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ABSTRACT

Recent efforts aimed at integrating in vitro high-throughput screening (HTS) data into chemical toxicity assessments are
necessitating increased understanding of concordance between chemical-induced responses observed in vitro versus in vivo.
This investigation set out to (1) measure concordance between in vitro HTS data and transcriptomic responses observed
in vivo, focusing on the liver, and (2) identify attributes that can influence concordance. Signal response profiles from 130
substances were compared between in vitro data produced through Tox21 and liver transcriptomic data through
DrugMatrix, collected from rats exposed to a chemical for �5 days. A global in vitro-to-in vivo comparative analysis based on
pathway-level responses resulted in an overall average percent agreement of 79%, ranging on a per-chemical basis between
41% and 100%. Whereas concordance amongst inactive chemicals was high (89%), concordance amongst chemicals
showing in vitro activity was only 13%, suggesting that follow-up in vivo and/or orthogonal in vitro assays would improve
interpretations of in vitro activity. Attributes identified to influence concordance included experimental design attributes
(eg, cell type), target pathways, and physicochemical properties (eg, logP). The attribute that most consistently increased
concordance was dose applicability, evaluated by filtering for experimental doses administered to rats that were within 10-
fold of those related to likely bioactivity, derived using Tox21 data and high-throughput toxicokinetic modeling. Together,
findings suggest that in vitro screening approaches to predict in vivo toxicity are viable particularly when certain attributes
are considered, including whether activity versus inactivity is observed, experimental design, chemical properties, and dose
applicability.
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A great deal of discussion within the toxicology community fo-
cuses on the need to adapt existing toxicity testing paradigms
to decrease reliance upon traditional animal testing and in-
crease reliance upon alternative methods, including in vitro
high-throughput screening (HTS) and predictive toxicology
based on computational approaches. This dialog is reflected in
recent conference sessions and workshops (eg, Society of
Toxicology [SOT] FutureTox meeting series [I/II/III] [SOT, 2017])
and reports by the National Academy of Sciences (NAS, 2007,
2017), with many international organizations dedicated to the
advancement of alternative toxicological methods. The high
number of chemicals for which little or no toxicological infor-
mation is available necessitates testing strategies that move to-
ward alternative methods that are economically efficient,
maintain requisite underlying biology, and result in decreased
animal testing. The development of in vitro HTS assays has the
potential to address, in part, these posed challenges. With this
development comes the necessary task of confirming/validating
that toxicity responses observed in vitro can be used to predict
in vivo toxicity.

In vitro HTS assays represent automated methods that allow
for the rapid testing of select bioactivities at the molecular- or
cellular-level across a large number of chemicals (EPA, 2018).
The models being used in HTS assays range from a monolayer
of cells to individual proteins, all of which are manipulated and
carried out by robotics. These HTS methods are used to detect
chemical-induced changes in bioactivity based on various ex-
perimental endpoints, including antibody binding, cytotoxicity,
mitochondrial membrane potential, reporter gene transcription,
etc. Results from these screening efforts can identify com-
pounds that modulate specific biological pathways, which then
enhances the understanding of biochemical interactions or the
potential roles of a compound in biological processes (EPA,
2018). The utility of in vitro HTS assay toward predicting bio-
chemical interactions/changes in biological processes in vivo
remains under discussion largely due to the simpler nature of
the biology captured by HTS assays (NAS, 2017). It is therefore
important to understand which types of in vitro endpoints, de-
rived under specific experimental conditions, are better suited
to predict or inform select mechanisms of in vivo toxicity.

Previous studies have evaluated in vitro-to-in vivo (ie, in vitro-
in vivo) response concordance with varied results. A cancer-
related concordance study found an association between rodent
hepatic liver lesions and human nuclear receptor-based assays
(Shah et al., 2011); whereas two studies using in vitro bioactivity
data found poor prediction of cancer in rodents (Cox et al., 2016)
and for cancer hazard classification (Becker et al., 2017). Non-
cancer biological endpoints have also been evaluated for re-
sponse concordance. For instance, in vitro HTS response profiles
have been shown to correlate with in vivo developmental toxic-
ity endpoints (Sipes et al., 2011) and have shown strong bioactiv-
ity across chemicals with known male reproductive
developmental phenotypes (Leung et al., 2016). Combining
in vitro HTS data with chemical structure descriptors has shown
utility in predicting liver lesions (Liu et al., 2015) and other
organ-specific outcomes (Liu et al., 2017). Another study found
that in vitro HTS data were no better at predicting in vivo toxicity
than chemical descriptors alone (Thomas et al., 2012). Clearly,
mixed results have been generated comparing in vitro HTS data
to in vivo toxicity, demonstrating that further research is needed
on this topic.

The majority of studies evaluating in vitro-in vivo response
concordance, to date, have compared relatively simple biologi-
cal assays to apical responses based on complex biological

states or diseases. To place these comparisons in the context of
adverse outcome pathways (AOPs) (Browne et al., 2017), analy-
ses have largely compared in vitro molecular interactions (eg,
molecular initiating events) against in vivo organ responses,
whereas bypassing cellular response event(s) (ie, key events).
This gap from in vitro molecular interactions to alterations in
pathology may be so wide as to render such comparisons diffi-
cult, and at times, unfeasible with limited data. Instead, it may
be more reasonable to carry out comparisons at molecular and
cellular response levels. Indeed, a recent study found that tran-
scriptomic responses evaluated at the pathway-level (repre-
senting a cellular response) showed similarities within in vitro
mouse, rat, and human hepatocytes; in vivo mouse and rat liver;
and in vivo zebrafish embryos (Driessen et al., 2015). Similarly,
we recently compared Tox21 HTS assay data to in vivo transcrip-
tomic responses at the pathway-level in the mouse intestine us-
ing hexavalent chromium as a case study (Rager et al., 2017). A
comparison of these molecular/cellular responses showed both
similar and different signaling profiles between datasets, sug-
gesting that there may be domains of applicability in using HTS
data to inform in vivo toxicity (Rager et al., 2017). This study
therefore set out to expand upon these more mechanistic-based
comparative strategies by evaluating in vitro HTS assay targets
(representing molecular interactions) against their associated
pathway alterations (representing cellular responses) using an
expanded in vivo transcriptomic database.

