exploited during the
integrative analysis and application. The trends of recent works
suggest that ND will continue to be used and further developed
to meet the requirements of novel research questions that arise as
novel data types will be more and more available, like single
cell datasets.
MOLECULAR NETWORKS: THE
SCAFFOLDING FOR DIFFUSION

Network-based methods require, by definition, a molecular
network that enters the analysis pipeline at some point. The
complex web of molecular interactions that occur within human
cells is often referred to as “interactome” (Barabási et al., 2011).
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Such interactions can be of rather different types and are usually
distinguished in two classes: biophysical and functional (Caldera
et al., 2017). Biophysical interactions indicate actual molecular
contact between two molecular entities, such as protein–DNA
biding or protein–protein binding in a protein complex.
Functional interactions indicate any kind of biologically
relevant interaction (at the molecular scale), like co-expression
or synthetic lethality.

There is still no unique reference for the human interactome
(Luck et al., 2017), but several efforts are underway. Four
proteome-scale PPI interaction maps have been recently
generated using different high-throughput approaches based on
binary interaction or complex mapping (Luck et al., 2017). The
Genotype-Tissue Expression (GTEx) project aims at the
construction of a specific network for each major human tissue
(GTEx Consortium, 2015). Projects like ENCODE97 and the
Roadmap Epigenomics provide data about gene regulatory
networks (Kellis et al., 2014; Kundaje et al., 2015). The IMEx
Consortium is an international collaboration of major public
interaction data providers aimed at establishing a non-redundant
set of biophysical molecular interactions (Orchard et al., 2012).
In addition to primary databases, which collect curated
experimental data from small and/or large scale studies, there
are several meta-databases, which integrate data from several
primary databases, and prediction-databases, which also provide
predicted (biophysical and/or functional) interactions obtained
from the analysis of biological datasets (De Las Rivas and
Fontanillo, 2010).

Multiple collections of scores can be mapped on molecular
networks in rather different ways, depending on data types and
data analysis purposes. We can classify the resulting networks in
three broad categories: multi-weighted networks, multiplex
networks and networks of networks.

In a multi-weighted network, a series of weights are associated
with nodes and/or links. For instance, the same biological
network can be characterized by different omics weights on
different layers (e.g. gene expression, methylation, somatic
mutations). A multi-weighted network therefore consists of a
single-layer network with multiple attributes associated with the
same nodes and links, but sometimes can be referred to as a
multi-layer network.

Two categories of structural multi-layer networks are
multiplex networks and networks of networks. A multiplex is a
collection of networks with the same set of nodes and varying
intra-layer topologies and inter-layer relationships are trivially
given (Menichetti et al., 2014).

A network of networks (sometimes also referred to as
heterogeneous networks) is a collection of networks with
different nodes (in principle also representing entities of
different nature) with multiple types of connections (specific
intra-layer links and specific inter-layer connections) (Kivelä
et al., 2014). The classification of multi-layer networks is indeed
non-trivial; for instance, the categories described can have
significant overlaps. It is possible to build hybrid networks
where on a core multiplex some layer-specific nodes and links
are introduced and consequently different types of inter-layer
February 2020 | Volume 11 | Article 106
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links are established; for more details about multilayer networks
and their classification see the work of Kivelä et al. (2014).
MATHEMATICS OF THE NETWORK
DIFFUSION PROCESS

ND processes can be summarized as the spreading of biological
information throughout the network along network edges,
initially retained in the so-called “seed nodes”. Each node will
therefore gain or lose biological information according to the
network proximity to the seeds and to its topological features.
ND is realized by means of different methods that can be brought
back to random walks, random walks with restarts and
diffusion kernels.

From a mathematical perspective, considering a network G of
n nodes, the biological information is encoded in an n-
dimensional array x0 where the i-th entry accounts for the
amount of biological signal initially present in node i. We can
therefore define x0 as the initial state of the network. Then,
starting from t=0 up to a fixed time (finite or infinite) the state of
the network xt evolves according to the network topology until it
reaches a final state xT, where, as previously mentioned, T can
either a finite or an infinite time. Under the appropriate settings,
when T=∞, the final state of the diffusive algorithm may
correspond to a steady state or steady-flow state of an
associated physical model, allowing a clear interpretation of the
results (Bersanelli et al., 2016b).

In general, the final state of a diffusion process consists of a
graph-based transformation fG of the initial biological
information x0, which is linear in most cases so that fG reduces
to a matrix MG and

xT = fG x0ð Þ = MG � x0 (1)

We classify the diffusion processes used by integrative
methods, similarly to Cowen et al. (2017), on the basis of the
specific transformation MG in four categories (Table 1 and
Figure 1C):

1. Random Walk (RW): MG = ½AD−1�k;
2. Random Walk with Restart (RWR): MG = a½I − (1 − a)

D−1=2AD−1=2�−1;
3. Insulated Heat Diffusion (IHD):MG = a½I − (1 − a)AD−1�−1;
4. Diffusion Kernel (DK): MG = ea(D−A).

Here above, A is the adjacency matrix of the network, D is a
diagonal matrix of nodes degree (number of interactions), k is
the number of time-steps and a∈(0,1) is a tuning parameter.
Differently from Cowen et al. (2017) we choose to differentiate
between RWR and IHD. In fact, the different normalization of
the adjacency matrix A (symmetric for the RWR, column
normalization for the IHD) implies different behaviours in the
relative diffusion processes. Indeed, the RWR implies a
symmetric diffusion where information flows through each link
with the same intensity in each direction (Vanunu et al., 2010).
Frontiers in Genetics | www.frontiersin.org 4
Conversely, IHD implies an asymmetric diffusion where
information (or heat) tends to flow out from highly connected
nodes much easier than from poorly connected ones (Leiserson
et al., 2015). Such differences in the diffusion matrix therefore
imply dissimilar behaviours of information flow, mainly in
relation to network hubs: at infinite time in the RWR hubs
tend to naturally gather relatively more information than in the
IHD, since IHD is characterized by an intrinsic hub penalization.
Therefore, despite RWR and IHD are conceptually similar, they
may present sensibly different results, especially when applied to
complex biological networks with thousands of vertices and tens
to hundreds thousands links.

Independently from the specific kind of diffusion model, the
matrixMG is usually hard to recover analytically because it implies
inverting or power-expanding a high-dimensional graph-based
transition matrix: alternative numerical approaches would be
needed and the direct inversion of the matrix MG is possibly
replaced with converging iterative procedures (Zhou et al., 2004).

The choice of the most appropriate diffusion process depends
on the goal of the analysis. For instance, if one is interested only
in considering a local neighborhood of the seeds may choose RW
with a finite number of steps (Cun and Fröhlich, 2013), while
RWR and IHD quantify network proximity to seeds considering
simultaneously all the possible network paths among network
nodes (Hofree et al., 2013; Leiserson et al., 2015).
NETWORK DIFFUSION IN INTEGRATIVE
DATA ANALYSIS

ND requires data about the variables (x0) and about their relations
(A). An important difference between integrative methods that use
NDconcerns the type of network in use, that is theway inwhich the
adjacency matrix is defined. Three broad categories can be
recognized (Table 1 and Figure 1D): the topology of the network
in use can be defined by means of a priori knowledge, e.g. collected
frommolecular interactions databases; alternatively, a network can
be inferred from the analysis of one or more biological datasets;
lastly, a mixed approach that combines a priori and novel
knowledge is possible.

