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Simple Summary: Renal cell carcinoma (RCC) is the seventh most common cancer type and accounts
for more than 80% of all renal tumors. Nevertheless, prognostic biomarkers for RCC are still missing.
Therefore, we analyzed a large, multicenter cohort including the three most common RCC subtypes
(clear cell RCC (ccRCC), papillary RCC (pRCC) and chromophobe RCC (chRCC)) by high mass
resolution matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI)
for prognostic biomarker detection. This is a suitable method for biomarker detection for several
tumor entities. We detected several pathways and metabolites with prognostic power for RCC in
general and also for different RCC subtypes.

Abstract: High mass resolution matrix-assisted laser desorption/ionization (MALDI) mass spectrom-
etry imaging (MSI) is a suitable method for biomarker detection for several tumor entities. Renal cell
carcinoma (RCC) is the seventh most common cancer type and accounts for more than 80% of all renal
tumors. Prognostic biomarkers for RCC are still missing. Therefore, we analyzed a large, multicenter
cohort including the three most common RCC subtypes (clear cell RCC (ccRCC), papillary RCC
(pRCC) and chromophobe RCC (chRCC)) by MALDI for prognostic biomarker detection. MALDI-
Fourier-transform ion cyclotron resonance (FT-ICR)-MSI analysis was performed for renal carcinoma
tissue sections from 782 patients. SPACiAL pipeline was integrated for automated co-registration
of histological and molecular features. Kaplan–Meier analyses with overall survival as endpoint
were executed to determine the metabolic features associated with clinical outcome. We detected
several pathways and metabolites with prognostic power for RCC in general and also for different
RCC subtypes.

Keywords: clear-cell renal cell carcinoma; papillary renal cell carcinoma; chromophobe renal cell
carcinoma; mass spectrometry imaging; metabolomics

1. Introduction

The incidence of renal tumors has increased in the past few decades worldwide,
especially in Europe, the United States and Australia. Renal cell carcinoma (RCC) accounts
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for more than 80% of renal tumors. RCC is now the seventh most common cancer type [1].
In 2016, the World Health Organization (WHO) defined the three most common tumor
types: the clear-cell RCC (ccRCC), the papillary RCC (pRCC), and the chromophobe RCCs
(chRCC) constitute 80–90%, 10–15%, and 4–5% of cases, respectively [2].

To predict the course of RCC for patients, a variety of grading systems have been
proposed. The four-tiered WHO/International Society of Urological Pathology (ISUP)
has been validated for ccRCC and pRCC. The system defines tumor grade 1–3 on the
basis of nucleolar prominence. Grade 4 contains, inter alia, the presence of pronounced
pleomorphism and/or sarcomatoid differentiation [2,3]. The chRCC shows a favorable
prognosis. The 5-year survival rate is 78–100% [4]. Hence, some patients already show
metastases at the time of diagnosis [5]. Until now, several grading systems have been
proposed, but none of them became widely accepted [6–8].

Many additional prognostic markers have been suggested for different RCC subtypes;
for example, Programmed Death-Ligand 1 (PD-L1), the mesenchymal–epithelial transition
factor (cMET) or Claudin 7 (CLD7) [9–13]. Nevertheless, none of these biomarkers are used
in daily routine because of lacking validity [2].

Several studies showed the power of high mass resolution matrix-assisted laser des-
orption/ionization (MALDI) mass spectrometry imaging (MSI) for tumor discrimina-
tion [14–17]. Moreover, this method identified molecular features, which are associated
with clinico-pathological parameters in ccRCC [18,19]. Hence, the aim of this study is
to define novel prognostic pathways and metabolites for the three most common RCC
subtypes. Therefore, we analyzed 782 patient tissue samples by MALDI-MSI, including
552 ccRCCs, 122 pRCC, and 108 chRCC. We compared the metabolic profile with overall
survival (OS) and detected several RCC-specific and also subtype-specific patterns. To
the best of our knowledge, this is the first study which analyzed a large multicenter RCC
cohort by MALDI-MSI according to OS.

