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Structural and functional integrity of the cerebral vasculature ensures proper brain
development and function, as well as healthy aging. The inability of the brain to store
energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients
from the blood stream for matching colossal demands of neural and glial cells. Key
vascular features including a dense vasculature, a tightly controlled environment, and
the regulation of cerebral blood flow (CBF) all take part in brain health throughout life.
As such, healthy brain development and aging are both ensured by the anatomical and
functional interaction between the vascular and nervous systems that are established
during brain development and maintained throughout the lifespan. During critical periods
of brain development, vascular networks remodel until they can actively respond to
increases in neural activity through neurovascular coupling, which makes the brain
particularly vulnerable to neurovascular alterations. The brain vasculature has been
strongly associated with the onset and/or progression of conditions associated with
aging, and more recently with neurodevelopmental disorders. Our understanding
of cerebrovascular contributions to neurological disorders is rapidly evolving, and
increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier
(BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that
although neurodevelopmental and neurodegenerative disorders express different clinical
features at different stages of life, they share similar vascular abnormalities. In this review,
we present an overview of vascular dysfunctions associated with neurodevelopmental
(autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative
(multiple sclerosis, Huntington’s, Parkinson’s, and Alzheimer’s diseases) disorders, with
a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the
impact of early vascular impairments on the expression of neurodegenerative diseases.
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INTRODUCTION

The human brain contains approximately 100 billion vessels
(∼600 km), all of which are critical for the delivery of nutrients
and oxygen to neural cells (Quaegebeur et al., 2011). Although
the brain accounts for only 2% of the body’s mass, it consumes
about a quarter of the body energy produced at rest (Attwell
et al., 2010). This colossal energy consumption is elemental
to maintain normal functioning of the brain. Such energy
requirements make the brain heavily reliant on key vascular
features: (i) a dense vasculature to sustain adequate perfusion,
(ii) a functional blood-brain barrier (BBB) to maintain brain
homeostasis, and (iii) the proper regulation of cerebral blood
flow (CBF) to match metabolic demands (Figure 1). Thus, a
healthy brain vasculature is essential to support neural cells and
ensure normal brain maturation, function and aging (Attwell and
Laughlin, 2001; Girouard and Iadecola, 2006; Andreone et al.,
2015; Lacoste and Gu, 2015). This is accomplished in part via
neurovascular coupling (NVC) mechanisms that regulate CBF to
support energetic demands of brain cells (Hamel, 2006; Attwell
et al., 2010; Kaplan et al., 2020). While most studies are describing
neurovascular signaling at the level of the microvasculature,
other vascular segments have received very little attention. There
is evidence suggesting that different vascular segments play
different roles during vascular responses which is involved in
maintaining brain homeostasis. The concept of heterogeneous
vascular modules has been extensively reviewed in Schaeffer and
Iadecola (2021).

The close anatomical apposition between the nervous and
vascular systems supports a functionally integrated network
(Attwell et al., 2010; Lecrux and Hamel, 2011; Hillman, 2014;
Huneau et al., 2015; Kaplan et al., 2020). This involves
modulating vascular tone by secretion of vasoconstrictor and
vasodilator molecules. Initially, it was proposed that local
metabolic factors released by neurons modulate local CBF
(Sherrington, 1890; Friedland and Iadecola, 1991). Since then,
several studies have introduced other cellular mediators of NVC
which altogether form the neurovascular unit (NVU). This
anatomical substrate of NVC indeed involves a multicellular
system consisting of neurons, pericytes, smooth muscle cells,
astrocytes, microglia and endothelial cells (ECs) that together
orchestrate CBF, and thus brain function (Attwell et al.,
2010; Andreone et al., 2015; Grubb et al., 2021; Figure 1).
The cerebral cortex is innervated by projection neurons
that release neurotransmitters including, but not limited to,
acetylcholine, noradrenaline, serotonin and glutamate, involved
in the regulation of vessel diameter (Sandoo et al., 2010).
Pericytes, while having debated roles in NVC, possess contractile
properties and regulate blood flow around capillaries (Attwell
et al., 2010, 2016; Fernandez-Klett and Priller, 2015; Sweeney
et al., 2018; Watson et al., 2020; Hartmann et al., 2021). Capillary
pericytes are α-smooth muscle actin (SMA)-negative and only
partially cover the vessel, while ensheathing pericytes are α-SMA-
positive, occupy proximal branches of penetrating arteriole
offshoots, and fully cover the vessels. However, they are classified
as different from smooth muscle cells as they display an ovoid cell
body (Grant et al., 2019). Vascular smooth muscle cells (SMCs),

found on intracerebral arterioles and arteries, are absent from
intracerebral capillaries. These cells are short, densely packed,
ring-shaped, and essential for regulating vessel tone (Lacoste and
Gu, 2015; Frosen and Joutel, 2018; Grant et al., 2019). Astrocytes
occupy a critical position between blood vessels and neurons.
They can modulate vessel tone via receptor-mediated increase
in astrocytic Ca2+, resulting in the release of astrocyte-derived
prostaglandins (PGE2), nitric oxide (NO), epoxyeicosatrienoic
acids (EETs), glutamate, or adenosine, all of which can alter
vascular diameter and tone (Attwell et al., 2010; Cauli and Hamel,
2010; Filosa and Iddings, 2013; Harada et al., 2015; Haidey et al.,
2021), as reviewed in detailed elsewhere (Filosa and Iddings,
2013; Howarth, 2014; MacVicar and Newman, 2015; Mishra,
2017; McConnell et al., 2019; Stackhouse and Mishra, 2021).
Whereas microglia are the main regulators of inflammatory
processes in the brain, their role in NVC is not well defined.
However, recently, they were suggested as essential in regulating
CBF during neural activation (Császár et al., 2021). Brain ECs
have unique morphological and functional features such as a
lack of fenestration, the presence of tight junctions between
cells, a low number of pinocytic vesicles that limit transcytosis,
hence forming the first limiting layer of the BBB (Reese and
Karnovsky, 1967; Stamatovic et al., 2008; Rizzo and Leaver, 2010;
Salmina et al., 2014; Andreone et al., 2015). This highly selective
barrier promotes a tightly regulated brain homeostasis to ensure
proper neuronal function, protecting the brain from toxins,
pathogens, inflammation, and injury (Weiss et al., 2009; Larsen
et al., 2014; Daneman and Prat, 2015; Van Dyken and Lacoste,
2018). Furthermore, brain ECs regulate vascular tone by releasing
vasodilators including endothelial-derived NO, endothelium-
derived EETs, PGE2 and prostacyclin, as well as vasoconstrictors
such as endothelin-1, thromboxane A2 and prostaglandin F2α

(Mohan et al., 2012; Filosa and Iddings, 2013; Andreone et al.,
2015; Kisler et al., 2016, 2017; Dabertrand et al., 2021). While
the endothelium regulates vascular permeability and tone, it is
also the main target of small vessel disease (SVD), which refers
to a pathological process that damages arterioles, venules and
brain capillaries. SVD has a major impact on CBF and cognition
(Hakim, 2019). The NVU as a whole is also responsible for
maintaining BBB integrity (Abbott et al., 2006; Zlokovic, 2008;
Daneman, 2012; Kadry et al., 2020). Alterations in vascular
patterning, CBF and BBB, either during development or later
in life, contribute to the onset and/or progression of early- or
late-onset neurological disorders (Figure 2).

Well-balanced vascular and neuronal interactions are required
to support brain function from early life. The shared spatial and
temporal patterns of vascular and neuronal networks suggest an
integrative role for vessels in neural development, and vice versa
(Gu et al., 2005; Carmeliet and Jain, 2011; Andreone et al., 2015;
Lacoste and Gu, 2015). Neurovascular crosstalk, which initially
takes place during embryogenesis, supports the rising oxygen
and nutrient demand of immature neurons as they require
extensive energy to maintain normal course of development (De
Filippis and Delia, 2011). The increased energy consumption
by neurons creates a hypoxic environment acting as a signal
for boosting blood vessel production to upsurge delivery of
oxygen and metabolic substrates to the brain (Stone et al., 1995;
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FIGURE 1 | Summary of structures and functions of the neurovascular unit (NVU). The anatomical substrate for regulation of cerebral blood flow and the blood-brain
barrier is a multicellular system consisting of neurons, pericytes, smooth muscle cells, astrocytes and endothelial cells known as the NVU. (A) Intracerebral capillaries
lack vascular smooth muscle cells but are partly covered by contractile pericytes. (B) At the level of intracerebral arterioles, the endothelium is fully covered by a
single layer of vascular smooth muscle cells, which provide contractile properties to the arteriole. Astrocytes send their processes called endfeet around both
capillaries and arterioles, providing support as well as a functional connection to surrounding parenchyma. (C) Summary of functions of the blood-brain barrier and
neurovascular coupling. Arrows point to neurovascular unit components. Figure made using BioRender.

Lacoste and Gu, 2015; Peguera et al., 2021). Hypoxia initiates
vessel ingression into deep brain structures, followed by usage
of vascular patterning cues (Lacoste and Gu, 2015; Tata et al.,
2015; Tata and Ruhrberg, 2018; Okabe et al., 2020). Comparably,
ECs instruct neural progenitors into dividing, differentiating
or migrating through release of paracrine signals that regulate
neuronal development in vascular niches (Hogan et al., 2004;
Shen et al., 2004; Daneman et al., 2009; Goldman and Chen, 2011;
Delgado et al., 2014; Lacoste and Gu, 2015; Licht and Keshet,
2015; Walchli et al., 2015; Tata and Ruhrberg, 2018; Peguera
et al., 2021). Moreover, neuronal activity plays important roles
in modulating postnatal brain angiogenesis (Lacoste et al., 2014;
Whiteus et al., 2014; Biswas et al., 2020). As the brain matures,
vascular networks remodel until the system consists of an
extensive network that actively regulates blood flow to adequately
sustain energy demands. The functional relationships between
neurons and blood vessels ensures that NVC mechanisms
progressively develop (Lacoste and Gu, 2015; Coelho-Santos and
Shih, 2020). NVC becomes fully functional ∼3–4 weeks after
birth in rodents, and 7–8 weeks in humans (Yamada et al., 2000;
Muramuto et al., 2002; Kozberg et al., 2016).

These vascular features can become defective early in life,
affecting brain maturation. Vascular susceptibilities can also

emerge later in life, taking part in neurodegenerative processes.
Indeed, NVU deficits play a role in both early- and late-onset
neurological disorders (Figure 2). Mounting evidence shows that
vascular impairments contribute to the pathophysiology
of neurological conditions throughout life, including
neurodevelopmental, metabolic, and neurodegenerative
disorders (Nicolakakis and Hamel, 2011; Van Dyken and
Lacoste, 2018; McConnell et al., 2019; Ouellette et al., 2020;
Sharma and Brown, 2021). This suggests the existence of
a vascular continuum between developmental conditions and
illnesses of aging, which will be the focus of this review (Figure 3).
A better understanding of mechanisms and key players involved
in cerebrovascular impairments may lead to transformative
therapeutic strategies at different stages of life.

CEREBROVASCULAR DEFICITS
ASSOCIATED WITH
NEURODEVELOPMENTAL DISORDERS

Neurodevelopmental disorders are considered a group of
conditions with onset/diagnosis during infancy, childhood, or
adolescence (Morris-Rosendahl and Crocq, 2020). They are
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FIGURE 2 | Factors affecting the brain vasculature and leading to neurological conditions. The brain, which has elevated metabolic needs but poor energy storage,
is highly dependent on a continuous supply of nutrients and oxygen from the blood stream, and is thus dependent on the integrity of its vasculature. Vasculature of
the brain is the most complex and dense in the human body. Yet, it is maintaining a very fragile equilibrium and is the target of numerous pathological conditions that
affect neuronal maturation and function. Figure made using BioRender.

defined by impairments in motor, social, cognitive, academic,
and/or occupational functioning. Most studies focused on the
neuronal contributions to these disorders; however, concomitant
vascular impairments are starting to emerge (Ouellette et al.,
2020). Here, we highlight vascular impairments identified in
autism spectrum disorders (ASD) and schizophrenia.