ND can be applied before, after or during the “integration step”
of the analysis pipeline (Table 1 and Figures 1E, 2). In theND-first
approach, ND is applied to a series of collections of initial scores,
each of which summarizes data of a single sample or multiple
samples; the resulting collections of ND scores are subsequently
integrated. An example of this approach is TieDIE (Paull et al.,
2013), where ND is applied to two collections of scores, one
representing mutated genes while the other differentially
expressed genes, on the same network; the two resulting ND
score vectors are then jointly analysed and the minimum of the
twoNDscoresof a gene is consideredas theone chosen for the gene.

TheND-after approach consists in the application of ND after
a first process of integration of different data types into a unique
structure. For instance, stSVM (Cun and Fröhlich, 2013) first
integrates omics data and subsequently applies ND to define a
February 2020 | Volume 11 | Article 106
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global ranking of miRNA and mRNA using statistics about their
differential expression integrated in a heterogeneous network.

The ND-during refers to the application of a type of ND in which
each layer communicate information one another. This is the case of
SNF(Wanget al., 2014), inwhichpatient similaritynetworks, obtained
Frontiers in Genetics | www.frontiersin.org 5
from each of their data types separately, exchange information during
the ND process, leading to a unique “fused” patient network.

On the basis of data types, we can distinguish integrative
methods that use ND to analyse a single type of omics, multiple
omics or multiple networks (Table 1 and Figures 1B, 3).
TABLE 1 | Network diffusion based methods for the integrative analyses of multiple biological layers.

Method Input Integration
Level

ND Network Goal Language and
Availability

URLs

Type Application

Dmfind
(Bersanelli et al.,
2016b)

gene mutations single omics RWR ND-first A priori module detection R package for
download

https://www.itb.cnr.it/
web/bioinformatics/
dmfind

EMDN
(Ma et al., 2017a)

DNA methylation, gene
expression

multiple omics RWR ND-first Inferred module detection R package for
download

https://github.com/
william0701/EMDN

EPU
(Yang et al., 2014)

gene expression, PPI,
gene ontology, gene-
phenotype association
data and phenotype
similarity network

multiple
networks

RWR ND-first Mixed gene prioritization – –

GeneMANIA
(Mostafavi et al., 2008)

co-expression, PPI,
genetic interaction, co-
localization, shared protein
domains

multiple
networks

RWR ND-first A priori function
prediciton

Web server http://apps.cytoscape.
org/apps/genemania

Mashup
(Cho et al., 2016)

PPI multiple
networks

RWR ND-first A priori function
prediciton

Matlab code for
download

http://cb.csail.mit.edu/
cb/mashup/

M – module
(Ma et al., 2014)

gene mutation, gene
expression

multiple omics RWR ND-first Inferred module detection R package for
download

http://
tanlab4generegulation.
org/software/

mND
(Di Nanni et al., 2020)

gene mutation, gene
expression

single omics,
multiple omics

RWR ND-first A priori gene prioritization R package for
download

https://www.itb.cnr.it/
web/bioinformatics/
mnd

NetBag
(Wu et al., 2015)

gene expression single omics RWR ND-first A priori disease subtyping – –

NetICS
(Dimitrakopoulos et al.,
2018)

aberration events, gene
expression

multiple omics IHM ND-first A priori gene prioritization Matlab code for
download

https://github.com/
cbg-ethz/netics

NBS
(Hofree et al., 2013)

gene mutations single omics RWR ND-first A priori disease subtyping Matlab code for
download

http://chianti.ucsd.edu/
~mhofree/NBS/

NBS2
(Zhang et al., 2018)

gene mutations single omics RWR ND-first Mixed disease subtyping Phyton package
for download

https://github.com/
wzhang1984/NBSS

RegNet
(Seifert and Beyer,
2017)

CNV, gene expression multiple omics RW ND-after Inferred gene prioritization R package for
download

https://github.com/
seifemi/regNet

Ruffalo et al. (2015) gene mutations, gene
expression

multiple omics RWR ND-first A priori gene prioritization – –

Shi et al. (2016) gene mutations, gene
expression

multiple omics RW ND-first Mixed gene prioritization – –

SRF
(Le Van et al., 2016)

gene mutations, gene
expression

multiple omics RWR ND-first A priori disease subtyping Java code for
download

https://github.com/
rankmatrixfactorisation/
SRF

SNF
(Wang et al., 2014)

DNA methylation, gene
expression

multiple omics DK ND-during Inferred survival
prediction,
disease subtyping

R and Matlab
code for
downloads

http://compbio.cs.
toronto.edu/SNF/SNF/
Software.html

stSVM
(Cun and Fröhlich,
2013)

gene expression (mRNA,
miRNA)

multiple omics DK ND-after A priori gene prioritization,
survival prediction

R package for
download

https://www.
rdocumentation.org/
packages/netClass/
versions/1.2.1

TieDie
(Paull et al., 2013)

gene mutations, gene
expression

multiple omics IHM ND-first A priori module detection Python and
Matlab code for
downloads

https://sysbiowiki.soe.
ucsc.edu/tiedie

WSNF
(Xu et al., 2016)

gene expression (mRNA,
miRNA)

multiple omics DK ND-during Inferred survival
prediction,
disease subtyping

R package for
download

http://nugget.unisa.
edu.au/Thuc/
cancersubtypes
February 2020 | V
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Single Omics
Integrative methods for the analysis of a single type of omics
consider a series of molecular profiles, such as patient-wise
mutation profiles.

The method called “dmfind” (Bersanelli et al., 2016b)
compares ND scores obtained from a series of descriptive
statistics, such as gene mutation frequencies. Subsequently, the
network smoothing index (NSI) is obtained by comparison of
ND scores with initial molecular profiles (Bersanelli et al.,
2016b). When applied to gene networks, NSI highlights genes
in network proximity enriched by initial information according
to a tuning parameter ϵ (Barabási et al., 2011). The integration is
therefore realised by subtracting NSIs belonging to two patient
groups (ND-first), an operation that prioritizes genes that
Frontiers in Genetics | www.frontiersin.org 6
participate in differentially enriched modules (Bersanelli
et al., 2016b).

tlsb 0.1ptNBS (Network-Based Stratification) (Hofree et al.,
2013) is a method that stratifies tumor mutations finding clusters
of similar patients. It applies ND to a binary somatic mutation
matrix (genes-by-samples). Then, the resulting collections of ND
scores are jointly analysed (ND-first) using a network-
constrained non-negative matrix factorization to find k patient
groups. It has been applied to study 13 cancer types with exome-
level mutation data (Zhong et al., 2015), liver cancer (Fujimoto
et al., 2016) and in a pan-cancer genomic analysis (Liu and
Zhang, 2015).

NetBags (NETwork Based clustering Approach with Gene
signatures) (Wu et al., 2015) essentially applies the strategy of
FIGURE 2 | Ways in which ND enters the integrative analysis pipelines.
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NBS to a binary genes-by-samples matrix that represents the
significantly expressed genes.