Here, we present a comparison between chemical responses
within the Tox21 HTS database and liver transcriptomic data
available through the DrugMatrix database, as evaluated at the
pathway-level. The liver was selected as the organ of interest,
as it represents the most common target organ in animal toxic-
ity studies (Ballet, 1997). Overall in vitro-in vivo concordance was
first evaluated for 130 chemicals, and then attributes that po-
tentially influence concordance were assessed. These attributes
included specific design aspects of in vitro assays and in vivo ex-
perimentation, pathway targets, chemical-specific attributes
(ie, physicochemical properties), and the applicability of chemi-
cal doses used for in vivo-in vitro comparisons. Findings provide
increased understanding of the potential ranges of applicability
for the use of in vitro assay data to predict or provide mechanis-
tic context for in vivo toxicity responses.

MATERIALS AND METHODS

Organization of Tox21 in vitro HTS bioactivity data. An overview of
the steps used to organize data from Tox21 and DrugMatrix are
provided in Figure 1. The Tox21 in vitro HTS database is orga-
nized by multiple agencies, including the National Toxicology
Program (NTP), aimed at developing and making publicly avail-
able in vitro HTS assay data from large chemical toxicity screens
(Hsieh et al., 2015; NTP, 2017b). Tox21 assay data currently con-
sist of 43 in vitro assay endpoints tested across >10 000 chemi-
cals, ranging from environmental and industrial chemicals to
pharmaceutical agents (Hsieh et al., 2015). Tox21 data were
obtained through the NTP Tox21 activity profiler (NTP, 2017b)
for chemicals that were also within the DrugMatrix database.
Data were downloaded based on chemical CASRN using default
parameters, with the additional selections to download all
available activity data, which allowed for the selection of
parameters required to distinguish between inactive/active ver-
sus inconsistent/flagged bioactivity results. Data were specifi-
cally filtered to exclude failed purity testing and assay endpoint
data that were flagged based on ‘autofluorescent,’ ‘cytotoxicity,’
‘not_supported_by_ch2,’ ‘not_tested,’ and ‘weaknoisy_in_rep.’
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These filters resulted in data that met suggested processing
standards, as previously defined (Hsieh, 2016; Hsieh et al.,
2015), that accounted for important interferences, including
the cytotoxicity burst interference phenomenon (Judson et al.,
2016).

Assay bioactivity data included wAUC (weighted area under
the curve) and AC50 (concentration at which the activity
reaches 50% of its maximal values for an assay-chemical
pair) values. These values were derived from methods out-
lined by Hsieh et al. (2015). Briefly, wAUCs were calculated as
the ratio of the area under the curve over the range of con-
centrations tested multiplied by the point of departure (POD),
representing the concentration at which the response was
above assay-specific noise thresholds, with all concentration
values converted using negative log10 to make higher POD
values relate to higher wAUCs. For this study, assay bioactiv-
ity results were simplified to binary calls of inactive (0) or
active (1), with inactive assay endpoints showing quality-
filtered wAUC and AC50 values of 0 and active assays show-
ing quality-filtered wAUC and AC50 values >0. Example assay
endpoint activity plots were generated using the Tox21
Curve Browser (NTP, 2017c).

Organization of in vivo transcriptomic profiles from the DrugMatrix
database. DrugMatrix is a publicly available toxicogenomic refer-
ence database that contains microarray data from tissues of
rats administered pharmaceutical agents, environmental chem-
icals, or other substances. Initially developed by Incyte
Genomics, Inc. and Iconix Pharmaceuticals, Inc., the DrugMatrix
database was acquired by NTP in 2010 and data were made pub-
licly available to the larger scientific community. This database
has demonstrated utility toward predictive toxicity in preclini-
cal drug safety and toxicity assessments. For example,
chemical-induced transcriptomic signatures from DrugMatrix
have been used for biomarker identification and mechanistic
analyses to better understand mechanisms of action and toxic-
ity (observed at the phenotypic-level) at earlier time points than
historically used during drug development processes (Ganter
et al., 2006). The current investigation focused on the
DrugMatrix transcriptomic profiles in the liver (representing the
tissue with the most data available) for a subset of chemicals se-
lected based on their inclusion within the Tox21 database.
Because the majority (�80%) of Tox21 assays were conducted
between 12- and 24-h durations (with all assays conducted at 1–
40 h), in vivo data collected 24 h post-exposure were prioritized

Figure 1. Flowchart of steps used to evaluate in vitro-in vivo response concordance through the comparison of in vitro Tox21 bioactivity (left) against in vivo pathway-

level changes in the rat liver (right). Abbreviation: AhR, aryl hydrocarbon receptor.
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for analysis. In cases where 24-h exposure data were not avail-
able, 3- or 5-day exposure data were used. Chemicals were
assessed at 1–3 doses in addition to the vehicle control at a sin-
gle time-point.

The DrugMatrix database consisted of transcriptomic pro-
files from liver RNA samples hybridized to the Affymetrix
GeneChip Rat Genome 230 2.0 array, comprising >31 000 probe-
sets, representing >28 000 rat genes. Genes that were differen-
tially expressed by chemical treatment conditions within the
liver were identified using previously established data process-
ing methods and statistical results generated and made publicly
available by NTP (2017a). The current investigation specifically
used results provided online for all statistical comparisons
(NTP, 2017a). In brief, array data were passed through several
quality control procedures, including background requirements,
minimal noise requirements, and a lack of array correlation to
tissue reference standards. Data were normalized using an algo-
rithm detailed within the DrugMatrix Calculations White Paper
(NIEHS/NTP, 2011), based on the assumption that unchanged
probe signals represent the majority of the signal measure-
ments and forms the center of a nonlinear curve fit to a refer-
ence template. This curve fits the mode of the signal
distribution for gene sets against the gene set expected value.
Resulting normalized probeset signal intensities were statisti-
cally assessed through the comparison of tissues from treat-
ment groups (three animals per condition) and control groups
(10–20 animals). Expression change significance was calculated
using the t statistic with an Empirical Bayes method of estimat-
ing variance, as previously published (Baldi and Long, 2001).