Vascular Links to Autism Spectrum
Disorders
ASD are pervasive neurodevelopmental disorders associated with
social interaction deficits, speech and language impairments, as
well as repetitive behaviors and restricted interests (Vijayakumar
and Judy, 2016). These disorders have a prevalence of 1–
2% in the general population and affect four times more
boys than girls (Hogan et al., 2004; Daneman et al., 2009).
Individuals with ASD show atypical behaviors associated with
visual attention, imitation, social responses, and motor control
by 12 months of age. By the age of 3, a child can be efficiently
diagnosed with ASD (Park et al., 2016). While the underlying
causes of ASD are enigmatic, both environmental and genetic
origins have been found, leading to the identification of gene
mutations within the ASD population (Hogan et al., 2004;

James et al., 2009; Emerson et al., 2017). Although most studies
have been neurocentric, ASD are now being associated with
vascular vulnerabilities.

Altered Cerebral Blood Flow in Autism Spectrum
Disorders
Neuroimaging techniques can map changes in CBF or blood
oxygenation during various activities. Morphological and
functional investigations using functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), single-
photon emission computed tomography (SPECT), or Arterial
Spin Labeling (ASL) are used to measure CBF changes in ASD
children. CBF disruptions have been demonstrated in ASD
patients when compared to healthy controls in different regions
of the brain (Bjørklund et al., 2018). It has also been suggested
that perfusion alterations are more pronounced in older children
diagnosed with ASD. Cerebral hypoperfusion has been detected
in nearly 75% of ASD children (Zilbovicius et al., 2000). As
CBF impacts the delivery of oxygen and nutrients to neurons,
hypoperfusion in ASD children has been associated with key
ASD-related behaviors such as language deficits, impaired
executive function and abnormal responses to sensory stimuli,
as well as difficulty in facial perception (Siegel et al., 1992;
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FIGURE 3 | Summary of vascular links to neurological disease throughout life.

Chiron et al., 1995; Ohnishi et al., 2000; Burroni et al., 2008;
Reynell and Harris, 2013; Bjørklund et al., 2018; Yerys et al.,
2018). These behaviors correlate with abnormal regional cerebral
blood flow (rCBF) in the bilateral insula, superior temporal gyri
and left prefrontal cortices, medial temporal lobe, supramarginal
gyrus, right fusiform gyrus, and dorsal anterior cingulate cortex
(Ohnishi et al., 2000; Zilbovicius et al., 2000; Burroni et al.,
2008; Jann et al., 2015; Yerys et al., 2018). Studies are attempting
to ameliorate these behavioral abnormalities using hyperbaric
oxygen treatment (HBOT) to counteract cerebral hypoperfusion
in children with ASD. There is some evidence that children
who undertook 40 HBOT sessions of 60 min each showed
improvements on selected psychosomatic parameters in the
Autism Treatment Evaluation Checklist (ATEC) and Childhood
Autism Rating Scale (CARS) (Kostiukow and Samborski, 2020).
Currently, there is insufficient evidence to support the use of
HBOT to treat children with ASD as there are many contradicting
studies claiming no improvement in behaviors. Nevertheless,
each study followed different protocols, consisted of patients
with a large spectrum of behavioral impairments, and some
lacked proper control groups, which could explain discrepancies.
More research is required to determine if specific groups of
children could benefit from HBOT treatment (Rossignol et al.,
2012; Sakulchit et al., 2017).

ASL-based measurements of cerebral perfusion showed
that children with ASD presented a pattern of widespread
hyperperfusion in frontotemporal regions including medial
orbitofrontal cortex, bilateral inferior frontal operculum,
left inferior/middle temporal gyrus and the right precentral
gyrus (Jann et al., 2015). The medial orbitofrontal cortex
is known to have extensive connections with the limbic
system involved in socio-emotional cognition. Furthermore,
hyperperfusion was detected throughout the frontal white
matter and subcortical gray matter in ASD children,
which correlated positively with severity of social deficits
(Peterson et al., 2019). As shown by these studies, CBF
abnormalities appear linked to clinical manifestations. Although
opposing observations of CBF in ASD patients were reported,

these further support the complexity of these disorders
(Jann et al., 2015).

Neurovascular coupling alterations were also observed in
ASD patients. Hemodynamic responses in children with ASD
during a color-word task were significantly lower than the control
group, especially in the dorsolateral prefrontal cortex (Uratani
et al., 2019). Conversely, children displayed no difference in
hemoglobin concentrations in the prefrontal cortex during a
letter fluency task, while adults showed reduced responses
(Kawakubo et al., 2009). Despite inter-study variability, there
seems to be a consensus on the impact of altered CBF on the
expression of behavioral impairments (Zilbovicius et al., 2000;
Jann et al., 2015). But as ASD are heterogeneous, with various
behavioral traits, genetic causes, medical co-morbidities and
medications, these variables may have impacted neuroimaging
results, which led to inconsistencies. Importantly, these studies
take an important step toward the identification of key players
in ASD pathophysiology, opening new opportunities for early
diagnosis and treatment.

The relationship between CBF alterations and symptom
profiles in ASD children provides insight into disease
mechanisms that can be tested in animal models. As most
pre-clinical studies have also focused on the neuronal aspects of
ASD, very few have considered vascular contributions to these
disorders in laboratory models. Recent studies using different
ASD mouse models have reported alteration in CBF. A study by
Abookasis et al. (2018) using inbred Black and Tan Brachyury
(BTBR) T+tf/J reported decreased CBF in mutant mice using
laser speckle imaging and laser Doppler flowmetry (LDF).
Subsequently, work by Ouellette et al. (2020) using the 16p11.2
deletion mouse model of ASD (16p11.2df /+; Horev et al., 2011)
demonstrated an increase in resting CBF as well as neurovascular
uncoupling in adult (P50) 16p11.2df /+ mice compared to WT
littermates using a combination of ultrasound imaging and
LDF. No difference in CBF or NVC were observed between
younger (P14) mutant and control mice (Ouellette et al., 2020).
Results from this study in 16p11.2df /+ mice revealed the cause
of these functional cerebrovascular impairments: an endothelial
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deficit. While normal vascular smooth muscle cell function was
measured, defective endothelium-dependent vasodilation was
found ex vivo following exposure to specific vasomodulators
(Ouellette et al., 2020). This suggests that endothelial health
plays an important role in the etiology of the 16p11.2 deletion
ASD syndrome. Understanding the molecular and cellular
factors that mediate CBF alterations in ASD could help design
rescue approaches in animal models, as well as therapeutic
approaches down the line.

Since MRI studies rely on Blood Oxygen Level Dependent
(BOLD) signals as surrogates for neuronal activity (Hillman,
2014; Howarth et al., 2021; Moon et al., 2021), it is possible
that changes in rCBF reflect changes in underlying neuronal
activity. For instance, cerebral cortex hypoperfusion in ASD
patients could reflect lower metabolic demands (Schifter et al.,
1994). In the case 16p11.2df /+ mice, however, it is interesting
to note that a neurovascular uncoupling was measured, with
enhanced neuronal activation yet reduced vascular responses to
whisker stimulations, which led to the discovery of endothelium-
dependent deficits (Ouellette et al., 2020).

Altered Blood-Brain Barrier and Angiogenesis in
Autism Spectrum Disorders
Cerebral vessels are central for the maintenance of brain
homeostasis, sustaining proper neuronal function, and providing
an effective protection against toxins and pathogens (Profaci
et al., 2020). The BBB consists of specialized ECs lining the
vessel wall to separate the peripheral blood from cerebral tissue.
Brain (central) ECs are distinct from peripheral ECs, as they
produce specific proteins to control the flux (entry and exit)
of metabolites across vessels, to maintain low rates of trans-
endothelial vesicular transport, and to form tight junctions to
limit the para-cellular flow of material between adjacent ECs
(Andreone et al., 2015; Chow and Gu, 2015; Kealy et al., 2020).
Alterations in the BBB are at the core of the onset and/or
progression of numerous neurological disorders (Daneman
and Prat, 2015; Van Dyken and Lacoste, 2018; Profaci et al.,
2020). Only few studies have investigated the components of
the BBB in the context of ASD. Children diagnosed with
ASD have been associated with reduced levels of adhesion
molecules such as soluble Platelet Endothelial Cell Adhesion
Molecule-1 (PECAM-1, or CD31) and P-selectin. Since these
molecules are essential to modulate BBB permeability through
signaling and leukocyte infiltration, it suggests that crucial BBB
components may be at play in ASD pathophysiology (Onore
et al., 2012). Furthermore, a post-mortem study, with a small
sample size, demonstrated altered BBB integrity in ASD with
increased gene expression of matrix metalloproteinase (MMP)-
9 (Fiorentino et al., 2016). Studies have shown that MMP-9
regulates cell proliferation, adhesion, degradation of laminin and
collagen, angiogenesis, oxidative injury, and is implicated in BBB
breakdown (Lepeta and Kaczmarek, 2015; Turner and Sharp,
2016). Additionally, important components of BBB integrity
displayed altered expression in ASD patients, including claudin-
5 (CLDN5) and claudin-12 (CLDN12), as well as tricellulin
(MARVD2), a component of tight junctions involved in decreased
permeability to macromolecules in brain ECs (Fiorentino et al.,

2016). In an older study, a small subset of ASD participants
demonstrated higher levels of autoantibodies against brain ECs
in the serum compared to typically developing individuals,
suggesting an impact on the BBB (Connolly et al., 1999). Animal
models have facilitated the study of BBB integrity in ASD. In a
valproic acid rat model of autism, increased BBB permeability to
Evans blue was found in the cerebellum, a phenotype attenuated
by treatment with memantine, an NMDA receptor modulator.
This BBB alteration was also attenuated using minocycline
(antibiotic) and agomelatine (melatonin receptor) treatment
(Kumar et al., 2015; Kumar and Sharma, 2016). Animal studies
have investigated transendothelial transport mechanisms in ASD
mouse models. Tarlungeanu et al. (2016) demonstrated that the
large neutral amino acid transporter (LAT1, Slc7a5) localized at
the BBB to maintain normal levels of brain branched chain amino
acid (BCAA) was required for neurotypical development. Mice
harboring an endothelial-specific deletion of Slc7a5 (Slc7a51EC)
displayed behaviors reminiscent of ASD, including motor
dysfunctions consistent with a study in human patients harboring
the constitutive mutation (Novarino et al., 2012; Tarlungeanu
et al., 2016). Interestingly, administration of BCAA rescued ASD-
like behaviors in Slc7a51EC mice (Tarlungeanu et al., 2016).

Recently, a post-mortem analysis of brain tissue from
individuals diagnosed with ASD revealed significantly higher
levels of markers associated with pericytes, as well as increased
vascular tortuosity, indirectly suggesting impairments in
angiogenesis, a process through which new blood vessels
are formed (Azmitia et al., 2016). A more recent study in
16p11.2df /+ mice revealed impaired cerebral angiogenesis
in young (P14) 16p11.2df /+ male mice compared to sex-
/age-matched littermates, a phenotype which was absent in
adult mice. Defective angiogenic activity was also measured
using primary brain ECs from P14 16p11.2df /+ males or ECs
derived from human-induced pluripotent stem cells (hiPSCs)
of 16p11.2 deletion carriers (Ouellette et al., 2020). Moreover,
RNA-sequencing analysis of 16p11.2df /+ mouse brain EC
transcriptome revealed changes in the expression of genes
involved in angiogenesis (e.g., Grem1, Apln, Angpt2), while
key genes involved in BBB regulation (e.g., Pecam1, Mfsd2a,
Cldn5, Slc2a1) were not affected by the 16p11.2 deletion
(Ouellette et al., 2020). Finally, this study generated a mouse
model with endothelial-specific 16p11.2 haploinsufficiency
which recapitulated ASD-related phenotypes, revealing a causal
relationship between endothelial dysfunction and neuronal
aspects of the 16p11.2 deletion syndrome (Ouellette et al., 2020).

Overall, these studies allude to the contribution (structural
and functional) of a defective BBB and NVU in ASD, with an
important role for endothelial impairments.