NBS2 (Network-Based Supervised Stratification) (Zhang et al.,
2018) was proposed as a development of NBS (Hofree et al.,
2013). NBS2 uses cancer-specific a priori knowledge of molecular
interaction networks. Unlike previous approaches, the weights of
each molecular interaction are adjusted by a supervised strategy
so that the stratification of propagated mutation profiles after
random walk is close to the pre-defined tumor subtypes.

Lastly, mND (Di Nanni et al., 2020) has been developed to
yield gene prioritizations and it is applicable to both datasets
originating from a single type or multiple types of omics, which
can be distributed over multiple layers with the same underlying
network structure. We will further describe this method in the
next section.

Multi-Omics Integration
In multi-omics data integration each layer typically contains
scores obtained from a distinct omic assay. Most methods deal
with two types of layers (Figure 3).

Genomics and Transcriptomics
Many methods tackled the problem of analysing the relation
between genomic aberrations and gene expression changes.

Ruffalo et al. (2015) presents a ND-based method to predict
“silent” players in cancer by integration of somatic mutations
and gene expression data, where a silent player is a gene neither
mutated nor differentially expressed but which plays a role in
cancer development and progression. Inputs are represented as
two binary matrices of somatic mutation and gene expression
(genes-by-samples).

The authors explored several ways (e.g. the minimum, the
maximum, the product, the average) of combining diffusion
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scores (ND-first) to obtain the features of a logistic regression
model that predicts a gene's association with cancer.

Also Shi et al. (2016) use patient-wise gene mutation and gene
expression data to prioritize genes. The approach constructs a
bipartite graph of outlying genes and mutated genes considering
an influence graph (that captures a priori biological pathway
information), mutational and expression data. A two-step
diffusion is performed to calculate diffusion scores for each
patient and these scores are subsequently combined (ND-first)
by robust rank aggregation.

mND (Di Nanni et al., 2020) prioritizes genes taking into
account the network proximity of the genes and their first
neighbours to other altered genes considering multiple types of
biological evidence. It works without constraints for the type and
number of input, applying ND to a general gene-by-samples
matrix, where each column represents a vector of scores (e.g.
gene mutation frequencies, p-values from differentially expressed
genes). Then, the resulting collections of ND scores are
integrated (ND-first) by calculating for each gene the product
between the sum of its network constrained scores and the sum
of the contributions of its top k first neighbours. Beyond
prioritizing genes, mND provides the opportunity to classify
genes in each layer suggesting genes role in relation to the
context of the alterations detected.

Differently from the methods described above that yield gene
prioritizations, TieDIE (Tied Diffusion Through Interacting
Events) (Paull et al., 2013) has been developed to identify a
subnetwork that links a source gene set (S) carrying genomic
alterations to a target set (T) of differentially expressed genes on
the same a priori network. TieDIE transforms the two collections
of input scores in the corresponding ND scores and then (ND-
first) the minimum of the two scores of a gene is used as the final
score for that gene. TieDIE has been used to study several
FIGURE 3 | Network diffusion methods for the integrative analyses of multiple biological layers. GP, gene prioritization; MD, module detection; FP, function
prediction; DS, disease subtyping; SP, survival prediction. We classified methods according to their main use described by the respective authors.
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cancers, such as, Papillary Thyroid Carcinoma (Agrawal et al.,
2014), Prostate Cancer (Drake et al., 2016), Leukemia (Huang
et al., 2018) and in an extensive immugenomic analysis of 33
diverse cancer types (Thorsson et al., 2018).

Another method that seeks to identify gene modules is M-
Module (Ma et al., 2014). It infers co-expression networks from
multiple data that represent disease stage transitions. Then genes
are ranked in each networks via ND, incorporating also gene
mutations as priors. In each network, ND scores are transformed
in gene ranks, gene ranks into z-scores and the average z-score
across all is used to obtain a final gene rank (ND-first). Gene
modules are therefore identified using a graph entropy-based
measure that quantifies connectivity of a module in multiple
networks. Authors of M-Module proposed different variants of
the algorithms: NMF-DM, in which modules of each network are
discovered using a non-negative matrix factorization algorithm
(Ma et al., 2016), SMMN, which uses modularity measure to
discovery modules (Ma et al., 2017b) and S2-jNMF a novel
semisupervised joint nonnegative matrix factorization algorithm
(Ma et al., 2018). M-Module has been applied to several studies
[e.g. Chen et al. (2016); Han et al. (2017); Zhou et al. (2017)].

SRF (Le Van et al., 2016) aims at discovering cancer subtypes
by combining mutation and expression data across samples. ND
is applied only to the binary matrix of gene mutations. The
identification of subtypes is performed by rank matrix
factorization of the ranked diffusion matrix and ranked
expression matrix (ND-first).

Copy number variations (CNVs) are another type of
genomics aberration that has been jointly analysed with
transcriptomics. The main goal of RegNet (Seifert and Beyer,
2017) is the quantification of the impact of gene expression
changes on user-defined target genes in a network inferred from
gene expression and CNVs. The approach learns a regulatory
network by modelling the expression level of each gene as a linear
combination of the expression levels of all other potential
regulator genes and the gene-specific copy number, lasso
regression is used in combination with a significance test for
lasso (Lockhart et al., 2014) to find the relevant predictors for
each gene. Next, ND is applied using the learned network to
quantify impacts of sample-specific gene expression changes on
other clinically relevant target genes using network-diffusion.
RegNet was able to predicts novel cancer gene candidates in
oligodendrogliomas (Gladitz et al., 2018).

Epigenomics and Transcriptomics
The algorithm of M-Module is employed in EMDN framework
(Epigenetic Module based on Differential Networks) (Ma et al.,
2017a) to characterize epigenetic modules by using differential co-
methylation and co-expression networks, without incorporating
genes mutations information as prior information. In this way
EMDN applies ND as RW without restart, but with a symmetric
normalization of the adjacency matrix.

An interesting method that aims to find disease subtypes and
predict phenotypes is SNF (Similarity Network Fusion) (Wang
et al., 2014). It works without constraints for the type of input but
requires that samples are matched across omics. First, networks
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of samples for the various types of omics are built, then, networks
are fused into one network by using the non-linear method of
message passing theory (KNN and graph diffusion) that
iteratively updates each of the network making it more similar
to other networks in each step.

Several studies in cancer have exploited SNF method to
integrate GE and DM data, like: Kidney Renal Cell Carcinoma
(Deng et al., 2016), medulloblastoma (Cavalli et al., 2017);
further, thanks to its versatility, SNF has been used to integrate
other types of omics: miRNA and GE in Colorectal liver
metastasis (Pitroda et al., 2018) and in Ovarian cancer (Zhang
et al., 2016); miRNA, mRNA, lncRNA, and DNA methylation in
Pancreatic Ductal Adenocarcinoma (Raphael et al., 2017); GE,
miRNA and CNV in triple-negative breast cancer (Chiu
et al., 2018).