For the purposes of the current investigation, probesets rep-
resenting significantly differentially expressed genes (DEGs)
met the following criteria: fold change � 61.5 (average exposed/
average control) and p < .01 (exposed vs control). This repre-
sents a relatively relaxed filter, which prioritized the detection
of gene changes after filtering for noise and baseline statistical
requirements. Gene lists were further refined, as detailed in the
pathway enrichment analysis section. Probeset annotation in-
formation was updated to reflect the most recent rat genome
annotation release through Affymetrix (v36).

Pathway enrichment analysis of in vivo DEGs. DEGs in the rat liver
were evaluated for enrichment of canonical pathways, as orga-
nized through the Ingenuity Systems Knowledgebase. To paral-
lel the in vitro assay agonist versus antagonist activities, gene
lists were analyzed separately for genes with exposure-induced
increased expression and decreased expression. In a small por-
tion of the instances (�10%) when the number of genes with in-
creased or decreased expression was >1000, pathway
enrichment analyses focused on the 1000 unique DEGs with the
largest magnitude of fold change. This strategy was employed
to highlight the responses of highest magnitude whereas reduc-
ing the impact of overt toxicity resulting in a higher number of
enriched pathways. An additional non-directional pathway
analysis was also carried out using lists of genes filtered in the
same manner as described above, except that genes showing
up- and down-regulated expression levels were analyzed
collectively.

Significantly enriched pathways were identified using the
Fisher’s exact test in R package ‘piano’ (v3.4.1) (Varemo et al.,
2013) with a p value requirement of <.05. This statistical filter
was selected as it resulted in greater in vitro-in vivo concordance
compared with using a multiple test corrected p value filter, and
it parallels previous pathway-level investigations using
transcriptomic data (Farmahin et al., 2017; Rager et al., 2017). All

pathways that were significantly enriched were then consid-
ered ‘active’ and assigned a binary call of 1, and all pathways
that were not significantly enriched were considered ‘inactive’
and assigned a binary call of 0.

Comparing in vitro bioactivity versus in vivo pathway alterations. To
conduct an in vitro-in vivo response concordance analysis, the
Tox21 assay endpoint responses were compared against
pathway-level responses, assessed through in vivo transcrip-
tomic profiles. The majority of Tox21 HTS assay endpoints focus
on a single receptor which represent the apex or initiator of a
larger canonical pathway. As such, activation/repression of
these receptors is suggestive of activation/repression of corre-
sponding canonical pathways. Tox21 assay endpoints that were
not focused on a single receptor can also represent canonical
pathways given the nature of the stress that the assay is mea-
suring. Tox21 assay endpoints were thereby mapped to corre-
sponding canonical pathways based on the receptor used in the
assay (eg, aryl hydrocarbon receptor [AhR] assay endpoint
assigned to the AhR signaling pathway) or the nature of the
stress being investigated (eg, mitotoxicity assay endpoint
assigned to the mitochondrial dysfunction pathway). To im-
prove the comparison, the directionality of pathway changes
was considered by matching the agonism (increase) or antago-
nism (decrease) assay endpoints to pathway enrichment based
on genes with increased expression or pathway enrichment
based on genes with decreased expression, respectively. For
completeness, an additional comparison was carried out that
did not take directionality into account. This non-directional
comparison included all Tox21 assay endpoints regardless of
whether they probed for agonist or antagonist activity, and
pathways were identified as enriched analyzing all up- and
down-regulated genes collectively. A total of 40 Tox21 assay
endpoints were mapped to 18 canonical pathways
(Supplementary Table 1). Three assay endpoints were not able
to be mapped to available canonical pathways, specifically
tox21-aromatase-antagonist-p1, tox21-hse-bla-agonist-p1, and
tox21-ror-cho-antagonist-p1, and were thus excluded from the
analysis.

The degree of concordance was assessed between in vitro as-
say endpoint activity and in vivo pathway activity. For each
chemical (and corresponding dose used in the DrugMatrix ex-
perimentation), the status of concordance was determined
based on the binary activity values, with concordant instances
representing inactive matches (0 in vitro and 0 in vivo) or active
matches (1 in vitro and 1 in vivo). Instances representing discor-
dant in vitro and in vivo activities were identified as those with
binary activity values that did not match (0 in vitro and 1 in vivo;
1 in vitro and 0 in vivo). Next, the number of instance compari-
sons were aggregated into a 2 � 2 contingency table indicating
the total number in each of the four categories (ie, 0 and 0; 1 and
1; 0 and 1; 1 and 0).

Two measures were calculated to assess concordance be-
tween the in vitro and in vivo datasets: (1) percent agreement,
and (2) the Cohen’s kappa statistic. Percent agreement was de-
fined as the number of agreements (ie, instances when in vitro
and in vivo activities were either both active or both inactive) di-
vided by the total number (ie, all instances used to compare
in vitro vs in vivo activities) multiplied by 100%, similar to previ-
ous concordance analyses (McHugh, 2012). The Cohen’s kappa
statistic results in a potential range of values between �1 and 1,
with �1 indicative of the theoretical case of complete disagree-
ment, 0 indicative of the agreement being no better than select-
ing values at random, and 1 indicative of complete agreement
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(McHugh, 2012). Within values greater than 0, the quality of
agreement has previously been defined as kappa <0.2 ¼ poor,
0.21–0.4 ¼ fair, 0.41–0.6 ¼ moderate, 0.61–0.8 ¼ good, and 0.81–1.0
¼ very good, as used for the evaluation of agreement between
two different measuring or rating techniques (Kwiecien et al.,
2011). Because the Cohen’s kappa statistic shows limitations
when using skewed data (Feinstein and Cicchetti, 1990; McHugh,
2012; Uebersax, 1987), and the current comparative analysis
showed an abundance of inactive measures, results largely fo-
cused on percent agreement as the concordance measure.