Vascular Links to Schizophrenia
Schizophrenia is a debilitating neurodevelopmental disorder
affecting ∼1% of the population. It is associated with behavioral
and cognitive symptoms that arise progressively. Memory
and attention deficits appear in childhood, while positive
symptoms (psychotic episodes) and negative symptoms (social
and motivational deficits) emerge later in adolescence or early
adulthood (Stachowiak et al., 2013). Although the incidence of
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schizophrenia is higher in men, women have a slightly later
disease onset (Gogtay et al., 2011; Ochoa et al., 2012). While
the behavioral aspects of schizophrenia have been described,
the causes of this disorder are poorly known. As in ASD, both
genetic and environmental origins are involved. Schizophrenia
has been associated with genes essential for a wide range
of functions including neuronal connectivity and patterning
of brain structures, cell proliferation and differentiation, as
well as cytoskeleton reorganization (Stachowiak et al., 2013;
Clifton et al., 2019). As in most neurological disorders, the
implication of neuronal alterations has been extensively studied,
but research on vascular impairments in schizophrenia is
starting to emerge.

Altered Cerebral Blood Flow in Schizophrenia
Cognitive impairments are often present before the first psychotic
episode in patients with schizophrenia (Keefe and Harvey, 2012;
Schuepbach et al., 2016) and deficits in executive functions are
often parallel to changes in CBF. Several studies have linked
altered CBF with schizophrenia-related symptoms (Sabri et al.,
1997; Malaspina et al., 1999, 2004; Pinkham et al., 2011; Fujiki
et al., 2013; Schuepbach et al., 2016; Stegmayer et al., 2017;
Zhu et al., 2017). Interestingly, the manifestations of negative
or positive symptoms correlate with different rCBF changes.
In a study by Pinkham et al. (2011), CBF of 30 schizophrenia
patients was measured using ASL perfusion MRI, which revealed
a positive correlation between increased severity of positive
symptoms and higher CBF in the cingulate and superior frontal
gyri, but decreased CBF in precentral and middle frontal gyri.
Patients who presented with severe negative symptoms also
displayed reduced CBF in the superior temporal gyrus bilaterally,
cingulate and left middle frontal gyri (Malaspina et al., 2004;
Scheef et al., 2010; Pinkham et al., 2011; Liu et al., 2012).
Most studies investigating CBF alterations in schizophrenia
considered perfusion rates from medicated patients, and a small
number of studies have measured CBF rates in neuroleptic-naïve
patients. Using ASL in non-medicated patients, the schizophrenia
group displayed resting-state hypoperfusion in the frontal lobes,
anterior and medial cingulate gyri, as well as in the parietal
lobes, while increased perfusion was measured in the cerebellum,
brainstem and thalamus (Scheef et al., 2010). Sabri et al.
(1997) measured rCBF using SPECT in non-medicated patients
that have experienced positive symptoms, revealing that rCBF
values varied depending on the severity of positive symptoms.
Hyperperfusion was detected in the frontal, anterior cingulate as
well as in both parietal and temporal cortices in patients who had
scored high in severity for formal thought disorder (disturbance
of the organization and expression of thought). In contrast,
patients who scored high for delusions, hallucinations or distrust,
with low scores for formal thought, displayed hypoperfusion in
the same brain regions. No difference in rCBF was identified
between control and schizophrenia groups after treatment
(Andreasen et al., 1997; Sabri et al., 1997; Horn et al., 2009).
Recent studies have detected hyperperfusion and hypoperfusion
in brain regions from individuals with hallucinations. For
instance, CBF increase was found in the right superior temporal
gyrus and caudate nucleus, while CBF decrease was found

bilaterally in the occipital and left parietal cortices (Zhuo et al.,
2017). In another study, patients were classified based on the
severity of three behavioral dimensions (language, affectivity, and
motor) according to the Bern Psychopathology scale. Patients
with altered affectivity were associated with increased CBF
in the amygdala, while changes in language dimension were
linked to increased CBF in Heschl’s gyrus (Stegmayer et al.,
2017). While schizophrenia is classified as a neurodevelopmental
disorder, its symptoms persist with age. Studies have identified
significant bilateral temporal hypoperfusion related to aging
and disease course. It has been suggested that this decrease
in CBF with aging is paralleled with the degenerative changes
observed in patients with schizophrenia (Schultz et al., 2002;
Kawakami et al., 2014).

The polygenic risk of schizophrenia is an important
dimension of this syndrome, and changes in CBF have been
identified in patients diagnosed for either familial or sporadic
schizophrenia. Sporadic schizophrenia patients were associated
with hypofrontality (left frontal gyrus, orbitofrontal cortex,
anterior cingulate, and paracingulate cortices), while familial
schizophrenia patients had left temporoparietal hypoperfusion
(posterior Sylvian fissure at the superior and inferior parietal
lobules, angular, and supramarginal gyri). In both groups,
positive symptoms are often associated with increased rCBF in
the parahippocampal gyrus, cerebellum, and pons (Malaspina
et al., 2004). Sporadic patients showed additional hyperperfusion
in the fusiform gyrus, and familial patients the hippocampus,
dentate, amygdala, thalamus, and putamen (Malaspina et al.,
2004). In addition, the prefrontal cortex in schizophrenia has
been associated with deficits of pericapillary oligodendrocytes,
which could contribute to changes in CBF (Vostrikov et al., 2008;
Uranova et al., 2010). Altogether, these studies support the idea
that altered CBF is involved in schizophrenia pathophysiology.

In addition to studies investigating resting state CBF, there is
evidence of altered NVC in schizophrenia whereby many reports
demonstrate reduced hemodynamic response, reflecting reduced
neuronal activity during processing of cognitive tasks, especially
in the lateral prefrontal cortex and temporal regions (Ford et al.,
1999, 2005; Mathalon et al., 2000; Carter et al., 2001; Hanlon et al.,
2016; Pu et al., 2016). As with CBF reports, there are inconsistent
hemodynamic responses associated with schizophrenia since
increased hemodynamic responses in hippocampus, thalamus
and prefrontal cortex have been identified (Tregellas et al.,
2007). These conflicting results are translating to rodent
models of schizophrenia whereby some models have revealed
overall hypofrontality, hypoperfusion in the hippocampus or
hyperperfusion in the somatosensory cortex (Finnerty et al., 2013;
Song et al., 2013; Drazanova et al., 2019).

Altogether, these studies support the idea that altered
CBF regulation is involved in schizophrenia pathophysiology.
Moreover, it appears critical to consider the polygenic risk of
disease, the category and severity of symptoms, as well as the
age of patients when comparing CBF rates in schizophrenia.
Although many studies have detected altered CBF using
various methods, results thus far remain conflicting based
on various stages of disease and pharmacological treatment
(Drazanova et al., 2019).
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Altered Blood-Brain Barrier and Angiogenesis in
Schizophrenia
A dysfunctional BBB has been reported in schizophrenia,
with increased permeability to damaging proteins (Müller
and Ackenheil, 1995; Shcherbakova et al., 1999; Crockett
et al., 2021). Studies are starting to decipher changes in cells
associated with the BBB (for a detailed review, see Carrier
et al., 2020). Briefly, evidence of schizophrenia-associated
microvascular abnormalities in the neocortex include thickening
and deformation of basal lamina, vacuolation of cytoplasm in
ECs, basal lamina and astrocytic end-feet, swelling of astrocyte
end-feet, activation of microglial cells in the prefrontal and visual
cortex, as well as atypical vascular arborization (Uranova et al.,
2010; Carrier et al., 2020).

Moreover, specific mutations are associated with
schizophrenia, including alterations in the 22q11.2 deletion
syndrome (22qDS) -strongest monogenic risk allele for this
disorder, and polymorphisms in claudin-5, a densely expressed
tight junction molecule (Gur et al., 2017; Greene et al., 2018;
Carrier et al., 2020) altogether revealing barrier dysfunction
in schizophrenia patients (Greene et al., 2018; Crockett et al.,
2021). Post-mortem brain sections from 22qDS patients and
animal models of 22qDS both demonstrate reduced claudin-
5 expression in the BBB, which in turn compromised BBB
function (Nishiura et al., 2017; Guo et al., 2020; Crockett et al.,
2021; Usta et al., 2021). Additionally, altered levels of vascular
endothelial (VE)-cadherin and occludin in ECs were identified
in schizophrenia. These molecules regulate adherence of ECs and
restrict movement of substances across the BBB (Cai et al., 2020).
Furthermore, BBB hyperpermeability has been associated with
another risk allele for schizophrenia. NDST3, expressed in the
brain, encodes an enzyme involved in the metabolism of heparan
sulfate, a component of basal lamina extracellular matrix that is
required for BBB integrity (Khandaker et al., 2015).

Studies have documented primary vascular endothelial
dysfunction in schizophrenia. Individuals carrying MTHER
T and/or COMT Val risk allele have been associated with
cerebrovascular endotheliopathy, as well as lower frontal
executive functions (Grove et al., 2015). While endothelial
dysfunction is possibly associated with schizophrenia, many
studies are using peripheral endotheliopathy as a surrogate
marker for endothelial dysfunction. For example, studies are
using non-invasive peripheral arterial tonometry (RH-PAT) to
assess peripheral arteriole endothelial-dependent vasodilation
and revealed impaired peripheral arterial vasodilation in
schizophrenia (Ellingrod et al., 2011; Burghardt et al., 2014).
Notably, brain ECs have unique properties to maintain BBB
integrity and brain homeostasis. Although altered endothelial
function was found in the periphery, it does not represent
a definite marker of brain (central) endothelial dysfunction.
A critical regulator of angiogenesis, vascular endothelial growth
factor (VEGF), and its receptor (VEGFR2) have been found
upregulated in the prefrontal cortex of individuals diagnosed with
schizophrenia (Hino et al., 2016). Findings of elevated VEGF
could also be linked to vascular hyperpermeability, as VEGF not
only regulates angiogenesis but increases BBB leakage (Mayhan,
1999; Zhang et al., 2000). Conversely, a different group revealed

that a decreased production of VEGF predisposed individuals to
develop this disorder and contributed to the severity of symptoms
(Saoud et al., 2021). Another study investigated the impact of
hiPSC-derived neural stem cells from schizophrenia patients on
angiogenesis (Casas et al., 2018). This study found an imbalance
in the expression and secretion of several angiogenic factors and
non-canonical neuro-angiogenic guidance cues from neural stem
cells from schizophrenic patients. Conditioned media from these
cells induced impaired angiogenesis as evidenced by reduced
number of sprouts and tubes formed in in vivo and in vitro
models, as well as decreased neural stem cell migration compared
to control conditioned media (Casas et al., 2018).

CEREBROVASCULAR DEFICITS
ASSOCIATED WITH
NEURODEGENERATIVE DISORDERS

CNS disorders are dichotomized as early onset
neurodevelopmental disorders and late-onset neurodegenerative
diseases (Taoufik et al., 2018). Neurodegenerative diseases
consist of a group of heterogeneous disorders characterized
by the progressive degeneration of structure and function in
the CNS (Gitler et al., 2017). Although neurodegenerative and
neurodevelopmental disorders are differentially classified, an
accumulating body of work demonstrates significant similarities
between these two groups of conditions. Here below, we cover
cerebrovascular impairments reported in four neurodegenerative
diseases that emerge throughout lifespan: multiple sclerosis
(MS), Huntington’s disease (HD), Parkinson’s disease (PD), and
Alzheimer’s disease (AD).

Vascular Links to Multiple Sclerosis
MS is a chronic autoimmune disease of the CNS, occurring
when the immune system attacks its own nerve fibers and
myelin sheaths (D’Haeseleer et al., 2013). The pathological
hallmark of MS consists of perivenular inflammatory lesions,
leading to demyelinating plaques and diffuse axonal degeneration
throughout the CNS (Dobson and Giovannoni, 2019). It is
characterized by the infiltration of T cells reactive against myelin
in the CNS (Schwartz and Kipnis, 2005). This demyelinating
disease has key features including inflammation, BBB disruption
and neurodegeneration. MS has a prevalence of 0.5–1.5 per
100,000 individuals, whereby women are three times more
affected than men (Harbo et al., 2013). The age of MS onset
is situated between 20 and 40 years of age (Ortiz et al., 2014).
General symptoms related to MS include, but are not limited to,
tremors, lack of coordination as well as weakness in limbs. There
are various types of MS including relapsing-remitting MS (RR-
MS), secondary progressive MS (SP-MS) and primary progressive
MS (PP-MS). RR-MS consists of unpredictable relapses or
inflammatory flare-ups during which new symptoms appear or
existing ones worsen (Adhya et al., 2006). Most people with
RR-MS, transition to a disease phase known as SP-MS. In this
phase, there is progressive worsening and fewer relapses. Active
lesions with profound lymphocytic inflammation are mostly
found in RR-MS (Dobson and Giovannoni, 2019). PP-MS is
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considered as a slow accumulation of disability without defined
relapses. In this case, PP-MS is associated with an inactive
lesion core surrounded by activated microglia and macrophages
(Dobson and Giovannoni, 2019).