Transcriptomics: mRNA and miRNA
Xu et al. (2016) have proposed a modification of SNF method
called WSNF (Weighted Similarity Network Fusion) that takes
into consideration the level of importance of genes to identify
disease subtypes. WSNF constructs a miRNA-TF-mRNA
regulatory network from different interaction databases, then
assesses the weight of each features (miRNA, TF, mRNA),
calculated as a linear combination of two terms: ranking of
features obtained using ND and expression variation across all
patients in expression datasets. Weights are introduced into the
formula of Euclidean distance to calculate the distance between
two patients then SNF method is applied.

stSVM (smoothed t-statistic support vector machine) (Cun
and Fröhlich, 2013) combines a priori network information and
omics data (miRNA and GE) to discover biomarker signature
and predict disease prognosis. It smoothens gene-wise statistics
from experimental data (both miRNA and gene expression) over
the biological network, constructed by integration of PPI with
miRNA-target gene network, using a P-step random walk
kernels. A permutation test is conducted to select significant
genes that will be used to train a support vector machine (SVM)
classifier. It has been used in an integrative study of miRNA and
GE to predict response to a monoclonal antibody in Head and
Neck Squamous Cell Cancer (De Cecco et al., 2017).

Genomics, Epigenomics and Transcriptomics
NetICS (Network-based Integration of Multi-omics Data)
(Dimitrakopoulos et al., 2018) prioritizes cancer genes by their
mediator effect, defined as the proximity of the gene to aberration
events (SM, CNV, DM, a differentially expressed miRNA),
differentially expressed genes and proteins in a molecular
network given a priori. The method uses a per-sample
bidirectional IHD process and initial heat vectors (h1, h2) are
defined, respectively, as the number of the aberrant and
differentially expressed genes of the sample. Final scores for all
genes are obtained by means of the Hadamard product of the
exchanged heat matrices (E1, E2) (ND-first): E = E1 ◦ E2.

Lastly, diffusion scores of all samples are combined to obtain
global gene ranking via a robust aggregation, in which a gene's
rank is calculated as the sum of its per-sample ranks.
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Integration of Multiple Networks
In the integration of multiple networks each layer represents a
biological network. The two main applications are gene function
prediction and gene prioritization.

Mashup (Cho et al., 2016) uses ND on several protein–
protein interaction networks to predict gene function and
genetic interactions. It applies RWR algorithm separately on
each network and then a matrix factorization based technique is
used to reduce dimension of the diffusion results (ND-first). The
feature learning step allows to obtain a low-dimensional feature
vectors of proteins that best approximates the RWR matrix and
results more robust to noise; feature vectors are used to train
SVM classifiers to predict genetic interactions.

Mostafavi et al. (2008) developed GeneMANIA (Multiple
Association Network Integration Algorithm), a tool for
predicting gene function by integration of multiple networks
(e.g. co-expression, PPI, genetic interaction, co-localization,
shared protein domains). Given d networks encoded as
matrices W1,…,Wd, they are integrated into a “composite
network” (Wcomb), obtained by weighted average of individual
networks:

Wcomb =o
h

ahWh

where the vector [a = a1, …, ad] corresponds to network
weights and is computed by solving a ridge regression problem.
Then given the Wcomb matrix, a variation of the Gaussian field
label propagation algorithm (a RWR where functions of
unlabeled data are predicted starting from differently labeled
data and network structure) is applied to predict the gene
function. GeneMANIA has been applied in several studies (e.g.
O'Roak et al. (2012); Tkach et al. (2012); Giudice et al. (2014);
Karki et al. (2018); Sepulcre et al. (2018)).

Differently from above methods, EPU (Ensemble Positive
Unlabeled learning) (Yang et al., 2014) uses a supervised
learning method, that falls in the class of Positive-Unlabeled
learning method, for disease gene identification by integrating
multiple biological data sources (PPI, gene expression data, Gene
Ontology, Phenotype-gene association data and Phenotype
similarity network). ND is applied on three biological networks
(Gene Expression network, PPI network, Gene ontology
similarity network) to obtain weights for unlabelled genes (not
associated with disease). The resulting three collections of ND
scores are combined into a set of integrated scores using, for each
gene, the mean of its three ND scores (ND-first). These
integrated scores are used to train three machine-learned
prediction models (Weighted-KNN, Weighted-Naïve Bayes,
Weighted-SVM) and their results are integrated by an
ensemble learning algorithm.
DISCUSSION

ND based approaches have been proposed to solve several
problems in biological data analysis, including data integration.
These methods analyse multiple collections of scores derived
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from different omics assays in combination with molecular
networks or similarity networks, and apply ND on such
networks. The main applications include: gene function
prediction; gene prioritization; identification of gene modules
and molecular pathways; disease subtyping; and prediction of an
outcome. In all these applications, ND is a tool to transform one
or more initial vectors of scores into vectors that reflect the
network proximity between network nodes on which the scores
are mapped. This data transformation is exploited for different
purposes, such as: embedding a molecular interaction data into
omics datasets; amplifying associations between the studied
variables; missing value imputation; enabling comparisons
among different data types; highlighting network regions
enriched in multiple types of scores; and studying molecular
profiles at patient-level scale.

ND processes, which can be brought back to four classes,
require the tuning of a parameter (k or a) that controls the
diffusion process reach or the relative importance of topology
and input scores. In many cases, the issue about tuning of such
parameter has been solved showing that the performance of the
proposed integrative method is robust to small variations of the
parameter. A dependency between the optimal value and the
network in use has been suggested (Hofree et al., 2013).

Most methods apply ND to transform a series of input score
collections to get as many collections of ND scores—in which the
network topology is embedded—and, subsequently, combine the
ND scores: we referred to these methods as ND-first. The
combination of a series of ND scores for the same variable
(e.g. a gene) is performed with simple mathematical operators,
such as the mean or the minimum, or with more elaborated
techniques, such as non-negative matrix factorization and
support vector machines. ND scores may require a step of
transformation, such as normalization, to enable the direct
comparison between scores at different scale [e.g. Hofree et al.
(2013)], or ranking, to work on the relative importance rather
than absolute values [(e.g. Ma et al. (2014); Shi et al. (2016))].
Other integrative methods, firstly integrate multiple data types,
then use ND: we referred to these methods as ND-after. In these
methods, ND is one of the last steps that lead to the final output.
A third class of methods perform ND simultaneously with the
integrative step (ND-during). The class of simultaneous diffusion
approaches is very promising as it encodes the diffusion
processes on multi-layer networks (Aleta and Moreno, 2019).
In principle, simultaneous diffusion allows to extend the classical
analysis of multi-omics data on complex networks. For instance,
in the case of heterogeneous networks, layer-specific nodes bring
an indirect contribution to the ND scores on each other layer.
Such an output is not possible neither in ND-first nor inND-after
approaches. ND-after integrative approaches build an aggregate
network encoding weighted or unweighted aggregate links; such
an aggregate network is therefore algebraically put together,
independently from the diffusion process. The same
considerations hold for ND-first approaches, but such
integration issues are addressed once the ND is performed on
each layer separately. Therefore, ND-after and ND-first
approaches could be very informative about a specific
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biological analysis but they present an intrinsic lack of scalability,
as the way in which properly combine and weigh networks
(before or after ND) strongly depends on the biological context.
Conversely, an ND-during (simultaneous) approach maintains
the available biological information and avoids additional data
manipulations before and after the application of the diffusive
algorithm. However, simultaneous approaches may introduce
computational issues as omics data size and number of
layers increase.