2. Materials and Methods
2.1. Patient Tissues

Formalin-fixed paraffin-embedded (FFPE) renal tumor samples comprising 552 clear
cell renal cell carcinoma (ccRCC), 122 papillary renal cell carcinoma (pRCC) and 108 chro-
mophobe renal cell carcinoma (chRCC) were collected from the archives of the Department
of Pathology and Molecular Pathology of the University Hospital Zurich (1993–2013) and
of the Technical University of Munich (1996–2014). Tissue microarrays (TMAs) were con-
structed as described [20]. Tissue cylinders with 0.6 mm (Zurich) and 1.0 mm (Munich)
diameter were punched from morphologically representative regions of paraffin donor
blocks.

2.2. MALDI Mass Spectrometry Imaging

Tissue preparation steps for the high mass resolution matrix-assisted laser desorp-
tion/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging
(MALDI-FT-ICR-MSI) analysis was performed as previously described [21]. In brief, FFPE
TMAs were sectioned with 4 µm (Microm, HM340E, Thermo Fisher Scientific, Waltham,
MA, USA) and mounted onto indium-tin-oxide (ITO)-coated glass slides (Bruker Daltonik,
Bremen, Germany) pretreated with 1:1 poly-L-lysine (Sigma-Aldrich, Munich, Germany)
and 0.1% Nonidet P-40 (Sigma-Aldrich, Munich, Germany). FFPE sections were adhered
by incubating the slide for 1 h at 70 ◦C, deparaffinized in xylene (2 × 8 min), and air-dried.
The matrix solution consisted of 10 mg/mL 9-aminoacridine hydrochloride monohydrate
matrix (Sigma-Aldrich, Munich, Germany) in 70% methanol. Spray-coating of the matrix
was conducted using the SunCollectTM sprayer (Sunchrom, Friedrichsdorf, Germany).
The flow rates were 10 µL/min, 20 µL/min, 30 µL/min for layers 1–3, and layers 4–8 with
40 µL/min, utilizing 2 mm line distance and a spray velocity of 900 mm/min.

Metabolites were detected in negative-ion mode on a 7 T Solarix XR FT-ICR mass spec-
trometer (Bruker Daltonik, Bremen, Germany) equipped with a dual ESI-MALDI source
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and a SmartBeam-II Nd: YAG (355 nm) laser. Laser attenuation value is 15%. The laser
operated with focus of small (84.2%). The laser operated at a frequency of 1000 Hz utilizing
200 laser shots per pixel with a pixel resolution of 60 µm. Data acquisition parameters were
specified in ftmsControl software 2.2 and flexImaging (v. 5.0) (Bruker Daltonik, Bremen,
Germany). Mass spectra were acquired in negative-ion mode covering m/z 75–1000. The
three RCC subtypes (ccRCC, pRCC, chRCC) were randomly distributed over 11 TMAs.
The MSI experiments of the TMA sections were randomized and measured within a batch.
For internal mass calibration, the 9-AA matrix ion signal (m/z 193.077122) was used as lock
mass minimizing scan-to-scan (pixel-to-pixel) variations during the MALDI-MSI measure-
ment. External calibration of the instrument was performed with L-Arginine in the ESI
mode. MALDI mass spectra were root mean square normalized with SCiLS (v. 2020b Pro),
and picked peaks were exported as imzML files for further data processing and subsequent
analysis with the SPACiAL pipeline. SPACiAL pipeline was integrated for automated
co-registration of histological and metabolic features as previously described [22]. Briefly,
the MALDI mass spectra were root mean square normalized with SCiLS (v. 2020b Pro) and
exported as imzML files. An in-house python 3 pipeline was performed for pixel-wise and
parallelized peak picking. For each coordinate (i.e., spectrum), the peak picking pipeline
began by resampling the mass and intensity values between 75 and 1000 Da with a step
size of 0.0005 Da. Intensity values were resampled by choosing the maximum intensity
per window. Noise levels were estimated for windows of 10 Da, and all peaks falling
below their respective noise level were filtered. After noise filtering, only local maxima
were kept as preliminary peaks. Preliminary peaks within each spectrum were merged
and aligned. Peaks that occur in less than 0.5% of the spectra were filtered. For image
co-registration, the imzML file of picked peaks was used to create a master image of the
MALDI measurement region. Additional hematoxylin & eosin (H&E) stained images of
the same tissue sections were precisely co-registered onto this image, allowing an exact
integration and correlation of molecular MALDI data with morphology data. The digitized
and co-registered staining images were scaled to match the exact MALDI resolution and
then converted into numerical data without loss of spatial resolution. Regions of interest
(tumor) were annotated based on H&E stainings. Mean peak intensities of tumor regions
were extracted for each patient and used for prognosis analysis.