Altered Cerebral Blood Flow in Multiple Sclerosis
MS has been associated with functional cerebrovascular
abnormalities including decreased cerebral perfusion and
reduced CNS venous blood drainage, known as chronic
cerebrospinal venous insufficiency (D’Haeseleer et al., 2011).
SPECT, PET, and ASL imaging studies have reported decreased
CBF in both gray and white matter of MS patients (Ge et al., 2005;
D’Haeseleer et al., 2011). Widespread cerebral hypoperfusion
has been revealed in SP-MS, RR-MS and PP-MS patients, while
an ischemic threshold was not reached (Adhya et al., 2006; Ota
et al., 2013; Monti et al., 2018). Gray matter hypoperfusion
in MS suggests a reduction of metabolism due to the loss of
cortical neurons (Peruzzo et al., 2013). Furthermore, studies
have reported that CBF is globally impaired in normal appearing
white matter (NAWM) of patients with early RR-MS (Law et al.,
2004; Adhya et al., 2006). Of note, CBF was generally lower
in PP-MS than in RR-MS in the periventricular and frontal
white matter (Adhya et al., 2006). In the contrary, other studies
have measured elevation of CBF and cerebral blood volume
(CBV) in NAWM of patients with early RR-MS several weeks
before signs of increased BBB permeability (Wuerfel et al.,
2004). Although studies on different types of MS revealed
changes in CBF, general active demyelinating lesion regions are
associated with hyperperfusion while the more stable forms show
hypoperfusion (Monti et al., 2018). Decreased CBF in cerebral
NAWM, thalamus, and putamen was identified in patients whose
symptoms emerged within the first 5 years of onset. This suggests
that CBF alterations are present in the very early stages of the
disease (Varga et al., 2009). Different mechanisms have been
proposed to explain hypoperfusion in MS. A study suggested
that decreased CBF is secondary to axonal degeneration, which
leads to a decreased metabolic demand (Saindane et al., 2007).
However, this hypothesis is yet to receive experimental support.
A second mechanism that has been proposed is an impaired
energy metabolism of astrocytes (De Keyser et al., 1999). In
MS, astrocytes are deficient in β2-adrenergic receptors which
regulate high energy-consuming activities, such as glycogenolysis
and phosphocreatine metabolism (De Keyser et al., 1999).
Reduced energy production in astrocytes could be contributing
to altered CBF. A third mechanism suggested was increased
release of vasoconstrictor endothelin-1 (ET-1) from reactive
astrocytes, found in a post-mortem study on white matter
samples of RR-MS patients (D’Haeseleer et al., 2013; Hostenbach
et al., 2019). Hence, elevated levels of ET-1 could be involved
in dysregulating CBF in MS. Interestingly, administration of
ET-1 antagonist Bosentan restored CBF to control levels in MS
patients (D’Haeseleer et al., 2013).

Impaired cerebral vascular reactivity was evidenced in MS
patients exposed to hypercapnia, which has been suggested
to contribute to neuronal death identified in this disorder
(Marshall et al., 2014). This global deficit is thought to be
associated with elevated levels of NO reported in MS (Trapp

and Stys, 2009; Juurlink, 2013). These studies suggest that the
overproduction of NO may desensitize endothelial and smooth
muscle cell function, causing decreased vasodilatory capacity
and limited blood supply for neurons that perform demanding
tasks. Increased NO in MS may lead to neuronal activity-
induced hypoxia leading to neurodegeneration (Marshall et al.,
2014). Interestingly, high inflammatory MS lesion load has been
associated with increased CBF. Therefore, perfusion changes
may be sensitive to active inflammation (Bester et al., 2015).
However, it remains unclear whether abnormal perfusion in
MS is a precursor of lesions or occurs independently of lesion
development (Marshall et al., 2014).

Notably, MS has been associated with cerebral SVD. It was
demonstrated that younger MS cases are more severely impacted
by cerebral SVD compared to older individuals (Geraldes et al.,
2020). This suggests that the interaction between MS and cerebral
SVD is affected by age, an assumption still under investigation
(Geraldes et al., 2020).

Altered Blood-Brain Barrier and Angiogenesis in
Multiple Sclerosis
BBB dysfunction is considered a major hallmark of MS and is
deemed a trigger of disease onset (McQuaid et al., 2009; Cramer
et al., 2014). Intense focal disruption of the BBB associated
with inflammation (identified by gadolinium-enhanced MRI at
acute and chronic MS lesion sites; Saade et al., 2018) and
diffuse extensive BBB disruption with a long-term pathological
activity, are both found in MS patients (Bennett et al., 2010).
Hyperpermeability of the BBB was evidenced by leukocyte
passage across the BBB (Cramer et al., 2014). Increased BBB
leakage was associated with decreased expression of tight junction
proteins in brain capillary ECs in patients with active lesions,
inactive lesions, as well as NAWM associated with fibrinogen
leakage (Kirk et al., 2003; McQuaid et al., 2009; Bennett et al.,
2010). More specifically, dysregulation of tight junction adaptor
protein ZO-1, occludin and claudin-5 have been reported in both
primary progressive and secondary progressive disease states
(Kirk et al., 2003; Leech et al., 2007). Experimental autoimmune
encephalomyelitis (EAE) in rodents is a disease model with
clinical and pathological characteristics relevant to the study of
MS. This model revealed reorganization of ZO-1 and actin in
the presence of inflammatory factors in vitro, associated with
increased permeability of an endothelial monolayer (Bennett
et al., 2010). The EAE model also revealed increased expression
of VEGF in ECs, astrocytes, monocytes and activated TH1
lymphocytes, all of which contribute to BBB permeability
during the early phase of disease, while decreased expression
VEGF was evident in the late phase (Girolamo et al., 2014).
The increase in VEGF expression was also found in the
brain of MS patients (Girolamo et al., 2014). Furthermore,
junctional adhesion molecule-A, a component of tight junctions,
was found abnormally distributed in active and inactive MS
lesions, although adherent junction proteins were normally
expressed and localized in MS tissue (Padden et al., 2007). In
addition, levels of PECAM-1 were found increased in active
gadolinium-enhancing MS lesions (Ortiz et al., 2014). While
BBB leakage is evident in MS, the complex network of cellular
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and molecular players that lead to this dysfunction have yet
to be fully understood. Targeting BBB defects in MS represent
a therapeutic opportunity, for instance with MMP inhibitors,
interferons, and corticosteroids (Minn et al., 2002; Ross et al.,
2004; Pardridge, 2012; Ortiz et al., 2014). However, no current
therapy addresses BBB deficits (Ortiz et al., 2014). For more
details on BBB dysfunction in MS, the following reviews can
be consulted (Girolamo et al., 2014; Kamphuis et al., 2015;
Xiao et al., 2020).

ECs proliferation as well as an increase in vascular network
density has been reported (Ludwin, 2006; Holley et al., 2010).
Increased angiogenesis was suggested to contribute to disease
progression as well as remission after relapses (Papadaki et al.,
2014). In addition to increased VEGF levels, VEGFR2 is also
expressed on ECs in active MS lesions (Seabrook et al., 2010).
Other molecules, such as basic fibroblast growth factor, were
increased in MS patients and involved in angiogenesis (Su et al.,
2006). MS patients with activated lesions and NAWM show blood
vessels with a glomeruloid morphology, hemorrhages and vessel
wall hyalinization (Girolamo et al., 2014). Immunosuppressive
therapies have been used in aggressive MS as they not only
impact neuroinflammation but also have an anti-angiogenic
effect. Further research is warranted to elucidate the vascular
links to MS and identify new therapeutic targets, as disease
modifying drugs have unfortunately little to no impact on MS
progression (Girolamo et al., 2014).

Vascular Links to Huntington’s Disease
HD is an hereditary, autosomal dominant and neurodegenerative
disorder (Davenport, 1915; Wasmuth et al., 1988; Bano et al.,
2011) leading to altered muscle coordination and declined mental
abilities (Paulsen, 2011; Ha and Fung, 2012). An expansion
of trinucleotide CAG repeats on chromosome 4 within the
Huntingtin gene (HTT) results in the production of an altered
Huntingtin (Htt) protein which accumulates in specific brain
regions. Aggregation of mutant Htt (mHtt) leads to increased
neurotoxicity (Zheng and Diamond, 2012), particularly in
subcortical brain structures such as the neostriatum (caudate
and putamen) where GABAergic medium-spiny neurons are
particularly vulnerable (Sieradzan and Mann, 2001; Walker, 2007;
Ross and Tabrizi, 2011; Drouin-Ouellet et al., 2015; McColgan
and Tabrizi, 2018). At the cellular level, mHtt results in neuronal
dysfunction and death through disrupted mechanisms involved
in proteostasis, transcription and mitochondrial function as well
as toxicity from the mutant protein (McColgan and Tabrizi,
2018). Worldwide, 2.71 per 100,000 individuals suffer from
HD (Rawlins et al., 2016; Kounidas et al., 2021). Both men
and women are affected equally, and heterogeneous symptoms
emerge at around 40 years of age. However, functional and
structural brain alterations emerge a decade before symptoms
manifest (Snowden, 2017). Carriers of CAG repeat expansions
in HTT can be identified decades before clinical manifestation,
allowing researchers to identify possible biomarkers in the
premanifest stage of HD (preHD). With this comes the
increasing interest to study cerebrovascular abnormalities in HD
(Snowden, 2017).

Altered Cerebral Blood Flow in Huntington’s Disease
HD-related perfusion deficits have been mostly associated with
cerebral hypoperfusion (Reid et al., 1988; Sotrel et al., 1991;
Hasselbalch et al., 1992; Harris et al., 1999; Deckel and Duffy,
2000; Wild and Fox, 2009). There is evidence of reduced CBF
in the basal ganglia in early HD, prior to gross structural
changes and to motor symptoms. In these cases, severity of
cortical hypoperfusion correlated with decreased functional
capabilities (Sax et al., 1996; Harris et al., 1999). In preHD
patients, classified as either near or far from motor symptom
onset, displayed altered rCBF by MR-based perfusion imaging.
Participants with preHDfar and preHDnear had lower rCBF
in the medial prefrontal cortex and increased rCBF in the left
precuneus. Of note, structure and function of the precuneus and
hippocampus can be abnormal in very early HD (Feigin et al.,
2006). PreHDnear participants had additional regions showing
altered rCBF, including hypoperfusion in the medial and lateral
prefrontal cortex and hyperperfusion in the right hippocampus
(Wolf et al., 2011).

While resting CBF is affected, early manifest and premanifest
HD patients also display altered neurovascular coupling during
visual stimulation (Klinkmueller et al., 2021). After HD onset,
a significant hypoperfusion in the HD group was identified in
most of the cerebral cortex. During problem-solving activities,
such as solving a maze or resting their eyes open while
looking at a modified maze, patients with HD showed increased
CBF in the caudate nucleus (Deckel and Duffy, 2000; Deckel
et al., 2000). Following physical activity, HD patients were
associated with CBF hyperperfusion compared to the control
group (Steventon et al., 2020).

Animal models of HD (e.g., gene knock-in of a human
exon 1 CAG140 expansion repeat) also revealed altered rCBF.
In mice as in humans, different brain regions displayed either
hypoperfusion (basal ganglia motor circuit, hippocampus and
prefrontal area) or hyperperfusion (cerebellar-thalamic and
somatosensory regions). This altered CBF was apparent at a
presymptomatic stage (Wang et al., 2016).

While CBF is starting to emerge as a biomarker for HD,
mounting evidence supports the utilization of CBV as an
additional metric. Several studies have reported elevated CBV in
preHD patients (Hua et al., 2014; Liu et al., 2020). In addition,
there is evidence of increased CBV in cortical gray matter after
HD onset (Drouin-Ouellet et al., 2015), suggesting that arteriolar
CBV may be a sensitive biomarker for premanifest HD (Hua
et al., 2014; Liu et al., 2020). From these studies it was suggest
that imaging of CBF may be used to detect widespread functional
abnormalities in HD, and possibly predict HD symptoms onset
during premanifest stages.