Most of the approaches do not assess the statistical
significance of ND scores. In several works it was proposed to
use empirical p values (Bersanelli et al., 2016b), which provide
also the benefit of mitigating the over-estimation of hub
importance. In a recent work, the calculation of empirical p
values using degree-normalized random seeds was shown to be
more accurate, but computationally more demanding, than
random seeds (Biran et al., 2019).

A specific combination of omics (e.g. gene mutations and
gene expression changes) and a quite specific formulation of the
problem is often required. While this specificity offers advantages
within the domain of the original problem, it also poses
constraints to applicability and further extension. Furthermore,
efforts are still required to develop methods that combine more
than two omics.

A relevant issue is the reliability of interactomes. The problem
of defining a reference human interactome is open in molecular
biology as well as the problem of quantifying the reliability of
such cell-scale reconstructions, because experimental
technologies currently used to detect interactions involves a
series of issues (Luck et al., 2017). Therefore, a careful network
selection must be made by users based on the research questions
they wish to address. Further, some methods take into account
Frontiers in Genetics | www.frontiersin.org 10
the directions of interactions in their algorithms, but cell-scale
reconstructions do not provide information about “the
direction” of the interaction, which requires a deeper
understanding of the mechanistic relation between the two
interacting partners. Modelling this information is not trivial
and usually comes at the cost of a relevant reduction of coverage
in terms of genes that can be analysed.

ND has become a popular tool in integrative analyses. The
trends of recent works suggest that it will continue to be used and
further refined as demands relative to new data types arise. For
example, recent works apply ND to single cell data analysis,
mainly to impute missing expression data (Van Dijk et al., 2018;
Ye et al., 2019).
AUTHOR CONTRIBUTIONS

ND and EM conceived the study. ND, EM, and MB performed
literature search and wrote the manuscript. ND drafted figures
and tables. EM and LM critically reviewed the manuscript. All
authors approved the final manuscript.
FUNDING

This research was funded by: European Union's Horizon 2020
research and innovation programme, grant GEMMA 825033;
Italian Ministry of Education, University and Research, project
INTEROMICS PB05 and project BBMRI-it n. K75; Fondazione
Regionale per la Ricerca Biomedica (Regione Lombardia),
p ro j ec t LYRA 2015-0010 and pro j ec t F ind ingMS
ERAPERMED2018-233 GA 779282.
REFERENCES

Agrawal, N., Akbani, R., Aksoy, B. A., Ally, A., Arachchi, H., Asa, S. L., et al.
(2014). Integrated genomic characterization of papillary thyroid carcinoma.
Cell 159 (3), 676–690. doi: 10.1016/j.cell.2014.09.050

Ahmad, A., and Fröhlich, H. (2016). Integrating heterogeneous omics data via
statistical inference and learning techniques. Genomics Comput. Biol. 2, 32. doi:
10.18547/gcb.2016.vol2.iss1.e32

Aleta, A., and Moreno, Y. (2019). Multilayer networks in a nutshell. Annu. Rev.
Condensed Matter Phys. 10, 45–62. doi: 10.1146/annurev-conmatphys-031218-
013259

Baggio, J. A., BurnSilver, S. B., Arenas, A., Magdanz, J. S., Kofinas, G. P., and De
Domenico, M. (2016). Multiplex social ecological network analysis reveals how
social changes affect community robustness more than resource depletion.
Proc. Natl. Acad. Sci. 113 (48), 13708–13713. doi: 10.1073/pnas.1604401113

Barabási, A. L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a
network-based approach to human disease. Nat. Rev. Genet. 12 (1), 56. doi:
10.1038/nrg2918

Bersanelli, M., Mosca, E., Remondini, D., Giampieri, E., Sala, C., Castellani, G.,
et al. (2016a). Methods for the integration of multi-omics data: mathematical
aspects. BMC Bioinf. 17 (2), S15. doi: 10.1186/s12859-015-0857-9

Bersanelli, M., Mosca, E., Remondini, D., Castellani, G., and Milanesi, L.
(2016b). Network diffusion-based analysis of high-throughput data for the
detection of differentially enriched modules. Sci. Rep. 6, 34841. doi: 10.1038/
srep34841
Biran, H., Kupiec, M., and Sharan, R. (2019). Comparative analysis of
normalization methods for network propagation. Front. Genet. 10, 4. doi:
10.3389/fgene.2019.00004

Boyle, E. A., Li, Y. I., and Pritchard, J. K. (2017). An expanded view of complex
traits: from polygenic to omnigenic. Cell 169 (7), 1177–1186. doi: 10.1016/
j.cell.2017.05.038

Brummitt, C. D., and Kobayashi, T. (2015). Cascades in multiplex financial
networks with debts of different seniority. Phys. Rev. E 91 (6), 062813. doi:
10.1103/PhysRevE.91.062813

Caldera, M., Buphamalai, P., Müller, F., and Menche, J. (2017). Interactome-based
approaches to human disease. Curr. Opin. Syst. Biol. 3, 88–94. doi: 10.1016/
j.coisb.2017.04.015

Cavalli, F. M., Remke, M., Rampasek, L., Peacock, J., Shih, D. J., Luu, B., et al.
(2017). Intertumoral heterogeneity within medulloblastoma subgroups. Cancer
Cell 31 (6), 737–754. doi: 10.1016/j.ccell.2017.05.005

Chen, C., Ma, F. W., Du, C. Y., andWang, P. (2016). Multiple differential networks
strategy reveals carboplatin and melphalan-induced dynamic module changes
in retinoblastoma. Med. Sci. Monitor: Int. Med. J. Exp. Clin. Res. 22, 1508. doi:
10.12659/MSM.897877

Chiu, A. M., Mitra, M., Boymoushakian, L., and Coller, H. A. (2018). Integrative
analysis of the inter-tumoral heterogeneity of triple-negative breast cancer. Sci.
Rep. 8 (1), 11807. doi: 10.1038/s41598-018-29992-5

Cho, H., Berger, B., and Peng, J. (2016). Compact integration of multi-network
topology for functional analysis of genes. Cell Syst. 3 (6), 540–548. doi: 10.1016/
j.cels.2016.10.017
February 2020 | Volume 11 | Article 106

https://doi.org/10.1016/j.cell.2014.09.050
https://doi.org/10.18547/gcb.2016.vol2.iss1.e32
https://doi.org/10.1146/annurev-conmatphys-031218-013259
https://doi.org/10.1146/annurev-conmatphys-031218-013259
https://doi.org/10.1073/pnas.1604401113
https://doi.org/10.1038/nrg2918
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1038/srep34841
https://doi.org/10.1038/srep34841
https://doi.org/10.3389/fgene.2019.00004
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1103/PhysRevE.91.062813
https://doi.org/10.1016/j.coisb.2017.04.015
https://doi.org/10.1016/j.coisb.2017.04.015
https://doi.org/10.1016/j.ccell.2017.05.005
https://doi.org/10.12659/MSM.897877
https://doi.org/10.1038/s41598-018-29992-5
https://doi.org/10.1016/j.cels.2016.10.017
https://doi.org/10.1016/j.cels.2016.10.017
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Di Nanni et al. Integrative Analyses via Network Diffusion
Cowen, L., Ideker, T., Raphael, B. J., and Sharan, R. (2017). Network propagation:
a universal amplifier of genetic associations. Nat. Rev. Genet. 18 (9), 551. doi:
10.1038/nrg.2017.38