Peak annotation was performed using HMDB and METASPACE (http://annotate.
metaspace2020.eu/ accessed on 15 December 2021) databases, while allowing M-H, M-H2O,
M + K-2H, M + Na-2H, and M + Cl as negative adducts with a mass tolerance of 4 ppm (Ion
mode: negative, Adduct type: [M-H], [M-H-H2O], [M + Na-2H], [M + Cl] and [M + K-2H],
mass accuracy ≤ 4 ppm). Pathway analysis was performed with Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/ accessed on
15 December 2021).

2.3. Bioinformatics and Statistical Analysis

Overall survival was defined as the time from primary surgery to death or last follow-
up and were calculated using the Kaplan–Meier method and include 95% confidence
interval (95% CI) estimates. Survival curves were tested with the log-rank χ2 value. In each
case, the cutoff point was optimized with respect to the endpoint. In order to determine the
prognostic power for each metabolite, the individual patient metabolite abundances were
used to split the cohort into good and poor survivor groups by the application of intensity
cutoffs, which were optimized to the clinical endpoint. Cutoff-optimized survival analyses
were performed as previously described [23,24] using a Kaplan–Meier Fitter and log-rank
test. Cutoff-optimized in this context means that the threshold for low and high abundance
of a compound was chosen such that the p-value in the resulting Kaplan–Meier curve is
minimal. Survival analyses were performed within the R statistical environment including
“Survival” package (R Foundation for Statistical Computing, Vienna, Austria), and p-values
< 0.05 were considered statistically significant.

http://annotate.metaspace2020.eu/
http://annotate.metaspace2020.eu/
http://www.genome.jp/kegg/
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Box plots were created with GraphPad PRISM v. 5.00 (GraphPad Software, Inc., La
Jolla, CA, USA). Statistical significance testing was performed using the Kruskal–Wallis
test (alpha = 0.05).

3. Results
3.1. Sample Description and MALDI-MS Imaging Experiments

Spatial metabolomic was performed for renal carcinoma tissue sections from 782 patients
comprising three tumor subtypes—clear cell renal cell carcinomas (ccRCC, n = 552), papil-
lary renal cell carcinomas (pRCC, n = 122) and chromophobe renal cell carcinomas (chRCC,
n = 108) (Table 1, Supplementary Tables S1–S3). The workflow integrated high mass resolu-
tion matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance
mass spectrometry imaging (MALDI-FT-ICR-MSI) analysis, SPACiAL pipeline for auto-
mated co-registration of histological and molecular features, bioinformatics analysis for
patient prognosis analysis. Within the mass range of m/z 75 to 1000, in total, 2111 metabolite
peaks were resolved. These metabolic features were used for further statistic and prognosis
analysis.

Table 1. Clinical and pathological characteristics.

Patient Characteristics n = 782

Age median (range) (years) 27–88 (64)
Gender

Male 269 (39.4%)
Female 413 (60.6%)

ISUP Grade
Grade 1 25 (4.1%)
Grade 2 241 (39.4%)
Grade 3 191 (31.3%)
Grade 4 154 (25.2%)

Pathological stage
pT1 417 (53.6%)
pT2 90 (11.6%)
pT3 231 (29.7%)
pT4 10 (1.3%)
pN+ 26 (15.0%)
pM+ 4 (36.4%)

Subtype
chRCC 108 (13.8%)
ccRCC 552 (70.6%)
ppRCC 122 (15.6%)

Survival (Dead/Alive) 214 (31.6%)/464 (68.4%)
Overall survival median (months) 36