Altered Blood-Brain Barrier and Angiogenesis in
Huntington’s Disease
Increases in vessel density, BBB permeability and VEGF-A
release were observed in HD patients and animal models of
HD (Steventon et al., 2020). There is evidence that BBB leakage
increases alongside disease progression (Drouin-Ouellet et al.,
2015). Despite these observations, there seems to be discrepancies
between mouse models of HD. For instance, the BACHD
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transgenic mice, a well-known model of HD expressing the full-
length mutant human HTT, failed to develop BBB breakdown
at 12 months of age despite robust motor deficits (Lin et al.,
2013; Mantovani et al., 2016). BBB dysfunction in HD patients
has been associated with decreased tight junction molecules
such as occludin and claudin-5 (Drouin-Ouellet et al., 2015).
Moreover, other markers associated with BBB permeability,
including hepatocyte growth factor, interleukin-8 and tissue
inhibitor of MMP-1, were found elevated in HD patients
(Drouin-Ouellet et al., 2015). A transgenic mouse model of HD
(R6/2 mice) confirmed elevated tight junction molecules similar
to HD patients. The R6/2 mouse model of HD is the most
commonly studied and harbors a mutant Htt with CAG repeat
expansion in exon 1 (Li et al., 2005). R6/2 mice also displayed
increased transcytosis and paracellular transport across the brain
endothelium compared to control mice (Drouin-Ouellet et al.,
2015). In R6/2 mice, tight junction imbalance and perturbed BBB
homeostasis were perceptible at very early stage of the disease, in
absence of symptoms (Di Pardo et al., 2017). At the structural
level, mHtt aggregates were found in the basal membrane of
cerebral blood vessels in HD patients (Drouin-Ouellet et al.,
2015). Interestingly, mHtt aggregates were localized in ECs,
smooth muscle cells and perivascular macrophages, consistent
with observations in R6/2 mice.

Further research is needed to determine BBB impairments
in preHD patients. Lim et al. (2017) reported that iPSCs-
derived brain microvascular endothelial cells (BMECs) from
HD patients exhibit increased angiogenesis and altered barrier
properties associated with elevated transcytosis and paracellular
permeability. An increased and unregulated angiogenic activity
may lead blood vessels to become more permeable with a
potential role in neurovascular dysfunction in HD. RNA-seq
analysis revealed a significant number of affected gene that
regulate both clathrin- and caveolin- mediated endocytosis,
which could lead to changes in endo- and transcytosis across
the brain endothelium. These genes include FABP4, DYNAMIN,
and FILAMIN that play a role in vesicle formation and scission.
In addition, higher levels of transcytosis-related genes such
as CAV1 was detected in HD iPSCs-derived BMECs that also
displayed impaired Wnt/β-catenin signaling (Lim et al., 2017).
The Wnt/β-catenin pathway is essential for regulation of cell
proliferation, cell determination and tissue homeostasis (Silva-
Garcia et al., 2019). Furthermore, astrocytes from both HD
patients and mouse models were associated with higher levels of
VEGF-A, which may trigger proliferation of ECs and contributes
to neurovascular changes in HD (Hsiao et al., 2015). Of note,
sustained delivery of VEGF into the rat striatum via injectable
hydrogels was neuroprotective in a lesioned model of HD;
VEGF implants significantly protected against the quinolinic
acid-induced loss of striatal neurons (Emerich et al., 2010).
Moreover, neuroprotection induced by inhibition of hypoxia
inducible factor (HIF) prolyl-4-hydroxylases in HD mice has
been correlated with enhanced VEGF expression (Niatsetskaya
et al., 2010). In post-mortem tissue, cerebral blood vessel density
was greater in HD patients while no differences in diameter
of small- or medium sized blood vessels have been observed
(Drouin-Ouellet et al., 2015). Post-mortem tissue of HD patients

revealed a higher proportion of small compared to medium-sized
blood vessels in the putamen, an effect occurring in parallel with
putamen degeneration. Notably, altered density of small blood
vessels in HD patients was consistent with the R6/2 mouse model
when brain vascular anomalies were restricted to smaller vessels
(Drouin-Ouellet et al., 2015; St-Amour et al., 2015).

Vascular Links to Parkinson’s Disease
PD is the second most common neurodegenerative disorder after
AD (Antony et al., 2013). It is characterized by the progressive
degeneration of the nigrostriatal system, resulting in rigidity,
bradykinesia, postural instability, and resting tremor (Antony
et al., 2013; Pagano et al., 2016). The most affected cells are
dopaminergic neurons from the substantia nigra pars compacta
(SNc). The pathological hallmark of PD is the formation of Lewy
bodies containing aggregated α-synuclein (Hijaz and Volpicelli-
Daley, 2020). While increasing age is a risk factor for PD,
the average age of onset is after 60 years old (Hindle, 2010;
Parkinson Canada, 2010). The etiology of PD is multifactorial
where genetics (familial PD) and environmental (sporadic PD)
factors take part in disease onset (Klein and Westenberger, 2012).
Familial PD accounts for 10–15% of all PD cases whereas the
remainder is classified as sporadic PD (Verstraeten et al., 2015).
Genetically linked PD is inherited in an autosomal dominant
or recessive fashion (Ball et al., 2019). Research has identified
seven causal genes for familial PD including phosphatase and
tensing homolog-induced Kinase-1 (PINK1), Parkinson protein
7 (PARK7), parkin RBR E3 ubiquitin protein ligase (PARK2),
vacuolar protein sorting-associated protein 35 (VPS35), alpha-
synuclein (SNCA), glucocerebrosidase (GBA) and leucine-rich
repeat Kinase 2 (LRRK2) (Verstraeten et al., 2015; Kalinderi et al.,
2016; Ball et al., 2019). Conversely, sporadic PD may develop
from gene-environment interactions (Benmoyal-Segal and Soreq,
2006). Environmental factors associated with PD includes but are
not limited to pesticides, heavy metals, and illicit drugs (Kwakye
et al., 2017). Notably, individuals may respond differently to
environmental factors which results in diverse symptomology of
PD, thus adding to the complexity of the disease (Ball et al., 2019).

Altered Cerebral Blood Flow in Parkinson’s Disease
Using non-invasive MRI in an heterogeneous PD patient
population, studies revealed decreased CBF in the frontal, parietal
and occipital areas, more specifically the posterior parieto-
occipital cortex, cuneus, middle frontal gyri, putamen, anterior
cingulate and post- and pre-central gyri (Kamagata et al., 2011;
Melzer et al., 2011; Fernandez-Seara et al., 2012; Madhyastha
et al., 2015). A study by Fernandez-Seara et al. (2012) reported
a 20–40% decrease in CBF in PD patients compared to a control
group. Studies are trying to determine if CBF changes are related
to the presence of dementia in PD, or if it can be considered as a
biomarker. Derejko et al. (2006) used SPECT in PD patients with
dementia and demonstrated left temporo-parietal hypoperfusion
compared to the group without dementia. This suggested
that CBF differences between PD patients with or without
dementia could represent a clinical biomarker for discriminating
PD patients (Derejko et al., 2006). Another study revealed
hypoperfusion in PD patients without dementia in posterior

Frontiers in Aging Neuroscience | www.frontiersin.org 11 October 2021 | Volume 13 | Article 749026

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-749026 October 13, 2021 Time: 15:39 # 12

Ouellette and Lacoste Cerebrovascular Disease Throughout Life

cortical regions (posterior cingulate/precuneus) compared to
healthy individuals (Syrimi et al., 2017). Hypoperfusion was
positively correlated with global cognitive performance and the
level of motor impairment (Madhyastha et al., 2015; Syrimi et al.,
2017). Melzer et al. (2011) and Fernandez-Seara et al. (2012)
reported CBF reduction with parietal cortex thinning in mild
PD patients without dementia and proposed that CBF alterations
occur in the early stages of PD.

Although studies have identified hypoperfusion in PD
patients, the mechanisms underlying these changes are unknown
(Biju et al., 2020). One study used a mouse model of PD
(α-synuclein transgenic mice), which overexpress human WT
α-synuclein. α-synuclein pathology develops before clinical
symptoms and is present in both sporadic and familial forms.
Using ASL-MRI analysis in this PD mouse model, authors
reported a 36.6% reduction in cortical CBF in mutant mice
accompanied by motor coordination impairments and olfactory
bulb atrophy/dysfunction (Biju et al., 2020).

Altered Blood-Brain Barrier and Angiogenesis in
Parkinson’s Disease
The association of PD with altered vascular function has led
studies to investigate possible players contributing to BBB (Al-
Bachari et al., 2020). In animal studies, BBB disruption in
the SNc has been reported (Barcia et al., 2005; Rite et al.,
2007; Chao et al., 2009). While human studies investigating
BBB in PD patients are sparse, there is evidence of BBB
dysfunction with increased permeability in the post commissural
putamen of PD patients (Kortekaas et al., 2005; Gray and
Woulfe, 2015). Wardlaw et al. (2008) and Al-Bachari et al.
(2020) revealed increased leakage of the BBB in PD using ASL
and dynamic contrast enhanced -MRI (DCE-MRI). Authors
compared PD patients with two other control groups: one
with and one without known cerebrovascular disease. This
comparison could determine if BBB changes are attributable
to co-existing cerebrovascular disease in an aging population,
or if a pattern of BBB alteration is specific to PD. Authors
reported increased BBB leakage in the group with cerebrovascular
disease compared to the group without cerebrovascular disease
in regions previously associated with PD, including the
substantia nigra, white matter, and posterior cortical regions
(Al-Bachari et al., 2020).

Accumulation of α-synuclein in ECs may also contribute to
BBB dysfunction and increased permeability (Elabi et al., 2021).
Higher number of EC nuclei was found in the SNc of PD patients
(Faucheux et al., 1999). Other EC dysfunctions were reported,
such as down regulation of tight junction proteins (Kuan
et al., 2016). In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) mouse model of PD, down-regulation of tight junction
protein ZO-1 and BBB leakage were measured in the substantia
nigra (Patel et al., 2011). There is also evidence of string vessel
formation in brain capillaries from human PD. String vessels are
described as collapsed basement membrane without endothelium
and no circulatory function. An altered basement membrane was
also observed in PD mice (Yang et al., 2015). VEGF, a prominent
growth factor promoting angiogenesis and BBB permeability,
was upregulated in the substantia nigra, but not the striatum, of

PD patients, while animal models of PD displayed parkinsonian
traits following administration of exogenous VEGF into the
substantia nigra (Barcia et al., 2005; Wada et al., 2006; Rite et al.,
2007).

Guan et al. (2013) reported vascular degeneration in human
PD, with formation of endothelial clusters, capillary network
damage, and loss of capillary connections in the substantia nigra
and brain stem nuclei. Authors found a larger vessel size in PD
patients, while capillaries were shorter in average length, less in
number and had fewer branches. These observations were also
confirmed in an MPTP mouse model of PD (Guan et al., 2013;
Sarkar et al., 2014). Furthermore, ultrastructural abnormalities
were identified in cerebro-cortical microvessels of PD patients,
including basement membrane thickening, vacuolization and
pericyte degradation (Farkas et al., 2000). Structural alterations
of the basement membrane can lead to pathophysiological
consequences including compromised nutrient transport and
cognitive disturbances (Farkas et al., 2000). Recently, a PD
mouse model of α-synuclein overexpression was associated with
altered vascular density at different stages of the disease (Elabi
et al., 2021). The study reported that 8 month-old animals
had increased vessel density compared to control mice, while
13 month-old PD mice displayed decreased vessel density,
suggesting compensatory angiogenesis in the younger group
(Elabi et al., 2021). Increased angiogenesis is considered an
adaptative response to pathological conditions and is regulated by
basement membrane proteins and their integrin receptors. These
studies postulate that immature nascent vessels in PD could
contribute to increased BBB permeability, as reviewed recently
(Bogale et al., 2021).