Cun, Y., and Fröhlich, H. (2013). Network and data integration for biomarker
signature discovery via network smoothed t-statistics. PloS One 8 (9), e73074.
doi: 10.1371/journal.pone.0073074

De Cecco, L., Giannoccaro, M., Marchesi, E., Bossi, P., Favales, F., Locati, L., et al.
(2017). Integrative miRNA-gene expression analysis enables refinement of
associated biology and prediction of response to cetuximab in head and neck
squamous cell cancer. Genes 8 (1), 35. doi: 10.3390/genes8010035

De Las Rivas, J., and Fontanillo, C. (2010). Protein–protein interactions essentials:
key concepts to building and analyzing interactome networks. PloS Comput.
Biol. 6 (6), e1000807. doi: 10.1371/journal.pcbi.1000807

Deng, S. P., Cao, S., Huang, D. S., and Wang, Y. P. (2016). Identifying stages of
kidney renal cell carcinoma by combining gene expression and dna
methylation data. IEEE/ACM Trans. Comput. Biol. Bioinf. 14 (5), 1147–1153.
doi: 10.1109/TCBB.2016.2607717

Di Nanni, N., Gnocchi, M., Moscatelli, M., Milanesi, L., and Mosca, E. (2020).
Gene relevance based on multiple evidences in complex networks. Bioinf.
btz652 36 (3), 865–871. doi: 10.1093/bioinformatics/btz652

Dimitrakopoulos, C., Hindupur, S. K., Häfliger, L., Behr, J., Montazeri, H., Hall, M.
N., et al. (2018). Network-based integration of multi-omics data for prioritizing
cancer genes. Bioinformatics 34 (14), 2441–2448. doi: 10.1093/bioinformatics/
bty148

Drake, J. M., Paull, E. O., Graham, N. A., Lee, J. K., Smith, B. A., Titz, B., et al.
(2016). Phosphoproteome integration reveals patient-specific networks in
prostate cancer. Cell 166 (4), 1041–1054. doi: 10.1016/j.cell.2016.07.007

Fujimoto, A., Furuta, M., Totoki, Y., Tsunoda, T., Kato, M., Shiraishi, Y., et al.
(2016). Whole-genome mutational landscape and characterization of
noncoding and structural mutations in liver cancer. Nat. Genet. 48 (5), 500.
doi: 10.1038/ng.3547

Gao, J., Barzel, B., and Barabási, A. L. (2016). Universal resilience patterns in
complex networks. Nature 530 (7590), 307. doi: 10.1038/nature16948

Giudice, J., Xia, Z., Wang, E. T., Scavuzzo, M. A., Ward, A. J., Kalsotra, A., et al.
(2014). Alternative splicing regulates vesicular trafficking genes in
cardiomyocytes during postnatal heart development. Nat. Commun. 5, 3603.
doi: 10.1038/ncomms4603

Gladitz, J., Klink, B., and Seifert, M. (2018). Network-based analysis of
oligodendrogliomas predicts novel cancer gene candidates within the region
of the 1p/19q co-deletion. Acta Neuropathologica Commun. 6 (1), 49. doi:
10.1186/s40478-018-0544-y

GTEx Consortium (2015). The Genotype-Tissue Expression (GTEx) pilot analysis:
multitissue gene regulation in humans. Science 348 (6235), 648–660. doi:
10.1126/science.1262110

Han, L., Chen, C., Liu, C. H., Zhang, M., and Liang, L. (2017). Revealing
differential modules in uveal melanoma by analyzing differential networks.
Mol. Med. Rep. 15 (4), 2261–2266. doi: 10.3892/mmr.2017.6232

Higdon, R., Earl, R. K., Stanberry, L., Hudac, C. M., Montague, E., Stewart, E., et al.
(2015). The promise of multi-omics and clinical data integration to identify
and target personalized healthcare approaches in autism spectrum disorders.
Omics 19 4, 197–208. doi: 10.1089/omi.2015.0020

Hofree, M., Shen, J. P., Carter, H., Gross, A., and Ideker, T. (2013). Network-based
stratification of tumor mutations. Nat. Methods 10 (11), 11. doi: 10.1038/
nmeth.2651

Hu, Y., An, Q., Sheu, K., Trejo, B., Fan, S., and Guo, Y. (2018). Single cell multi-
omics technology: methodology and application. Front. In Cell Dev. Biol. 6, 28.
doi: 10.3389/fcell.2018.00028

Huang, S., Chaudhary, K., and Garmire, L. X. (2017). More is better: recent
progress in multi-omics data integration methods. Front. Genet. 8, 84. doi:
10.3389/fgene.2017.00084

Huang, L., Liu, D., Wang, N., Ling, S., Tang, Y., Wu, J., et al. (2018). Integrated
genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in
aggressive NK-cell leukemia. Cell Res. 28 (2), 172. doi: 10.1038/cr.2017.146

Karczewski, K. J., and Snyder, M. P. (2018). Integrative omics for health and
disease. Nat. Rev. Genet. 19 (5), 299. doi: 10.1038/nrg.2018.4

Karki, R., Place, D., Samir, P., Mavuluri, J., Sharma, B. R., Balakrishnan, A., et al.
(2018). IRF8 regulates transcription of Naips for NLRC4 inflammasome
activation. Cell 173 (4), 920–933. doi: 10.1073/pnas.1318948111
Frontiers in Genetics | www.frontiersin.org 11
Kellis, M., Wold, B., Snyder, M. P., Bernstein, B. E., Kundaje, A., Marinov, G. K. ,
et al. (2014). Defining functional DNA elements in the human genome.
Proceedings of the National Academy of Sciences 111 (17), 6131–6138. doi:
10.1073/pnas.1318948111

Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A.
(2014). Multilayer networks. J. Complex Networks 2 (3), 203–271. doi: 10.1093/
comnet/cnu016

Kristensen, V. N., Lingjærde, O. C., Russnes, H. G., Vollan, H. K. M., Frigessi, A., and
Børresen-Dale, A. L. (2014). Principles and methods of integrative genomic
analyses in cancer. Nat. Rev. Cancer 14 (5), 299–313. doi: 10.1038/nrc3721

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A.,
et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature
518 (7539), 317. doi: 10.1038/nature14248

Le Van, T., Van Leeuwen, M., Carolina Fierro, A., De Maeyer, D., Van den
Eynden, J., Verbeke, L., et al. (2016). Simultaneous discovery of cancer subtypes
and subtype features by molecular data integration. Bioinformatics 32 (17),
i445–i454. doi: 10.1093/bioinformatics/btw434

Leiserson, M. D., Vandin, F., Wu, H. T., Dobson, J. R., Eldridge, J. V., Thomas, J. L.,
et al. (2015). Pan-cancer network analysis identifies combinations of rare somatic
mutations across pathways and protein complexes. Nat. Genet. 47 (2), 106. doi:
10.1038/ng.3168