All data processing, organization, and statistical analyses
were conducted using R (Team, 2017). The Cohen’s kappa statis-
tic was determined with the cohen.kappa() function in R pack-
age ‘psych’ (Revelle, 2017). Changes in concordance that were
associated with whether or not activity was observed in vitro
were assessed using the same statistical approaches used in
evaluating effects of experimental design attributes and path-
way targets, as described in the following section. For visualiza-
tion purposes, heat maps showing in vitro-in vivo activity versus
inactivity were generated using the heatmap.2() function in R
package ‘gplots’ (Warnes et al., 2016).

Assessment of experimental design attributes and pathway targets
that influence in vitro-in vivo response concordance. The potential
influence of experimental design on in vitro-in vivo response
concordance was investigated. Tox21 design attributes that
were evaluated included duration of exposure, tissue endpoint
target type, origin of cells, and species of cells. Experimental de-
sign attributes within the DrugMatrix database included dura-
tion of exposure, route of administration, and vehicle of
administration. Concordance changes associated with specific
pathways were also investigated.

To statistically evaluate whether these experimental attrib-
utes potentially impacted response concordance, a chi-square
test for equality of proportions with Yates’s continuity correc-
tion was used (R function ‘prop.test’). This test compared the
proportion of concordant cases for each category of the attribute
(or overall trend for continuous attributes) to the overall propor-
tion of concordant cases. Because many chemical/dose instan-
ces were inactive both in vitro and in vivo, a separate analysis
was also carried out using only chemical/dose instances that
showed activity in vitro, in vivo, or both (ie, instances of at least
one activity).

Assessment of in silico-derived dose applicability. In evaluating the
potential effects of chemical dose administration on in vitro-
in vivo response concordance, data were used from a recent
study by Sipes et al. that implemented in silico approaches to es-
timate chemical concentrations in plasma that correspond to
doses that elicit in vitro bioactivity (Sipes et al., 2017). In brief,
peak human plasma concentrations (Cmax) that were estimated
to be equivalent to or higher than concentrations in Tox21 data
eliciting 50% maximal activity (AC50) were identified as chemi-
cal concentrations ‘likely’ to elicit in vivo activity. These Cmax

values were then converted into corresponding estimates of
daily doses in humans using high-throughput toxicokinetic
modeling, made possible through the R package ‘httk’ (Pearce
et al., 2017). Human daily doses corresponding to ‘likely’ in vivo
activity were acquired from Sipes et al. (2017) (specifically, Sipes
et al. Supplementary Table 5; all available likely doses), and then
converted in this study into approximate daily doses in the rat
through allometric scaling. Scaling was specifically achieved us-
ing a dosimetric adjustment factor of four, as recommended in
the U.S. EPA’s Reference Dose and Reference Concentrations

Guidelines (EPA, 2002). A filter criteria was then set to evaluate
dose-specific attributes, which required that only data be used
from experimental doses that were within a 10-fold factor of
doses corresponding to ‘likely’ in vivo activity in at least one in-
stance (ie, for at least one Tox21 assay AC50 value for that chem-
ical) (Figure 2). Experimental conditions meeting these criteria
were then considered to show in silico-derived dose applicability
and were evaluated against results from experimental condi-
tions that did not meet these criteria.

In vivo dose estimate data were available through Sipes et al.
(2017) for 3134 of the 5733 in vitro-in vivo response instance com-
parisons used in this study, due to limited toxicokinetic data
availability and also the requirement for an in vitro activity con-
centration to calculate equivalent doses. Thus, data could not
be pre-filtered prior to other attribute analyses without drasti-
cally reducing the number of in vitro-in vivo response compari-
sons. However, it should be noted that for the chemicals with
data available in Sipes et al. (2017), the majority (47 of 75; 63%)
had Tox21 AC50 values estimated to show applicability to con-
centrations used in DrugMatrix, suggesting that many of the
other chemicals without toxicokinetic data may demonstrate
in vitro-in vivo dose applicability as well. Paralleling the experi-
mental attributes statistical analysis detailed above, a chi-
square test for equality of proportions with Yates’s continuity
correction was carried out to evaluate whether the in silico-de-
rived dose applicability factor influenced in vitro-in vivo re-
sponse concordance.

Assessment of chemical properties that influence in vitro-in vivo re-
sponse concordance. The potential influence of chemical-specific
attributes on in vitro-in vivo response concordance was consid-
ered through the evaluation of physicochemical properties,
obtained from the U.S. EPA Chemistry Dashboard (EPA, 2017).
Experimentally derived values were used when available, and
predicted values were used in instances that lacked experimen-
tally derived values. In cases with more than one experimen-
tally derived value available, the average was used. The
chemical-specific attributes consisted of a much larger database
to statistically evaluate in comparison with the aforementioned
experimental/dose-specific attributes, and there were potential
interactions and dependencies between components across
this large database. A different statistical approach was there-
fore implemented, namely through random forest modeling.