Vascular Links to Alzheimer’s Disease
AD accounts for 60–80% of all diagnoses of dementia
(Alzheimer’s Association, 2021). This progressive and debilitating
neurodegenerative disease manifests with memory, attention,
executive, visuospatial and perceptual impairments. AD is not
only characterized by amyloid deposition, neuroinflammation,
neurodegeneration and cognitive deficits, but also by
cerebrovascular pathology. Indeed, an inadequate brain
perfusion has been identified as an early event in the development
and progression of AD (Nicolakakis and Hamel, 2011). The risk
of developing AD is increased by age-associated vascular diseases
such as hypercholesterolemia, hypertension, ischemic stroke,
and diabetes (Kalaria, 1996; Roher et al., 2003; Casserly and
Topol, 2004; Gorelick, 2004; Luchsinger et al., 2005). The AD
brain is characterized by increased levels of soluble and insoluble
amyloid-beta peptide (Aβ), derived from the amyloid protein
precursor (APP), neurofibrillary tangles of hyperphosphorylated
tau protein, neurodegeneration and neuroinflammation, and also
linked with a cerebrovascular pathology (Selkoe, 2002; Iadecola,
2004; Querfurth and LaFerla, 2010). The latter is identified
post-mortem by Aβ deposition in brain vessels (cerebral amyloid
angiopathy, CAA), Aβ-induced oxidative stress, and alterations
of the vessel wall that included fibrosis and degeneration of ECs
(Buee et al., 1994; Vinters et al., 1994; Zarow et al., 1997; Farkas
and Luiten, 2001; Humpel and Marksteiner, 2005). Various
mouse models of AD have been developed, most mimicking
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the overproduction of Aβ through transgene expression of
mutated human APP (hAPP) combined or not with the
amyloidogenic presenilin (PS1) or the pathologic tau (Mucke
et al., 2000; Oddo et al., 2003; Gotz and Ittner, 2008). These
models recapitulate AD’s cerebrovascular pathology in addition
to the cognitive deficits, senile plaques, Aβ-induced oxidative
stress, neuroinflammation, cholinergic denervation, synaptic
failure, and cerebral hypometabolism (Hsia et al., 1999; Palop
et al., 2003; Aucoin et al., 2005; Tong et al., 2005; Nicolakakis
et al., 2008; Iturria-Medina et al., 2016; Love and Miners, 2016;
Liu et al., 2018; Czako et al., 2020). It is in fact estimated that
up to 45% of all dementias worldwide are partly, or wholly, due
to age-related SVD of the brain (Montagne et al., 2016; Clancy
et al., 2021). This suggests that AD and vascular dementia share
common grounds, which complicates their stratification. As
such, it is of utmost importance to improve our understanding
of vascular underpinnings of AD (Willis and Hakim, 2013).
Clinical studies that attempted to reduce plaque load by blocking
Aβ production, removing Aβ with antibodies, or preventing tau
phosphorylation, have all failed to alleviate AD symptoms (Korte
et al., 2020). However, mounting evidence demonstrates that
the brain vasculature is the missing link (Sweeney et al., 2019).
Early cerebrovascular dysfunction in AD leads to decreased
Aβ clearance, vascular oxidative stress, inflammatory damage
and impaired BBB function (Zlokovic, 2005). Here below
we will succinctly describe vascular underpinnings of AD,
from alterations in CBF to BBB dysfunction, topics that have
been extensively reviewed elsewhere (Bell and Zlokovic, 2009;
Zlokovic, 2011; Hamel, 2015; Hays et al., 2016; Nelson et al.,
2016; Kisler et al., 2017; Korte et al., 2020; Solis et al., 2020;
Soto-Rojas et al., 2021).

Cerebral Blood Flow Alterations in Alzheimer’s
Disease
Numerous investigations on individuals diagnosed with AD
observed reduced CBF (Prohovnik et al., 1988; Montaldi et al.,
1990; Bressi et al., 1992; O’Brien et al., 1992; Smith et al., 1992;
Minoshima et al., 1997; Mattsson et al., 2014; Mielke et al.,
2014; Smith and Verkman, 2018). CBF decline can be detected
prior to cognitive decline, but also before plaque deposition.
The accumulation of soluble Aβ prior to plaque deposition
has early pathogenic consequences in AD (Suo et al., 1998).
Studies have demonstrated increased levels of soluble amyloid
species including Aβ1−40 and Aβ1−42 in AD cases compared
to age-matched controls (Suo et al., 1998; Smith and Greenberg,
2009). Both soluble Aβ1−40 and Aβ1−42 have been associated to
abnormal vascular reactivity in the absence of plaque deposition
or vessel wall dysfunction (Smith and Greenberg, 2009; Dietrich
et al., 2010). In particular, studies have revealed that application
of exogenous Aβ1−40 to mouse neocortex in vivo, or to healthy
bovine blood vessels ex vivo, leads to endothelium-dependent
vasoconstriction (Thomas et al., 1996; Niwa et al., 2000). In
addition, increased levels of soluble amyloid species (Aβ1−40
and Aβ1−42) are associated with significantly reduced CBF,
increased cerebral vascular resistance, decrease myogenic and
vasodilator responses (Suo et al., 1998; Dietrich et al., 2010),
where Aβ1−42 is equally potent to Aβ1−40 except at a higher

concentration (Dietrich et al., 2010). Soluble Aβ impacts vascular
function through increased production of reactive oxygen
species (ROS). The reaction of ROS superoxide and excess NO
produces peroxynitrite. Peroxynitrite is commonly known as a
toxic oxidant which contributes to endothelial dysfunction, a
mechanism relevant to AD but also to other neuroinflammatory
and metabolic conditions (Beckman et al., 1990; Paris et al.,
1998; Tan et al., 2004; Dietrich et al., 2010; Kelleher and Soiza,
2013; Salisbury and Bronas, 2015; Incalza et al., 2018). Both
Aβ1−40 and Aβ1−42 have been shown to acutely increase ROS
production in cultured rat cerebral microvascular endothelial
and smooth muscle cells in a dose dependent manner (Dietrich
et al., 2010). Interestingly, this response was inhibited by the ROS
scavenger MnTBAP (Dietrich et al., 2010). Notably, Aβ1−40 is
the predominant isoform found in cerebral vessel walls and is
commonly associated with vascular deposits in CAA, which will
be discussed later, while Aβ1−42 is the major isoform deposited
in senile plaques (Suo et al., 1998). Although this concept is still
controversial, it is thought that Aβ1−42 acts as a “seed” which
initiates the formation of vascular Aβ deposit in CAA (McGowan
et al., 2005; Gireud-Goss et al., 2020).

Following Aβ deposition, reduction of CBF was found in
the frontal, parietal and temporal cortices from individuals
carrying Apolipoprotein E4 (APOE4) gene, most prevalent
genetic risk factor for AD (Thambisetty et al., 2010; Michels
et al., 2016). In addition, ApoE4 allele carriers displayed
early impairments in cerebrovascular reactivity to a memory
task (Suri et al., 2015). BOLD-fMRI, which uses blood flow
changes as a surrogate to neuronal activity, detected decreased
activation in areas engaged during naming and fluency tasks
in AD patients compared to individuals with no risk factors
(Smith et al., 1999). Decreased BOLD-fMRI responses to
different cognitive tasks in early stage of AD are region-specific
(Kisler et al., 2017). Most studies investigating perfusion in
AD reported either CBF or CBV alterations. However, CBF
alterations appear before CBV deficits during AD progression
(Lacalle-Aurioles et al., 2014).

Decreased CBF is associated with poor cognitive function,
and evidence suggested that lower CBF is linked with faster
cognitive decline in patients with AD (Benedictus et al., 2017).
Zheng et al. (2019) investigated rCBF, functional activity and
connectivity in AD by combining resting-state BOLD fMRI and
ASL techniques. ASL revealed decreased rCBF in AD patients in
the left posterior cingulate cortex, bilateral dorsolateral prefrontal
cortex, left interior parietal lobule, right middle temporal gyrus,
left middle occipital gyrus and left precuneus. In addition, they
revealed decreased connectivity between regions in AD patients,
which was associated with impaired cognitive performances
(Alsop et al., 2000; Zheng et al., 2019). Brain regions affected
by a reduction of CBF in AD patients (parietal, frontal,
temporal and occipital cortices) are associated with cognitive
impairment in all domains (language, global cognition, memory,
attention, executive functioning and visuospatial functioning)
(Leeuwis et al., 2017).

Blood flow reductions have also been identified in early
preclinical AD, before Aβ plaque deposition (Nicolakakis and
Hamel, 2011; Iturria-Medina et al., 2016; Szu and Obenaus, 2021).
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Early reduction of CBF has been reported in mouse models of
AD, such as mice overexpressing mutant forms of APP (Niwa
et al., 2002; Ongali et al., 2010; Lacoste et al., 2013) and in mice
expressing the ApoE4 gene allele (Lin et al., 2017). In some brain
areas, CBF reduction can reach over 50%. This CBF reduction
has been associated with cognitive changes in mice, including a
loss of ability to sustain attention (Marshall et al., 2001). Both
ApoE4 transgenic and APP/PS1 mice revealed CBF reduction
prior to neuronal and synaptic dysfunctions (Guo et al., 2019;
Montagne et al., 2021).

While decreased CBF in AD is widely accepted, studies are
only starting to identify underlying mechanisms, for example
the involvement of pericytes. Pericytes have been linked to
hypoperfusion and increased capillary constriction in AD (Bell
et al., 2010; Korte et al., 2020). Pericyte-deficient transgenic
mice with no Aβ pathology develop early CBF reduction in the
gray matter, even with normal neuronal activity, endothelial-
dependent vasodilation, astrocyte number and blood vessels
coverage (Bell et al., 2010; Kisler et al., 2017). As these pericyte-
deficient mice age, neuronal dysfunction and degeneration start
to emerge. Another underlying mechanism was reported by
Cruz Hernandez et al. (2019), demonstrating that capillaries
become blocked by neutrophils, while another study revealed
increased formation of occlusive thrombi in AD mice (Cortes-
Canteli et al., 2019). Inhibiting neutrophils adhesion using
an antibody against neutrophil-specific protein Ly6G in the
APP/PSI mouse model led to rapid improvements in CBF
(Cruz Hernandez et al., 2019). In a follow-up study, the same
group assessed the impact of one treatment of anti-Ly6G on
short-term memory function and reported increased CBF by
17% in 21–22 months old APP/PSI mice. Furthermore, they
suggested that increased CBF improved cognition into late
stages of AD mice (Bracko et al., 2020). Reduced neurovascular
coupling and cerebrovascular reactivity have also been reported
in AD mice (Girouard and Iadecola, 2006; Tong et al., 2019).
Recently, impaired capillary endothelial inward rectifying Kir2.1
channel, playing a role in mediating blood delivery, has been
associated with AD (Mughal et al., 2021). In a model of
familial AD (5xFAD) where Kir2.1 channel function is impaired,
systemic administration of the co-factor phosphatidylinositol
4,5-bisphosphate (PIP2), required for Kir2.1 activity, led to
increased CBF and functional neurovascular coupling in 5xFAD
mice (Mughal et al., 2021).

AD patients are often (80–90%) diagnosed with CAA, a
vessel disorder (Gireud-Goss et al., 2020) and an important risk
factor for intracerebral hemorrhage and cognitive impairment
(Reijmer et al., 2016). CAA consist of vascular amyloid deposits
similar to senile plaques in AD (Kumar-Singh et al., 2005).
Neuropathological studies have revealed that CAA affects the
outer leptomeningeal vessels on the surface of the brain
as well as distal intraparenchymal arteries, arterioles, and
capillaries (Gireud-Goss et al., 2020; Howe et al., 2020). APP23
mouse model and human AD brain revealed an association
between CAA-related capillary occlusion with CBF disturbances,
hypoperfusion, detected by magnetic resonance angiopathy
(MRA), which could explain in part the changes in CBF measured
in AD patients (Thal et al., 2009; Milner et al., 2014). As in AD,

patients with CAA have been linked to altered hemodynamics
during visual stimulation as evidenced by reduced amplitude
of BOLD response (Smith et al., 2008; Dumas et al., 2012;
Switzer et al., 2020).