Liu, Z., and Zhang, S. (2015). Tumor characterization and stratification by
integrated molecular profiles reveals essential pan-cancer features. BMC
Genomics 16 (1), 503. doi: 10.1186/s12864-015-1687-x

Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2014). A significance
test for the lasso. Ann. Stat 42 (2), 413. doi: 10.1214/13-AOS1175

Luck, K., Sheynkman, G. M., Zhang, I., and Vidal, M. (2017). Proteome-scale
human interactomics. Trends In Biochem. Sci. 42 (5), 342–354. doi: 10.1016/
j.tibs.2017.02.006

Ma, X., Gao, L., and Tan, K. (2014). Modeling disease progression using dynamics
of pathway connectivity. Bioinformatics 30 (16), 2343–2350. doi: 10.1093/
bioinformatics/btu298

Ma, X., Tang, W., Wang, P., Guo, X., and Gao, L. (2016). Extracting stage-specific
and dynamic modules through analyzing multiple networks associated with
cancer progression. IEEE/ACM Trans. Comput. Biol. Bioinf. 15 (2), 647–658.
doi: 10.1109/TCBB.2016.2625791

Ma, X., Liu, Z., Zhang, Z., Huang, X., and Tang, W. (2017a). Multiple network
algorithm for epigenetic modules via the integration of genome-wide DNA
methylation and gene expression data. BMC Bioinf. 18 (1), 72. doi: 10.1186/
s12859-017-1490-6

Ma, X., Sun, P., and Qin, G. (2017b). Identifying condition-specific modules by
clustering multiple networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 15 (5),
1636–1648. doi: 10.1109/TCBB.2017.2761339

Ma, X., Dong, D., and Wang, Q. (2018). Community detection in multi-layer
networks using joint nonnegative matrix factorization. IEEE Trans. Knowledge
Data Eng. 31 (2), 273–286. doi: 10.1109/TKDE.2018.2832205

Menichetti, G., Remondini, D., Panzarasa, P., Mondragón, R. J., and Bianconi, G.
(2014). Weighted Multiplex Networks. PloS One 9 (6), e97857. doi: 10.1371/
journal.pone.0097857

Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., and Morris, Q. (2008).
GeneMANIA: a real-time multiple association network integration algorithm
for predicting gene function. Genome Biol. 9 (1), S4. doi: 10.1186/gb-2008-9-
s1-s4

O'Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., et al.
(2012). Sporadic autism exomes reveal a highly interconnected protein
network of de novo mutations. Nature 485 (7397), 246. doi: 10.1038/
nature10989

Orchard, S., Kerrien, S., Abbani, S., Aranda, B., Bhate, J., Bidwell, S., et al. (2012).
Protein interaction data curation: the International Molecular Exchange
(IMEx) consortium. Nat. Methods 9 (4), 345. doi: 10.1038/nmeth.1931

Paull, E. O., Carlin, D. E., Niepel, M., Sorger, P. K., Haussler, D., and Stuart, J. M.
(2013). Discovering causal pathways linking genomic events to transcriptional
states using Tied Diffusion Through Interacting Events (TieDIE).
Bioinformatics 29 (21), 2757–2764. doi: 10.1093/bioinformatics/btt471

Pitroda, S. P., Khodarev, N. N., Huang, L., Uppal, A., Wightman, S. C., Ganai, S.,
et al. (2018). Integrated molecular subtyping defines a curable oligometastatic
state in colorectal liver metastasis. Nat. Commun. 9 (1), 1793. doi: 10.1038/
s41467-018-04278-6
February 2020 | Volume 11 | Article 106

https://doi.org/10.1038/nrg.2017.38
https://doi.org/10.1371/journal.pone.0073074
https://doi.org/10.3390/genes8010035
https://doi.org/10.1371/journal.pcbi.1000807
https://doi.org/10.1109/TCBB.2016.2607717
https://doi.org/10.1093/bioinformatics/btz652
https://doi.org/10.1093/bioinformatics/bty148
https://doi.org/10.1093/bioinformatics/bty148
https://doi.org/10.1016/j.cell.2016.07.007
https://doi.org/10.1038/ng.3547
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/ncomms4603
https://doi.org/10.1186/s40478-018-0544-y
https://doi.org/10.1126/science.1262110
https://doi.org/10.3892/mmr.2017.6232
https://doi.org/10.1089/omi.2015.0020
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.3389/fcell.2018.00028
https://doi.org/10.3389/fgene.2017.00084
https://doi.org/10.1038/cr.2017.146
https://doi.org/10.1038/nrg.2018.4
https://doi.org/10.1073/pnas.1318948111
https://doi.org/10.1073/pnas.1318948111
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1038/nrc3721
https://doi.org/10.1038/nature14248
https://doi.org/10.1093/bioinformatics/btw434
https://doi.org/10.1038/ng.3168
https://doi.org/10.1186/s12864-015-1687-x
https://doi.org/10.1214/13-AOS1175
https://doi.org/10.1016/j.tibs.2017.02.006
https://doi.org/10.1016/j.tibs.2017.02.006
https://doi.org/10.1093/bioinformatics/btu298
https://doi.org/10.1093/bioinformatics/btu298
https://doi.org/10.1109/TCBB.2016.2625791
https://doi.org/10.1186/s12859-017-1490-6
https://doi.org/10.1186/s12859-017-1490-6
https://doi.org/10.1109/TCBB.2017.2761339
https://doi.org/10.1109/TKDE.2018.2832205
https://doi.org/10.1371/journal.pone.0097857
https://doi.org/10.1371/journal.pone.0097857
https://doi.org/10.1186/gb-2008-9-s1-s4
https://doi.org/10.1186/gb-2008-9-s1-s4
https://doi.org/10.1038/nature10989
https://doi.org/10.1038/nature10989
https://doi.org/10.1038/nmeth.1931
https://doi.org/10.1093/bioinformatics/btt471
https://doi.org/10.1038/s41467-018-04278-6
https://doi.org/10.1038/s41467-018-04278-6
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Di Nanni et al. Integrative Analyses via Network Diffusion
Raphael, B. J., Hruban, R. H., Aguirre, A. J., Moffitt, R. A., Yeh, J. J., Stewart, C.,
et al. (2017). Integrated genomic characterization of pancreatic ductal
adenocarcinoma. Cancer Cell 32 (2), 185–203. doi: 10.1016/j.ccell.2017.07.007

Reis, S. D., Hu, Y., Babino, A., Andrade, J. S.Jr., Canals, S., Sigman, M., et al. (2014).
Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10
(10), 762. doi: 10.1038/nphys3081

Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A., and Kim, D. (2015).
Methods of integrating data to uncover genotype–phenotype interactions. Nat.
Rev. Genet. 16, 85–97. doi: 10.1038/nrg3868

Ruffalo, M., Koyutürk, M., and Sharan, R. (2015). Network-based integration of
disparate omic data to identify” silent players” in cancer. PloS Comput. Biol. 11
(12), e1004595. doi: 10.1371/journal.pcbi.1004595