Random forest modeling represents an ensemble of boot-
strapped decision trees and has been shown to be a powerful
machine-learning approach to build models with large numbers
of predictor variables with possible interactions, dependencies,
and correlations (Breiman, 2001). The bootstrapped, ensemble
nature of a random forest model allows quantitative estimation
of the total importance of each predictor in the model.
However, that same ensemble nature presents difficulty in
interpreting the nature of the relationship between the predic-
tors and the response variable, compared with a single decision
tree model. To combine the robust results of random forest
modeling with the interpretability of a single decision tree
model, a two-stage process was used. At the first stage, random
forest modeling was used to evaluate the importance of each
chemical-specific attribute component in predicting response
concordance. At the second stage, these most-important attrib-
utes were used to construct a decision tree model, to elucidate
more details surrounding the attribute data ranges and re-
sponse concordance. As this was a chemical-specific analysis,
in vitro-in vivo concordance was expressed as percent agreement
summarized on a per-chemical basis for each dose tested.
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At the first stage, random forest modeling was carried out
using the R package ‘randomForest’ (Liaw and Wiener, 2002).
Because highly correlated predictors may distort random-forest
importance measures (Toloşi and Lengauer, 2011), the R pack-
age ‘caret’ (Kuhn et al., 2017) was used to identify and exclude
highly correlated attributes (using a threshold correlation coeffi-
cient of 0.75). As a significance check, five randomly generated
noise predictors were added to the model: two from normal dis-
tributions with zero means and standard deviations of 1 and 5,
and three from binomial distributions where a value of 1 oc-
curred with a probability 0.5, 0.1, and 0.9, similar to previous
random forest modeling approaches (Wambaugh et al., 2014).
Any predictive importance of these noise variables occurs
purely by chance; therefore, the importance of the noise varia-
bles can be used to gauge the significance of the importance of
the chemical-specific attributes. A random forest model was
then built to include 5000 trees with percent agreement as the
response variable and chemical-specific attributes and noise
variables as the predictors. Importance of the predictor varia-
bles was summarized based on the permutation-corrected per-
centage increase in mean squared error of the response when
each predictor variable was randomly permuted (Altmann et al.,
2010). The permutation-corrected variable importance was
computed using the method implemented in the ‘pRF’ R pack-
age (Chakravarthy, 2016). Briefly, the null distribution of this
quantity was estimated by repeatedly (200 times) randomly per-
muting the response variable, re-fitting the random forest, and
determining the importance metric for each predictor variable.
Then, a p value for each variable importance was derived by
comparing the observed importance (with non-permuted re-
sponse value) to the estimated null distribution. Smaller p val-
ues indicate that the observed variable importance is less likely
to arise when there is no real relationship between predictor
and response. Chemical-specific attributes with p < .01 were
identified as the most-important predictors. At the second
stage, a single decision tree was built using only the most-
important attributes. Decision tree modeling was performed us-
ing R package ‘rpart’ (Therneau et al., 2017).

RESULTS

Tox21 and DrugMatrix Data Overview
Two large toxicology databases were probed for the investiga-
tion of in vitro-in vivo response concordance at the mechanistic-

level: (1) the in vitro database, Tox21, and, (2) the in vivo data-
base, DrugMatrix. After applying filters for the chemical purity
status and data quality in Tox21 and focusing on chemicals
with liver transcriptomic signatures in DrugMatrix obtained af-
ter 1–5 days of exposure, 130 unique chemicals with 167 unique
chemical-dose pairs were available for the full in vitro to in vivo
signal response concordance analysis (Supplementary Table 2).
For these chemicals, all in vitro Tox21 experimental attributes
and wAUC values are provided in Supplementary Table 3. All
in vivo DrugMatrix experimental attributes are provided in
Supplementary Table 4, along with the numbers of array probe-
set IDs and corresponding genes identified as significantly dif-
ferentially expressed in the rat liver for each exposure
condition. These differentially expressed genes were analyzed
for enrichment of canonical pathways mapping to Tox21 target
endpoints (as detailed in Supplementary Table 1), and pathways
that were associated with differentially expressed genes were
identified (Supplementary Table 5).

In Vitro-In Vivo Concordance Analysis
In vitro-in vivo signal response activities resulting from chemical
exposure were compared through the evaluation of Tox21 activ-
ity and mapped pathway enrichment across differentially
expressed genes identified through the DrugMatrix database. To
detail, for every chemical in the Tox21 database that was also
included in the DrugMatrix database, Tox21 activity was consid-
ered, with 1 indicating activity and 0 indicating inactivity.
Mapped pathway enrichment results from the liver transcrip-
tomic responses were compared against these in vitro activities
in a directional-specific manner, with 1 indicating pathway en-
richment in the direction corresponding to the Tox21 activity
(eg, in vitro agonist endpoints corresponding to genes with in-
creased expression) and 0 indicating that a pathway was not
enriched in the direction corresponding to the Tox21 activity.
An example of such a comparison is provided in Figure 3.

Considering the 167 chemical-dose pairs evaluated across 40
Tox21 assay endpoints mapping to 18 in vivo canonical path-
ways, there were 5733 total instances of comparison between
the in vitro and in vivo experiments (Supplementary Table 6A).
Because several chemicals in the DrugMatrix database were
evaluated across two or three doses at a particular time-point,
coupled with varying Tox21 assay endpoint data availability,
the resulting number of comparisons did not simply equate to

Figure 2. Flowchart of steps used in filtering experimental conditions to evaluate in silico-derived dose applicability. Abbreviation: httk, high-throughput toxicokinetics.
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the product between the number of chemical and assay
endpoints.

The global comparison of the 5733 intersecting instances be-
tween in vitro Tox21 and in vivo DrugMatrix databases yielded 96
instances of activity in both, 649 instances of in vitro activity and
in vivo inactivity, 554 occurrences of in vitro inactivity and in vivo
activity, and 4434 instances of inactivity in both (Figure 4,
Supplementary Table 6A). Thus, most response signals (ie, 77%
of the comparisons) were indicative of inactivity resulting from
chemical exposure. The percent agreement across this global
comparison was high, at an average of 79%. Statistical evalua-
tion of this contingency table resulted in a Cohen’s kappa con-
cordance statistic of 0.02. As described in the Materials and
Methods section, this statistic represents an overall poor agree-
ment among the in vitro and in vivo datasets. However, this sta-
tistic should be interpreted with caution, as it shows limitations
in cases of skewed data (Feinstein and Cicchetti, 1990; McHugh,
2012; Uebersax, 1987). Concordance comparisons for each
chemical are shown in Supplementary Table 6A. On a per-
chemical basis (separated according to experimental dose), the
percent agreement values ranged between 41 and 100%. The
Cohen’s kappa statistic ranged on a per-chemical basis between
�0.25 and 0.76, representing agreement ranging from ‘poor’ to
‘good’ (Kwiecien et al., 2011).