3.2. Kaplan–Meier Survival Analysis

To determine whether the metabolic features associated with clinical outcome, we
performed Kaplan–Meier analyses with overall survival as endpoint. The result revealed
that 240 Kaplan–Meier significant metabolites were identified in chRCC, 108 in ccRCC,
and 242 in pRCC (Figure 1). The Venn diagrams showed that 17 Kaplan–Meier signifi-
cant metabolites were commonly identified in all three renal subtypes (Figure 1). Specific
nucleotides (Guanosine monophosphate, Cyclic GMP) indicated strong impacts on pa-
tient outcomes in all three renal subtypes. The increased abundance of these nucleotides
was associated with poor patient prognosis (Figures 2 and 3). Ribose phosphate is an
important intermediate metabolite in the pentose phosphate pathway and in the purine
metabolism pathway. Based on the Kaplan–Meier survival analysis, ribose phosphate was
associated with unfavorable patient outcome (Figure 4). Kruskal–Wallis test indicate that
the abundances of guanosine monophosphate, cyclic GMP and ribose phosphate showed
no significant difference in three renal subtypes.
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Figure 1. Kaplan–Meier significant metabolites in chRCC, pRCC and ccRCC.

Figure 2. Kaplan–Meier curve of guanosine monophosphate in different subtypes of renal tumor.
Blue lines indicate survival in patients with high intensity of the respective mass. Red lines indicate
survival in patients with low intensity of the respective mass. Statistical significance testing was
performed using the Kruskal–Wallis test (alpha = 0.05).
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Figure 3. Kaplan–Meier curve of cyclic GMP in different subtypes of renal tumor. Blue lines indicate
survival in patients with high intensity of the respective mass. Red lines indicate survival in patients
with low intensity of the respective mass. Statistical significance testing was performed using the
Kruskal–Wallis test (alpha = 0.05).

Figure 4. Kaplan–Meier curve of ribose phosphate in different subtypes of renal tumor. Blue lines
indicate survival in patients with high intensity of the respective mass. Red lines indicate survival
in patients with low intensity of the respective mass. Statistical significance testing was performed
using the Kruskal–Wallis test (alpha = 0.05).
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We determined subtype-specific prognostic metabolites. Figure 5 represented Kaplan–
Meier significant metabolites specific for subtype chRCC including nucleotide and deriva-
tives, oxidative phosphorylation, acrylaminosugars, pentose phosphates, and numbers of
lipids and fatty acids. Kaplan–Meier significant metabolites specific for subtype ccRCC
consisted of nucleotides (cyclic AMP, cytidine diphosphate and uridine monophosphate),
glutathione disulfide and a lysophosphatidic acid (Figure 6). Furthermore, Kaplan–Meier
significant metabolites specific for subtype pRCC comprised glucosamine as aminosugar
and 2-sulfinoalanine from cysteine and methionine metabolism (Figure 7). Supplemen-
tary Tables S4 and S5 summarized the mass intensities and annotations of the prognosis
metabolites described in this study.

1 
 

 

 Figure 5. Cont.
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Figure 5. Kaplan–Meier significant metabolites specific for subtype chRCC. Blue lines indicate
survival in patients with high intensity of the respective mass. Red lines indicate survival in patients
with low intensity of the respective mass.

Figure 6. Kaplan–Meier significant metabolites specific for subtype ccRCC. Blue lines indicate
survival in patients with high intensity of the respective mass. Red lines indicate survival in patients
with low intensity of the respective mass.
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Figure 7. Kaplan–Meier significant metabolites specific for subtype pRCC. Blue lines indicate survival
in patients with high intensity of the respective mass. Red lines indicate survival in patients with low
intensity of the respective mass.

4. Discussion

Several previous studies analyzed different RCC subtypes using MALDI. The diagnos-
tic power of MALDI for tumor discrimination of several entities has already been shown.
Chinello et al., identified a peptide cluster, which can discriminate 33 patients with ccRCC
from 29 healthy controls using the ClinProt/MALDI-TOF technique [25]. Junker et al.,
analyzed 27 patient tissue samples with RCC and detected stage-related protein alterations
using MALDI-TOF-MS/MS [26]. Zhang et al., demonstrated that MALDI enables dis-
crimination of renal Oncocytoma (rO) from RCC subtypes and normal kidney tissue in
81 banked frozen human tissue samples [14]. Kriegsmann et al., analyzed 71 chRCC and
64 rO by MALDI and achieved an accuracy of 89% in tumor discrimination [16]. Recently,
Prade et al., showed a synergism effect in tumor subtyping by using MSI and morphometry
combined [27].