Altered Blood-Brain Barrier and Angiogenesis in
Alzheimer’s Disease
Early signs of BBB leakage in AD have been detected
before dementia onset (Montagne et al., 2016). Neuroimaging
techniques have evidenced BBB breakdown in AD in gray and
white matter brain regions (Montagne et al., 2016; van de Haar
et al., 2016). Aβ and tau pathologies contribute to increased
BBB permeability in AD patients and mouse models (Park et al.,
2011; Sagare et al., 2013; Alata et al., 2015). Several players
involved in Aβ clearance, and closely related to the BBB, are
reduced in AD patients, including phosphatidylinositol-binding
clathrin assembly protein (PICALM, allows for Aβ exocytosis
across the luminal part of the BBB), P-glycoprotein (expressed
on both sided of the BBB) and glucose transporter (GLUT)1
(Mooradian et al., 1997; Chiu et al., 2015; Zhao et al., 2015). AD
brain microvessel show diminished expression of LRP1, a major
Aβ clearance receptor at the BBB (Deane et al., 2004; Donahue
et al., 2006). LRP1 is an ApoE receptor and is expressed at the
abluminal side of brain ECs and mediates the internalization of
soluble Aβ (Deane et al., 2004). Endothelium-specific deletion
of LRP1 leads to the acceleration of Aβ pathology in APP-
overexpressing APPsw/0 mice (Storck et al., 2016). Moreover,
studies have demonstrated low levels of GLUT1 in AD brain
endothelium, which alters glucose transport (Kalaria and Harik,
1989; Simpson et al., 1994).

Several features lead to increased BBB permeability in AD,
including reduced expression of tight junctions, perivascular
accumulation of blood-derived products, degeneration of
pericytes and ECs, as well as infiltration of circulating
leukocytes (Sweeney et al., 2018; Huang et al., 2020). It was
demonstrated that Aβ disrupts tight junctions and increases
vascular permeability by suppressing expression of ZO-1,
claudin-5 and occludin while increasing expression of MMP-2
and MMP-9 (Kook et al., 2012; Blair et al., 2015; Wan et al., 2015;
Huang et al., 2020). Isolated rat cerebral cortical ECs treated
with Aβ1−42 displayed decreased expression of occludin and
redistribution of claudin-5 and ZO-2 in the cytoplasm while
in untreated cells, both claudin-5 and ZO-2 were distributed
along the plasma membrane at cell-cell contacts (Marco and
Skaper, 2006). In addition, studies have reported leakage of
blood-derived proteins (fibrinogen, thrombin, albumin, and
IgG) around capillaries from post-mortem brain tissue in the
prefrontal and entorhinal cortex as well as in hippocampus of
AD patients (Ryu and McLarnon, 2009; Hultman et al., 2013;
Sengillo et al., 2013). Furthermore, animal studies revealed
that lacking pericyte-derived soluble factors, required for a
healthy endothelium, can contribute to endothelial degeneration
in AD (Bell et al., 2010). Finally, mouse models of AD have
demonstrated that pericyte reduction is associated with BBB
dysfunction as well as accelerated buildup of Aβ and tau
pathology (Sagare et al., 2013). In human studies, there is also
evidence of pericyte loss in the hippocampus and cortex of AD
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patients due in part to prolonged exposure to Aβ peptides (Sagare
et al., 2013; Sengillo et al., 2013; Huang et al., 2020). Of note,
pericytes play a role in Aβ clearance by internalizing different Aβ

peptides using the LRP1 pathway (Sagare et al., 2013).
Evidence of reduced capillary length and basement membrane

changes in AD patients have been reported (Salloway et al.,
2002; Sengillo et al., 2013; Halliday et al., 2016). It was shown
that AD patients display abnormal angiogenesis due to low
expression of MEOX2, a regulator of vascular differentiation,
as well as premature pruning of capillary networks resulting in
reductions of CBF (Wu et al., 2005; Grammas, 2011). Endothelial
degeneration including reduction of EC thickness, length and
density of blood vessels were reported in brain tissue from AD
patients (Sweeney et al., 2018). An increase of pro-angiogenic
factors in the AD brain, without the increase in vasculature,
was also reported (Grammas, 2011). Notably, the increased
Aβ species and plaques in AD have anti-angiogenic effects
(Parodi-Rullan et al., 2020), and impaired angiogenesis was
identified in transgenic AD mice (Grammas, 2011). Emerging
evidence suggest that dysfunction of the VEGF-A/VEGFR2
pathway may play an aggravating role in neurodegeneration
and AD. For instance, sustained brain delivery of VEGF via
injectable hydrogels was protective against quinolinic acid-
induced neurodegeneration (Emerich et al., 2010), and low VEGF
levels have been associated to another debilitating neurological
disorder, spinocerebellar ataxia type 1 (Cvetanovic et al., 2011).
Aβ acts as an antagonist of VEGF signaling via sequestration
of VEGF-A in senile plaques, and also via inhibition of
VEGFR2 tyrosine phosphorylation (Patel et al., 2010). Moreover,
implantation of VEGF secreting microcapsules on the cerebral
cortex of APP/PS1 mice attenuated both brain Aβ burden and
cognitive impairments (Spuch et al., 2010). Whether impaired
neural perfusion and increased neurotoxicity in AD correlate to
a loss of VEGF function, and whether VEGF overexpression is
neuroprotective in transgenic AD mice remains to be explored.

CAA is associated with increased BBB permeability and
arterial stiffness (Magaki et al., 2018; Gireud-Goss et al.,
2020). Aβ deposition in CAA has been found to occur on
the cerebrovascular basement membrane of arteries, arterioles
and on the basal lamina of capillaries as shown by electron
microscopy (Gireud-Goss et al., 2020). Moreover, ultrastructural
studies of CAA demonstrated a thinned endothelium, shrinkage
and degeneration of ECs, as well as vessel occlusion, all of which
can lead to CBF disturbances and microinfarcts (Attems and
Jellinger, 2004; Thal et al., 2009; Magaki et al., 2018). Tight
junction proteins in CAA-laden vessels are found decreased
(Tai et al., 2010). After exposure to exogenous Aβ, human ECs
showed decreased expression of occludin, while post-mortem
brain tissue of CAA patients revealed decreased expression
of claudin-5, ZO-1, CD31 and basement protein collagen IV
(Tai et al., 2010; Carrano et al., 2011; Magaki et al., 2018).
In addition, CAA patients displayed increased expression of
MMP-2 and MMP-9, which may lead to basement membrane
degradation and increased BBB permeability (Carrano et al.,
2011). In the Tg2576 mouse model of CAA, BBB integrity
was compromised due to decreased expression of claudin-5
and claudin-1 (Carrano et al., 2011). Moreover, TgSwDI mice,

another model of CAA, revealed spontaneous hemorrhage and
loss of BBB integrity (Davis et al., 2004). Soluble Aβ1−40,
predominant amyloid isoform in vessel walls, also leads to tight
junction redistribution at the BBB and decreased transendothelial
electric resistance (Hartz et al., 2012; Gireud-Goss et al., 2020).
Understanding the impact of Aβ in CAA and AD is essential for
slowing cerebrovascular disease progression.

ADDITIONAL REMARKS: VASCULAR
DEFICITS IN DOWN SYNDROME,
TRAUMATIC BRAIN INJURY AND
DEPRESSION

In addition to neurodevelopmental disorders discussed earlier in
this review, Down syndrome (DS), which results from trisomy
of human chromosome 21, is a cause of early onset Alzheimer’s
disease-dementia (AD-DS) (Ballard et al., 2016; Tosh et al., 2021).
Two-thirds of individuals with DS will develop dementia by the
age of 65 (Tosh et al., 2021). The onset of AD in DS patients
parallels the development of the classic brain pathological lesions
seen in AD patients without DS (Salehi et al., 2016). DS and
AD disorders have genetic similarities, as individuals with DS
possess a triplication of the gene encoding APP, while patients
with familial AD have an extra copy of the APP gene (Salehi et al.,
2016). In rodent studies of DS-AD, triplication of chromosome
21 genes other than APP demonstrated increased Aβ aggregation
deposition and cognitive deficits (Wiseman et al., 2018). A recent
study, focused on a model of DS comprising of a mutation in
a Down syndrome critical region (Hsa21) on chromosome 21
encompassing 21q21–21q22.3 (Li et al., 2016; Tosh et al., 2021).
This study crossed an Hsa21 mouse model of DS with partial
trisomies other than APP with a transgenic APP mouse model
and revealed that an additional copy of genes of the Hsa21
region modulates APP/Aβ biology, including Aβ aggregation
and mortality (Tosh et al., 2021). Despite striking similarities
between AD and DS in terms of genetics and symptoms onset,
neurovascular impairments in DS have been largely overlooked.
As such, studies aimed at elucidating vascular abnormalities in
DS represent an unmet clinical need.

Early vascular insults following a traumatic brain injury (TBI)
can also increase the risk of late-onset neurological diseases
(Brett et al., 2021). TBI is a significant public health problem
associated with long-term disabilities. Early chronic TBI may lead
to secondary injury with pathophysiological changes similar to
those observed in neurodegenerative diseases (Impellizzeri et al.,
2016). For instance, neuroinflammation plays a fundamental
role in TBI, including reactive microglia and astrocytes, as
well as release of pro-inflammatory cytokines and chemokines
that may hinder the brain’s ability to repair itself and lead
to neurodegeneration following prolonged activation of these
processes (Impellizzeri et al., 2016; Brett et al., 2021). Severe or
repeated mild TBI can initiate long-term neurodegeneration with
signs of AD (Mendez, 2017). For example, various contact-sport
players developed TBI-associated dementia or parkinsonism
years after retiring. TBI can induce acute BBB disruption through
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TABLE 1 | Major altered features associated with CBF, BBB, and angiogenesis in neurodevelopmental and neurodegenerative disorders.

Disorder Key features Selected references

ASD

Altered CBF – Widespread cerebral hypoperfusion in 75% of ASD children
associated with language deficits, impaired executive function and
abnormal response to sensory stimuli.

– Hyperperfusion identified in frontotemporal regions.
– Reduced hemodynamic responses.
– Cerebral hypoperfusion also identified in rodent models of ASD.
– Increased resting CBF and decreased NVC in an adult mouse

model of ASD associated with endothelial dysfunction.

Ohnishi et al., 2000; Zilbovicius et al., 2000; Burroni
et al., 2008; Reynell and Harris, 2013; Jann et al.,
2015; Ouellette et al., 2020; Uratani et al., 2019

Altered BBB and angiogenesis – Reduced level of adhesion molecules (CD31 and P-selectin).
– Increased MMP-9 which regulates cell proliferation, adhesion,

angiogenesis, oxidative injury and BBB breakdown.
– Altered expression of claudin-5 and claudin-12.
– Increased BBB permeability and impaired angiogenesis in animal

models.
– Reduced angiogenesis found in a mouse model of ASD.

Onore et al., 2012; Kumar et al., 2015; Azmitia et al.,
2016; Fiorentino et al., 2016; Turner and Sharp, 2016;
Ouellette et al., 2020

Schizophrenia

Altered CBF – Increased CBF in the cingulate gyrus and superior frontal gyrus
associated with positive symptoms.

– Negative symptoms associated with hypoperfusion in the superior
temporal gyrus bilaterally and left middle frontal gyrus.

– rCBF alterations depend on severity of positive symptoms.
– Increased CBF in the right superior temporal gyrus and caudate

nucleus.
– Decreased CBF in the occipital and left parietal cortices.
– Altered NVC including reduced amplitude of response and delayed

hemodynamics.

Sabri et al., 1997; Carter et al., 2001; Schultz et al.,
2002; Malaspina et al., 2004; Ford et al., 2005;
Pinkham et al., 2011; Liu et al., 2012; Kawakami et al.,
2014; Pu et al., 2016; Zhuo et al., 2017

Altered BBB and angiogenesis – Increased BBB permeability.
– Thickening and deformation of basal lamina, vacuolation of EC

cytoplasm, swelling of astrocyte end-feet, activation of microglial
cells and atypical vascular arborization in prefrontal and visual
cortices.

– Decreased claudin-5 expression, altered level of VE-cadherin and
occludin in ECs.

– Impaired angiogenesis and VEGF upregulation in the prefrontal
cortex linked to vascular hyperpermeability.

Grove et al., 2015; Hino et al., 2016; Casas et al.,
2018; Carrier et al., 2020; Cai et al., 2020; Guo et al.,
2020; Crockett et al., 2021; Usta et al., 2021

MS

Altered CBF – Hypoperfusion in SP-MS, RR-MS and PP-MS patients.
– Active demyelinating lesions associated with hyperperfusion and

stable lesions linked to hypoperfusion.
– CBF alterations present in early stages of disease.
– Impaired cerebral vascular reactivity leads to neuronal death.
– Overproduction of NO desensitize EC and smooth muscle cell

function, leading to decreased vasodilatory capacity and limited
blood supply to neurons.