These comparisons also showed that, when inactivity was
observed through in vitro HTS, 89% of the comparative instances
showed inactivity in vivo. Conversely, when activity was ob-
served through in vitro HTS, 13% of the comparative instances
showed activity in vivo, representing a significant decrease in
concordance for instances of in vitro activity (Figure 5A). When
considering the in vivo data, concordance was also high in
instances of in vivo activity (87%) and low in instances of in vivo
inactivity (18%) (Figure 5B). These findings, together, support
the notion that in vitro-in vivo response concordance is, on aver-
age, higher when inactivity is observed.

Because the global response comparisons were highly influ-
enced by instances of inactivity in both in vitro and in vivo sys-
tems, it was important to carry out additional concordance
analyses focusing on comparisons that included at least one in-
stance of activity (ie, activity observed in vitro and/or in vivo).
Percent agreement values showed an overall average agreement
of 7.4%. This agreement value was much lower than that pro-
duced from the global comparison, as the global comparison
was largely driven by the instances of matching inactivity.
Percent agreement also ranged on a per-chemical basis,

between 0% and 66.7% for instances of at least one activity
(Supplementary Table 6B). A Cohen’s kappa statistic for these
comparisons could not be calculated, as one of the contingency
table cells was effectively removed.

An additional in vitro-in vivo concordance analysis was car-
ried out to further substantiate overall findings by implement-
ing a non-directional comparative approach. Here, agonist and
antagonist in vitro assays were compared against pathway
enrichment results based on genes showing differential expres-
sion in any direction. This non-directional in vitro-in vivo com-
parison resulted in a Cohen’s kappa concordance statistic of
�0.0085 and percent agreement of 73%, which was slightly less
than the concordance values obtained in the previously de-
scribed analysis that considered response directionality
(Supplementary Figure 1). Because the previously detailed
directional-based comparative approach yielded better concor-
dance, it was used throughout the rest of the study to evaluate
attributes influencing in vitro-in vivo response concordance.

Experimental Design Components That Increase Response
Concordance
To identify specific experimental design attributes associated
with changes in response concordance, chi-square tests with
Yates’s continuity correction were carried out, comparing the
percent agreement in each category to the overall average per-
cent agreement. Analyses were carried out on all in vitro-in vivo
comparative instances (ie, global comparison), as well as in-
stance comparisons showing at least one activity, as the global
comparison contained largely inactive instances (n ¼ 4288 out of
5733 comparisons) and thus heavily skewed the results toward
different attributes, favoring those that were associated with in-
activity. For the Tox21 assay design attribute of exposure dura-
tion, concordance was found to significantly increase as
duration decreased; however, this trend was not apparent when
evaluating comparisons with instances of at least one activity
(Table 1). When evaluating tissue origin of cells, cells from the
cervix and embryonic kidney showed significantly higher con-
cordance than average, which was largely indicative of inactivity
associated with exposure. In the comparisons with at least one
activity, cells from the liver showed significantly higher concor-
dance than the overall average. The different endpoint target
types and species of cells did not exhibit concordance signifi-
cantly different from the overall average. The only DrugMatrix
design attribute to show significantly higher than average con-
cordance was water as the vehicle of administration, apparent

A B C

Figure 3. Example in vitro-in vivo response comparison for the compound, 2-acetylaminofluorene, and its relation to altered aryl hydrocarbon receptor (AhR) signaling.

A, In vitro Tox21 response profiles for the tox21-ahr-agonist-p1 assay showed activity in the agonist direction resulting from 2-acetylaminofluorene treatment. B, In vivo

transcriptomic responses in the rat liver from the DrugMatrix database showed increased expression levels for genes encoding proteins (shown in red) regulated by

AhR signaling. C, Comparisons between the Tox21 AC50 value for the tox21-ahr-agonist-p1 assay, related in vivo dose estimates, and the dose used in the DrugMatrix

database showed that the in vitro activity concentration was estimated to fall within the 10� range of in vivo dose applicability. Together, this example in vitro-in vivo

comparative response instance was noted as an in vitro active (activity call of 1) and in vivo active (activity call of 1) showing in silico-derived dose applicability. (For in-

terpretation of the reference to color in this figure legend, the reader is referred to the web version of this article.)
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only in the global analysis. No duration of exposure or route of
administration exhibited differences in concordance (Table 1).

Pathway Targets That Increase Response Concordance
In assessing pathway targets associated with changes in re-
sponse concordance, different pathways were identified as as-
sociated with increased concordance when evaluating all
in vitro-in vivo response comparisons versus comparisons fil-
tered to include at least one instance of activity, again

demonstrating the large influence of inactivity on concordance
trends. To detail, six pathways showed significantly increased
concordance when evaluating all in vitro-in vivo instance com-
parisons: endoplasmic reticulum stress pathway, hypoxia-
inducible factor 1 alpha (HIF1a) signaling, nuclear factor-kappa
B (NF-j) signaling, peroxisome proliferator-activated receptor
(PPAR) signaling, stress-activated protein kinases-jun amino-
terminal kinases (SAPK-JNK) signaling, and vitamin D receptor-
retinoic acid receptor (VDR-RXR) activation. These pathways
showed largely inactive responses to exposure, both in vitro and

Figure 4. Global in vitro-in vivo activity comparisons for all chemicals and doses under investigation. Comparisons were based on in vitro Tox21 activity and in vivo liver

transcriptomic changes from DrugMatrix showing enrichment for 18 mapped canonical pathways (right). Data are organized based on complete linkage clustering us-

ing Euclidean distance measures. Note the red cell for 2-acetylaminofluorene, for which data is shown in Figure 3. (For interpretation of the reference to color in this fig-

ure legend, the reader is referred to the web version of this article.)