Furthermore, some MALDI studies concentrated on the prognostic power, especially
with respect to ccRCC. For example, Steurer et al., performed MALDI analysis on 789 RCC
related to their clinicopathological features. They found significant associations with tumor
stage, Fuhrman grade and presence of lymph node metastases in the ccRCC subgroup. For
the other RCC subgroups, no significant associations were detected [18]. As mentioned
above, tumor grade represents one of the most important parameters to evaluate ccRCC
progression. Therefore, Stella et al., performed a study which uncovered protein alterations
associated with different ccRCC grade lesions by MALDI-MSI. The data highlighted this
method to be able to discriminate among different grades of ccRCC, and thus to have a
prognostic power [19].

Up to now, comparable studies which focus on the prognostic power of MALDI-MSI
using large multicenter cohorts including the three most common RCC subtypes are still
missing. Therefore, our study concentrated on the prognostic relevant pathways and
metabolites for all RCCs and on the tumor-specific features.

First of all, it is important to mention that only 17 Kaplan–Meier (KM) significant
metabolites were detected in all three tumor subtypes. This indicates that each of the
three RCC subtypes shows a quite unique metabolic environment. Metabolic differences
associated with kidney origin could occur for chRCC that originates from intercalated cells
of the collecting duct, but ccRCC and ppRCC metabolic variability are probably due to
other causes, because both subtypes originate from the proximal tubules [28].

In specific, nucleotides (Guanosine monophosphate, Cyclic GMP) indicated strong
impacts on patient outcomes in all three renal subtypes. The increase of these nucleotides
was associated with poor prognosis.
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Particularly, cyclic guanosinmonophosphate (cGMP) is a very interesting marker in
this context. Cyclic guanosine monophosphate-adenosin monophosphate (cGAMP) syn-
thase (cGAS) is a cytosolic DNA sensor, which activates innate immune response. Normally,
self-DNA is localized in the nucleus and mitochondria in an eukaryotic cell. DNA is a
danger-associated pattern, if self-DNA is present in the cytosol [29,30]. cGAS binds to
double-stranded DNA irrespective of the DNA sequence [31]. This mechanism plays an
essential role in cellular senescence, which is a natural barrier to tumorigenesis [32]. cGAS
catalyzes the conversion of guanosintriphosphate (GTP) and adenosintriphosphat (ATP)
into 2′3′-cGAMP. This molecule contains two phosphodiester bonds, one between the
2′-OH of GMP and 5′-phosphate of AMP, and the other between the 3′-OH of AMP and
5′-phosphate of GMP [33,34]. cGAMP is a second messenger that binds and activates
the adaptor protein stimulator of interferon genes (STING) [35]. STING is localized on
the endoplasmic reticulum membrane and activates inter alia two protein kinases: Ikap-
paB (IkB or IKK) and Tank-binding kinase 1 (TBK1). This leads to an activation of the
transcription factors nuclear factor kappa B (NF-κB) and interferon regulatory factor 3
(IRF3). As a result, several immune and inflammatory gene products, such as type I inter-
ferons (IFNs) and tumor necrosis factor α (TNFα). The cancer therapy, especially for RCC,
has been revolutionized based on the use of immune checkpoint inhibitors with targets
such as programmed death 1 (PD-1), PD-L1 and cytotoxic T-lymphocyte-associated protein
4 (CTLA-4).

The role of STING in tumor immunity is still unclear. Several studies demonstrated
that STING-deficient mice are less responsive to immunotherapies [36,37]. On the other
hand, some studies suggest that STING activation may induce a suppressive tumor mi-
croenvironment and contribute to tumor growth and metastasis [38,39].

Ren et al., suggested that the cGMP pathway plays an essential role in regulation
and survival of RCC [40]. Furthermore, Msaouel et al., detected that the renal medullary
carcinoma (RMC), which is a highly lethal malignancy, is characterized by high replication
stress and an abundance of focal copy number alterations associated with activation of the
stimulator of the cyclic GMP-AMP synthase interferon genes’ innate immune pathway [41].
These findings support our results and lead to the hypothesis that an enrichment of the
cGMP pathway is associated with worse prognosis in all types of RCC.

Furthermore, we detected pathways which seem to be tumor type-specific. For ex-
ample, the Gluthation metabolism for ccRCC. Recent studies showed that this pathway
seems to play an essential role in RCC. Hakimi et al., demonstrated that the Gluthation
metabolism is increased in late-stage ccRCC and is associated with worse survival outcomes
in ccRCC patients [42]. Gluthation is a reactive oxygen species (ROS) scavenger, which
could be a hallmark of RCC [43]. The function of this increased pathway is to counteract
damaging ROS. This leads to a better viability and growth of the malignant cells [43].