Ge et al., 2005; Varga et al., 2009; D’Haeseleer et al.,
2011; Ota et al., 2013; Marshall et al., 2014; Bester
et al., 2015; Monti et al., 2018; Hostenbach et al., 2019

Altered BBB and angiogenesis – BBB hyperpermeability.
– Decreased expression of TJ proteins (ZO-1, occludin and claudin-5)

in ECs in patients with active and inactive lesions.
– Rodent model of MS show increased expression of VEGF in ECs,

astrocytes and monocytes.
– Increased vascular network density and angiogenesis.

Kirk et al., 2003; Bennett et al., 2010; Holley et al.,
2010; Cramer et al., 2014; Girolamo et al., 2014;
Papadaki et al., 2014

HD

Altered CBF – Altered CBF prior to structural changes and motor symptoms.
– Cerebral hypoperfusion in the basal ganglia, medial and lateral

prefrontal cortex.
– Cerebral hyperperfusion in the cerebellar-thalamic and

somatosensory regions.
– Altered neurovascular coupling during visual stimulation.

Hasselbalch et al., 1992; Sax et al., 1996; Deckel and
Duffy, 2000; Wang et al., 2016; Klinkmueller et al., 2021

(Continued)
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TABLE 1 | (Continued)

Disorder Key features Selected references

Altered BBB and angiogenesis – Increased vessel density, BBB leakage and VEGF-A release.
– Decreased TJ molecules including occludin and claudin-5.
– Rodent model of HD revealed increased transcytosis and

paracellular transport in brain ECs with TJ imbalance.
– mHtt aggregates localized in ECs, smooth muscle cells and

perivascular macrophages.
– iPSCs-derived HD BMECs show increased angiogenesis, altered

barrier properties and impaired Wnt/β-catenin signaling.

Steventon et al., 2020; Drouin-Ouellet et al., 2015; Di
Pardo et al., 2017; Lim et al., 2017

PD

Altered CBF – Decreased CBF in frontal, parietal and occipital areas.
– PD patients with dementia show left temporo-parietal

hypoperfusion.
– PD patients without dementia display hypoperfusion in the posterior

cortical regions.
– Hypoperfusion is positively correlated with cognitive performance

and motor impairment.

Derejko et al., 2006; Kamagata et al., 2011;
Fernandez-Seara et al., 2012; Madhyastha et al., 2015;
Syrimi et al., 2017

Altered BBB and angiogenesis – BBB disruption in the SNc with increased permeability in the
post-commissural putamen.

– Down regulation of TJ proteins (ZO-1) and higher number of EC
nuclei in the SNc.

– String vessel formation in brain capillary networks.
– Upregulation of VEGF, and parkinsonian traits following VEGF

administration in rodent models.
– Formation of endothelial clusters, capillary network damage, loss of

capillary connections in the SN, basement membrane thickening,
vacuolization, and pericyte degradation.

Farkas et al., 2000; Barcia et al., 2005; Kortekaas et al.,
2005; Wada et al., 2006; Rite et al., 2007; Chao et al.,
2009; Patel et al., 2011; Guan et al., 2013; Yang et al.,
2015; Kuan et al., 2016

AD

Altered CBF – Reduced CBF prior to cognitive decline and plaque deposition.
– Soluble Aβ1−40 and Aβ1−42 are associated with abnormal vascular

reactivity and decreased myogenic responses in absence of plaque
deposition.

– Hypoperfusion detected following Aβ deposition in the frontal,
parietal and temporal cortices and poor cognitive function.

– BOLD-fMRI detected decreased activation in regions involved in
naming and fluency tasks.

– Hypoperfusion identified in rodent models overexpressing mutant
forms of APP.

– Rodent models show reduced NVC and cerebrovascular reactivity.
– Parallel diagnosis of CAA linked with altered hemodynamics,

capillary occlusion and hypoperfusion.

Montaldi et al., 1990; Bressi et al., 1992; Smith et al.,
1999; Marshall et al., 2001; Girouard and Iadecola,
2006; Smith and Greenberg, 2009; Dietrich et al.,
2010; Ongali et al., 2010; Dumas et al., 2012; Lacoste
et al., 2013; Mattsson et al., 2014; Milner et al., 2014;
Benedictus et al., 2017; Smith and Verkman, 2018

Altered BBB and angiogenesis – Aβ and tau pathologies contribute to BBB breakdown, reduced
expression of TJ (ZO-1, claudin-5, occludin) and degeneration of
pericytes and ECs.

– Brain microvessel with diminished expression of LRP1.
– Reduced level of GLUT1 in brain endothelium.
– Reduced capillary length with basement membrane alterations.
– Abnormal angiogenesis related to low expression of MEOX2.
– Reduced EC thickness, and lower length/density of blood vessels.
– Dysfunction of the VEGF-A/VEGFR2 pathway aggravates

neurodegeneration.
– Rodent models show pericyte loss.
– Aβ deposition in CAA linked to decreased TJ proteins, increased

expression of MMP-2 and MMP-9, thinned endothelium,
degeneration of ECs and leaky BBB.

Kalaria and Harik, 1989; Simpson et al., 1994; Emerich
et al., 2010; Tai et al., 2010; Grammas, 2011; Carrano
et al., 2011; Sagare et al., 2013; Halliday et al., 2016;
Montagne et al., 2016; van de Haar et al., 2016; Magaki
et al., 2018; Sweeney et al., 2018; Huang et al., 2020

Selected references are displayed. Aβ, β-amyloid peptide; AD, Alzheimer’s disease; APP, amyloid precursor protein; ASD, autism spectrum disorders; BBB, blood
brain barrier; BMECs, brain microvascular endothelial cells; BOLD-FMRI, blood oxygen level dependent imaging-functional magnetic resonance imaging; CAA, cerebral
amyloid angiopathy; CBF, cerebral blood flow; ECs, endothelial cells; GLUT1, glucose transporter 1; HD, Huntington’s disease; iPSC, induced pluripotent stem cells;
LRP1, low-density lipoprotein receptor-related protein 1; MEOX2, Mesenchyme Homeobox 2; mHtt, mutant huntingtin; MMP, matrix metalloproteinases; MS, multiple
sclerosis; NO, nitric oxide; NVC, neurovascular coupling; PD, Parkinson’s disease; PP-MS, primary progressive-multiple sclerosis; rCBF, regional cerebral blood flow;
RR-MS, relapsing remitting-multiple sclerosis; SN, substantia nigra; SNc, substantia nigra pars compacta; SP-MS, secondary progressive-multiple sclerosis; TJ, tight
junctions; VE-cadherin, vascular endothelial cadherin; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; Wnt/β-catenin,
Wingless-related integration site β- catenin; ZO-1, Zonula occludens-1.
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vascular shear stress, hemorrhages, edema, alterations in CBF
and chronic inflammation, which is known to contribute to
Aβ deposition and tau pathology (Iadecola, 2013; De Silva and
Faraci, 2016). Autopsies of TBI patients show diffuse Aβ plaques
similar to those identified in AD, as reviewed by Perry et al.
(2016). The formation of Aβ in perivascular spaces following
TBI may lead to an injury cascade consisting of cerebrovascular
damage, oxidative stress and ECs dysfunction (Ramos-Cejudo
et al., 2018). Interestingly, alterations in EC survival, BBB
integrity and neuroinflammation are considered early events
after TBI, all of which are characteristic of cerebrovascular
damage involved in the progression of AD and impairment of
Aβ clearance. Thus, these early vascular impairments promote
the onset of neurodegenerative diseases (Ramos-Cejudo et al.,
2018). Considering early vascular injuries in TBI, biomarker
studies are integrating a variety of neuroimaging and molecular
techniques to better understand the incidence of cerebrovascular
dysfunction and the onset of neurodegenerative diseases, and
therapeutic investigations have looked at ways to improve
cerebrovascular function (Graham and Sharp, 2019; Martinez
and Stabenfeldt, 2019).

One of the leading causes of mental illness worldwide,
depression, has a tremendous impact on psychosocial behaviors
and vascular health (Knight and Baune, 2017; Menard et al.,
2017). Chronic stress is the primary environmental risk factor
for depression. The nucleus accumbens (NAc) is one of
the main players in regulating stress response (Russo and
Nestler, 2013). Menard et al. (2017) have demonstrated that
chronic social stress induces BBB leakiness in the NAc of
mice, which leads to circulating proinflammatory mediators
and depression-like behaviors such as helplessness, social
avoidance and anhedonia. As seen in neurodevelopmental and
neurodegenerative disorders, the increase in BBB permeability
in the rodent model of chronic social stress was facilitated
by the loss of tight junction protein claudin-5 (Menard
et al., 2017). Furthermore, stress-induced BBB permeability
has been linked to inflammation of the endothelium and
up-regulation of an epigenetic repressor, hdac1, which is
involved in reducing claudin-5 expression and loosening of
tight junctions (Dudek et al., 2020). Consequently, these studies
are highlighting mechanisms by which chronic stress impacts
vascular health, which could have long-term consequences on
brain maturation and aging.

The vascular system, as any other system, undergoes aging. It
has been hypothesized that vascular aging leads to a progressive
functional deterioration (Grunewald et al., 2021). During aging,
the brain vasculature undergoes several changes including
decreased capillary density, attenuation of neovascularization
potential, increased BBB permeability and decreased CBF as
reviewed in Watanabe et al. (2020) and Banks et al. (2021).
A suggested mechanism of typical vascular aging consist of
the inability of VEGF to replenish vessel loss. The mechanisms
by which VEGF is involved in vascular aging are unknown.
However, mice treated with VEGF have been shown to live
longer, with extended multiorgan functionality (Grunewald
et al., 2021). Furthermore, aging is associated with several
vascular changes including aortic stiffness which has been

linked to reduced blood flow in tissues leading to increased
neuroinflammation and neurodegeneration later in life (Moore
et al., 2021). Therefore, age-related changes in key vascular
features may predispose to age-associated diseases (Banks et al.,
2021). Improving early pathological conditions by protecting
the brain vasculature is essential in preventing or modulating
disease progression.

CONCLUSION

Vascular risk factors and co-morbidities take part in disease
onset and/or exacerbate disease progression (Sweeney et al.,
2018; Clancy et al., 2021). When it comes to alterations
in CBF, BBB, and vascular patterning, neurodevelopmental
and neurodegenerative disorders share interesting similarities
(Table 1). While these disorders are siloed, mainly due to the
age of onset, the commonalities in vascular alterations force
to question the implication of early life vascular impairments
on the expression of age-related neurodegenerative diseases.
The vascular implications in middle-aged autistic adults have
been largely overlooked, 10% of individuals diagnosed with
ASD age between 40 and 60 years old will develop dementia,
including AD within 15 years (Plana-Ripoll et al., 2019). In
addition, there is a high frequency of parkinsonism among
older ASD patients (Starkstein et al., 2015). The impact
of altered brain perfusion and BBB integrity in ASD may
contribute to the onset of neurodegenerative diseases due to
the continuous vascular impairments associated with these
diseases. Likewise, schizophrenia is associated with an elevated
risk for developing Alzheimer’s and Parkinson’s diseases as they
share core features including white matter abnormalities and
cognitive deficits (Ribe et al., 2015; Kochunov et al., 2021;
Kuusimaki et al., 2021).

Since fast-growing evidence demonstrates the role of early
vascular impairments in the onset and/or progression of
numerous neurological conditions, more work is needed to
identify therapeutic targets to promote healthy cerebrovascular
maturation and aging, as well as hinder the progression of
age-related dementia and neurodegeneration. This is primordial
considering recent findings that ECs show limited turnover
compared to other cells in the human body (Sender and Milo,
2021). For instance, it was estimated that the turnover rate
of ECs is 0.1% per day, as opposed to much higher rates
for erythrocytes (65%), neutrophils (18%) or gastrointestinal
epithelial cells (12%). In addition, the turnover rates of cellular
mass in the human body were estimated at 0.4% for ECs, 4% for
skin cells and adipocytes, and 42% for gastrointestinal epithelial
cells (Sender and Milo, 2021). Hence, as ECs are long-lived,
they may carry on early structural and functional impairments
into adulthood and throughout aging, altering organ function
in the long term. This concept emphasizes the importance
of infant screening for cerebrovascular abnormalities, and of
continuous management of vascular risk factors during lifespan.
As such, the vascular continuum between neurodevelopmental
and neurodegenerative disease should represent a growing focus
in modern neuroscience (Figure 3).
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