Seifert, M., and Beyer, A. (2017). regNet: An R package for network-based
propagation of gene expression alterations. Bioinformatics 34 (2), 308–311.
doi: 10.1093/bioinformatics/btx544

Sepulcre, J., Grothe, M. J., Uquillas, F. D. O., Ortiz-Terán, L., Diez, I., Yang, H. S.,
et al. (2018). Neurogenetic contributions to amyloid beta and tau spreading in
the human cortex. Nat. Med. 24 (12), 1910. doi: 10.1038/s41591-018-0206-4

Sharan, R., Ulitsky, I., and Shamir, R. (2007). Network-based prediction of protein
function. Mol. Syst. Biol. 3, 88. doi: 10.1038/msb4100129

Shi, K., Gao, L., and Wang, B. (2016). Discovering potential cancer driver genes by
an integrated network-based approach. Mol. Biosyst. 12 (9), 2921–2931. doi:
10.1039/C6MB00274A

Su,C., Tong, J., Zhu, Y., Cui, P., andWang, F. (2018).Network embedding in biomedical
data science. Briefings In Bioinf. 21 (1), 182–197. doi: 10.1093/bib/bby117

Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Yang, T. H. O.,
et al. (2018). The immune landscape of cancer. Immunity 48 (4), 812–830. doi:
10.1016/j.immuni.2018.03.023

Tkach, J. M., Yimit, A., Lee, A. Y., Riffle, M., Costanzo, M., Jaschob, D., et al.
(2012). Dissecting DNA damage response pathways by analysing protein
localization and abundance changes during DNA replication stress. Nat. Cell
Biol. 14 (9), 966. doi: 10.1038/ncb2549

Van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., et al. (2018).
Recovering gene interactions from single-cell data using data diffusion. Cell 174
(3), 716–729. doi: 10.1016/j.cell.2018.05.061

Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., and Sharan, R. (2010). Associating
genes and protein complexes with disease via network propagation. PloS Comput.
Biol. 6 (1), e1000641. doi: 10.1371/journal.pcbi.1000641

Vidal, M., Cusick, M. E., and Barabási, A. L. (2011). Interactome networks and
human disease. Cell 144 (6), 986–998. doi: 10.1016/j.cell.2011.02.016

Wang, P. I., and Marcotte, E. M. (2010). It's the machine that matters: predicting
gene function and phenotype from protein networks. J. Proteomics 73 (11),
2277–2289. doi: 10.1016/j.jprot.2010.07.005

Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., et al. (2014).
Similarity network fusion for aggregating data types on a genomic scale. Nat.
Methods 11 (3), 333. doi: 10.1038/nmeth.2810
Frontiers in Genetics | www.frontiersin.org 12
Wu, L., Liu, Z., Xu, J., Chen, M., Fang, H., Tong, W., et al. (2015). NETBAGs: a
network-based clustering approach with gene signatures for cancer subtyping
analysis. Biomarkers In Med. 9 (11), 1053–1065. doi: 10.2217/bmm.15.96

Xu, T., Le, T. D., Liu, L., Wang, R., Sun, B., and Li, J. (2016). Identifying cancer
subtypes from mirna-tf-mrna regulatory networks and expression data. PloS
One 11 (4), e0152792. doi: 10.1371/journal.pone.0152792

Yan, J., Risacher, S. L., Shen, L., and Saykin, A. J. (2017). Network approaches
to systems biology analysis of complex disease: integrative methods for
multi-omics data. Briefings In Bioinf. 19 (6), 1370–1381. doi: 10.1093/bib/
bbx066

Yang, P., Li, X., Chua, H.-N., Kwoh, C.-K., and Ng, S.-K. (2014). Ensemble positive
unlabeled learning for disease gene identification. PloS One 9 (5), e97079. doi:
10.1371/journal.pone.0097079

Ye, W., Ji, G., Ye, P., Long, Y., Xiao, X., Li, S., et al. (2019). scNPF: an integrative
framework assisted by network propagation and network fusion for
preprocessing of single-cell RNA-seq data. BMC Genomics 20 (1), 347. doi:
10.1186/s12864-019-5747-5

Zhang, D., Chen, P., Zheng, C. H., and Xia, J. (2016). Identification of ovarian
cancer subtype-specific network modules and candidate drivers through an
integrative genomics approach. Oncotarget 7 (4), 4298. doi: 10.18632/
oncotarget.6774

Zhang, W., Ma, J., and Ideker, T. (2018). Classifying tumors by supervised network
propagation. Bioinformatics 34 (13), i484–i493. doi: 10.1093/bioinformatics/
bty247

Zhong, X., Yang, H., Zhao, S., Shyr, Y., and Li, B. (2015). Network-based
stratification analysis of 13 major cancer types using mutations in panels of
cancer genes. BMC Genomics 16 (7), S7. doi: 10.1186/1471-2164-16-S7-S7

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. (2004). “Learning
with local and global consistency,” in Advances in neural information
processing systems, 321–328.

Zhou, J., Chen, C., Li, H. F., Hu, Y. J., and Xie, H. L. (2017). Revealing
radiotherapy-and chemoradiation-induced pathway dynamics in
glioblastoma by analyzing multiple differential networks. Mol. Med. Rep. 16
(1), 696–702. doi: 10.3892/mmr.2017.6641

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Di Nanni, Bersanelli, Milanesi and Mosca. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
February 2020 | Volume 11 | Article 106

https://doi.org/10.1016/j.ccell.2017.07.007
https://doi.org/10.1038/nphys3081
https://doi.org/10.1038/nrg3868
https://doi.org/10.1371/journal.pcbi.1004595
https://doi.org/10.1093/bioinformatics/btx544
https://doi.org/10.1038/s41591-018-0206-4
https://doi.org/10.1038/msb4100129
https://doi.org/10.1039/C6MB00274A
https://doi.org/10.1093/bib/bby117
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1038/ncb2549
https://doi.org/10.1016/j.cell.2018.05.061
https://doi.org/10.1371/journal.pcbi.1000641
https://doi.org/10.1016/j.cell.2011.02.016
https://doi.org/10.1016/j.jprot.2010.07.005
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.2217/bmm.15.96
https://doi.org/10.1371/journal.pone.0152792
https://doi.org/10.1093/bib/bbx066
https://doi.org/10.1093/bib/bbx066
https://doi.org/10.1371/journal.pone.0097079
https://doi.org/10.1186/s12864-019-5747-5
https://doi.org/10.18632/oncotarget.6774
https://doi.org/10.18632/oncotarget.6774
https://doi.org/10.1093/bioinformatics/bty247
https://doi.org/10.1093/bioinformatics/bty247
https://doi.org/10.1186/1471-2164-16-S7-S7
https://doi.org/10.3892/mmr.2017.6641
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Network Diffusion Promotes the Integrative Analysis of Multiple Omics
	Introduction
	MoleculaR Networks: The Scaffolding for Diffusion
	Mathematics of the Network Diffusion Process
	Network Diffusion in Integrative Data Analysis
	Single Omics
	Multi-Omics Integration
	Genomics and Transcriptomics
	Epigenomics and Transcriptomics
	Transcriptomics: mRNA and miRNA
	Genomics, Epigenomics and Transcriptomics

	Integration of Multiple Networks

	Discussion
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