Figure 5. In vitro-in vivo response concordance separated according to whether or not activity was observed in vitro. Average percent agreement values are plotted with

error bars showing upper and lower 95th percentiles; note that these are not visible when error bars are small enough to overlap with the average percent agreement

symbol. Counts of in vitro-in vivo comparative instances are provided in brackets. *p < .05 (significance between each category and overall average percent agreement).

The horizontal dashed line indicates overall average percent agreement.
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in vivo, further highlighting that the global comparative analysis
is largely driven by inactivity (Table 1, Figs. 6A–C,
Supplementary Table 7). When evaluating in vitro-in vivo com-
parisons with at least one instance of activity, other pathways
were identified with significantly increased concordance,
namely aryl hydrocarbon receptor (AhR) signaling, nuclear fac-
tor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress,
and pregnane X receptor-RXR (PXR-RXR) (also known as CAR
and/or nuclear receptor subfamily 1 group I member 3 [NR1I3])
activation (Table 1, Figure 6D, Supplementary Table 7). It is no-
table that these active pathways also clustered together when
evaluating global concordance results using Euclidean distance
measures (Figure 4).

In Silico-Derived Dose Applicability and Its Influence on
Concordance
With the recent publication by Sipes et al. (2017), in vivo doses
are available which are predicted to elicit responses observed
in vitro, as probed for through the ToxCast/Tox21 database, and
were used here to refine the current dataset to only select
in vivo doses estimated to likely yield biological activity. Upon
filtering the data, 47 unique chemicals had toxicokinetic data
available and were evaluated in vivo at doses that fell within the
10� of the doses representing ‘likely’ in vivo activity, as defined
in the Materials and Methods section (Supplementary Table 8,
Figure 2). Filtering data for this in silico-derived dose applicability
factor increased the overall, global in vitro-in vivo response con-
cordance, with the Cohen’s kappa statistic increasing from 0.02
to 0.06 (Figure 7A). Evaluating potential changes in percent con-
cordance, similar concordance values were measured globally
(all within 10% of the overall 79% concordance) (Figure 7B); and
filtering data for dose applicability resulted in significantly in-
creased concordance for comparisons requiring at least one in-
stance of activity (p < .001, 32.2% vs the overall 7.4%) (Figure 7C).
Thus, dose applicability was identified to increase concordance,

both globally and when instances of in vitro and in vivo inactivity
were removed.

Chemical-Specific Attributes That Influence Response Concordance
Because the in vitro-in vivo response concordances greatly varied
across chemicals, chemical-specific attributes were also evalu-
ated for potential impacts on concordance. Data were parsed
into individual chemical-dose pairs, and random forest model-
ing was used to investigate the importance of the effects of
physicochemical properties (Supplementary material, Table 9)
on percent agreement between in vitro-in vivo responses. For the
global in vitro-in vivo comparative analysis, the chemical-
specific attributes with most significant importance (p < .01)
were logP (octanol-water partition coefficient), logKoa (octa-
nol-air partition coefficient), and water solubility (Figure 8A).
To better visualize the results, the model-predicted versus ob-
served concordance were plotted and colored according to the
values of these three physicochemical properties (Figs. 8B–D).
These results show, for instance, that chemicals with lower
logP and higher water solubility generally show higher levels
of response concordance. Decision tree modeling of these
attributes identified specific ranges of the data related to in-
creased response concordance (Table 1, Figure 9). As an exam-
ple, chemicals with logP <4.785 showed higher in vitro-in vivo
concordance, on average, in comparison with chemicals with
logP �4.785. The highest concordance was identified for chem-
icals having logP < 2.615, water solubility �0.0027 and <0.156
mol/l, and logKoa�4.276 (average percent agreement of
90.37%).

For the comparative analysis with instances of at least one
activity, similar chemical properties were identified to signifi-
cantly contribute to the predictive model, with logP, logKoa, and
Henry’s Law constant identified as the most significant (p < .01)
contributing variables. Decision tree modeling results produced
similar findings, with chemicals having logP < 5 and

Table 1. Specific Attributes That Increase In Vitro-In Vivo Response Concordance Between Tox21 HTS Assays and Rat Liver Pathway-Level
Responses As Identified Through Transcriptomic Analysis of DrugMatrix Data

Global Comparisonsa

Comparisons With Instances of At Least One
Activity

In vitro Tox21 assay-specific attributes
Duration of exposure Shorter durations (eg, 1–6 h) —
Endpoint target type — —
Species of cells — —
Tissue origin of cells Cervix, embryonic kidney Liver

In vivo DrugMatrix experiment-specific attributes
Duration of exposure — —
Route of administration — —
Vehicle of administration Water —

In vitro and in vivo attribute
Pathway targets Endoplasmic reticulum stress pathway, HIF1a

signaling, NF-j signaling, PPAR signaling,
SAPK-JNK signaling, VDR-RXR activation

AhR signaling, NRF2-mediated oxidative
stress, PXR-RXR activation

In silico-derived dose range of applicability Within 10� range of dose applicability Within 10� range of dose applicability
Chemical-specific attributesb logP, logKoa, and water solubility; logP, logKoa, and Henry’s law constant;

Specific data ranges include: logP<4.85
(logP<2.615 for greatest increased concor-
dance), logKoa�4.275, water solubility�2 �
10�3 mol/l

Specific data ranges include: logP<5,
logKoa�8.855

aNote that global comparison findings were largely driven by instances of inactivity observed both in vitro and in vivo.
bThese represent the most significant chemical-specific attributes (p < .01). More specific data ranges are provided in Figure 8.
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logKoa�8.855 having increased in vitro-in vivo response concor-
dance, on average. An additional analysis was also carried out
to test whether the number of tested pathways (for each chemi-
cal) could contribute toward the predictive model of global con-
cordance. Interestingly, the number of tested pathways did
show significant variable importance (p < .05, with increasing
number of tested pathways associated with increased

concordance), though it was not amongst the top ranked varia-
bles (data not shown).