Moreover, we detected an increased cysteine metabolism as prognostic relevant path-
way for pRCC. Cysteine is a Gluthation metabolism-related metabolite, which shows a
significant power as prognostic marker in pRCC. Glutathione is a tripeptide thiol antioxi-
dant, which contains the following amino acids: glutamic acid, cysteine, and glycine [44].
Alahmad et al., showed that the metabolome demonstrated a tremendous increase of
Gluthation in both forms, reduced and oxidized, in pRCC [45]. Therefore, the increased cys-
teine metabolism could be an indirect marker for an increase of the Gluthation metabolism.

In contrast to ccRCC and pRCC, Priolo et al., demonstrated that chRCC show a
striking decrease in intermediates of the glutathione pathway compared with adjacent
normal kidney [46]. These results are comparable with our results. We also did not detect
any increase of the Gluthation pathway in this tumor entity. Whereas, we detected an
increase of Uridinmonophoshat, for example. These findings suggest that the chRCC differs
in his tumor biology from the other two entities to a great extent.

This study demonstrates the ability to measure metabolites in FFPE tissues using
MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Al-
though removal/reduced intensity of hydrophobic molecules during the deparaffinization
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process of FFPE samples were observed, there were still multiple classes of robust metabo-
lites, not only chemically, but also spatially preserved in FFPE tissue specimens [21,47]. The
identification and characterization of metabolite structures are limited by the analytical
depth of MSI in terms of coverage and identification capabilities, and the identification of
new, previously uncharacterized metabolites is difficult. The term “annotation” implies
putative. Although alternative annotations exist for some compounds, most are structural
variants of the same compound or priorities can be assessed according to mass accuracy,
adduct, or plausibility. Of course, these findings have to be confirmed in future studies,
which should focus on all types of RCC, including the rarer subtypes. Finally, we can
summarize that MALDI-MSI is a promising approach in detecting novel tumor-specific
prognostic markers.

5. Conclusions

We detected several pathways and metabolites with prognostic power for RCC in gen-
eral and also for different RCC subtypes. Therefore, MALDI is a high-potential technique
for biomarker detection in several tumor entities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14071763/s1, Table S1: Clinical and pathological char-
acteristics of subtype chRCC; Table S2: Clinical and pathological characteristics of subtype ccRCC;
Table S3: Clinical and pathological characteristics of subtype pRCC; Table S4: MS peak intensity of
the prognosis metabolites. Sample name, subtype, m/z, and peak intensity are listed in the table;
Table S5: Annotation of the prognosis metabolites based on HMDB database. Mass, HMDB ID, Name,
Formular, Adduct and ∆ppm are listed in the table.
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Abbreviations

AMP adenosin monophosphate
ATP adenosintriphosphat
CLD7 Claudin 7
CSS cancer-specific survival
ccRCC clear cell renal cell carcinoma
chRCC chromophobe renal cell carcinoma
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cGAMP cyclic guanosine monophosphate-adenosin monophosphate
cGMP cyclic Guanosinmonophosphate
cGAS cyclic guanosine monophosphate-adenosin monophosphate synthase
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
FFPE formalin-fixed paraffin-embedded
FT-ICR Fourier-transform ion cyclotron resonance
GMP guanosin monophosphate
GTP guanosintriphosphate
IFN interferon
IkB or IKK IkappaB kinase
IRF3 interferon regulatory factor 3
ISUP International Society of Urological Pathology
KM Kaplan–Meier
MALDI High mass resolution matrix-assisted laser desorption/ionization
MET mesenchymal–epithelial transition factor
MSI mass spectrometry imaging
NF-κB nuclear factor kappa B
OS overall survival
PD-1 programmed death 1
PD-L1 programmed Death-Ligand 1
pRCC papillary renal cell carcinoma
PFS progression free survival
RMC renal medullary carcinoma
rO renal oncocytoma
STING stimulator of interferon genes
TBK1 Tank-binding kinase 1
TNFα tumor necrosis factor α
TMA tissue microarray
WHO World Health Organization
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