DISCUSSION

The growing prevalence of in vitro HTS data has supported the
need for increased research surrounding the proper utilization

Figure 6. Relationships between pathway targets and (A) in vitro activity, (B) in vivo activity, (C) global response concordance, and (D) response concordance for compari-

sons including at least one instance of activity. Pathways are organized from those associated with the highest (left) to lowest (right) in vitro-in vivo percent agreement

for comparisons showing at least one instance of activity. Dashed lines represent overall averages. *p < .05 (significance of difference between pathway percent agree-

ment and overall average percent agreement). Horizontal dashed lines indicate overall average percent agreement.
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of these data, particularly in predicting in vivo toxicology testing
outcomes. Previous investigations have largely compared
in vitro assay data to apical endpoints observed in vivo. This
study set out to simplify these comparisons by evaluating the
initiation of a molecular interaction (eg, receptor activation) and
subsequent cellular responses (ie, pathway alterations) using

in vitro Tox21 assay data and in vivo DrugMatrix transcriptomic
profile data, respectively. In addition, attributes that could serve
as considerations for informing ranges of applicability for
in vitro assays were also investigated.

The global comparison between HTS bioactivity and liver
pathway-level responses showed an overall percent agreement
of 79%, representing a relatively high measure of agreement in
biological activity. Notably, the majority (77%) of the in vitro-
in vivo comparisons represented inactivity in both systems. A
more statistically driven concordance measure that takes into
account the difference between the expected and observed
probability of agreement, the Cohen’s kappa statistic, was 0.02,
which could be categorized as ‘poor’ based on previous defini-
tions (Kwiecien et al., 2011). There are notable limitations in us-
ing the Cohen’s kappa statistic for skewed data, as these data
can cause an imbalance of marginal totals which are used to
calculate expected probabilities of agreement (Feinstein and
Cicchetti, 1990; McHugh, 2012; Uebersax, 1987). Despite these
potential limitations, the Cohen’s kappa statistic remains a
widely used concordance statistic, and it was therefore included
alongside percent agreement measures, paralleling published
recommendations (McHugh, 2012). Consistent between these
two concordance measures, in vitro-in vivo concordance was
found to widely vary on a per-chemical basis.

In vitro-in vivo response concordance was also found to dra-
matically differ for substances according to whether activity
versus inactivity was observed. To detail, when inactivity was
observed in vitro, inactivity was also observed in vivo in 89% of
the comparative instances. It is still important to identify these
instances of in vivo inactivity, as these chemicals could be prior-
itized for use in drug/product development over those eliciting
activity. However, concordance significantly decreased to only
13% for substances that showed activity through in vitro HTS.
Furthermore, when any instance of activity was observed
(in vitro and/or in vivo), concordance was only 7.4%. This finding
suggests that follow-up in vivo and/or orthogonal in vitro assays
should be conducted to increase confidence in interpreting
instances of in vitro HTS activity; although future studies should
expand these findings using different target tissues and experi-
mental systems.

This investigation evaluated the influence of various experi-
mental design parameters on in vitro-in vivo response concor-
dance, different attributes were identified when assessing all
comparative instances versus comparisons with inactivity re-
moved. For instance, cervical and embryonic kidney cells
showed increased concordance across all comparisons, largely
resulting from inactive responses. When focusing on in vitro-
in vivo comparisons containing activity, liver cells showed sig-
nificantly increased concordance. Given that these comparisons
used in vivo data from liver tissue, the increased concordance
with in vitro data derived from liver cells makes biological sense,
particularly when focusing on active responses. These changes
in concordance were likely impacted by variable expression and
functionality of genes/protein receptors that can differ accord-
ing to cell type. It is therefore important to consider tissue origin
of cells when using in vitro data to inform in vivo toxicity.

Due to the large range in biological targets covered by the
HTS assay and transcriptomics databases, it was important to
consider potential changes in concordance associated with dif-
ferent pathway targets. When assessing all in vitro-in vivo com-
parative instances, pathways that were largely inactive showed
increased concordance (eg, HIF1a, NF-j, and PPAR signaling).
When data were filtered for comparisons including instances of
activity, pathways that have recognized function or activity in

Figure 7. In vitro-in vivo response concordance separated according to in silico-de-

rived dose applicability. Overall, global concordance is shown using Cohen’s

kappa concordance statistics in (A) and percent agreement in (B). Concordance

for data filtered for comparisons showing at least one instance of activity is

shown in (C). Average values are plotted with error bars showing upper and

lower 95th percentiles; note that these are not visible when error bars are small

enough to overlap with the average percent agreement symbol. Counts of

in vitro-in vivo comparative instances are provided in brackets. p < .05 (signifi-

cance between each category and overall average percent agreement). The hori-

zontal dashed line indicates overall concordance.
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the liver showed increased concordance, including AhR, PXR,
and oxidative stress signaling. AhR and PXR pathways are com-
monly activated by environmental chemicals and pharmaceuti-
cals, and are recognized to induce transcription/translation of
phase I metabolizing enzymes in the liver (Denison and Nagy,
2003; Luo et al., 2004). In addition, oxidative stress signaling can
occur in response to various liver activities, including xenobiotic
metabolism, which can produce reactive oxygen species (Chen
et al., 2013). Given that these pathways have higher in vitro-in vivo
concordance, coupled with their known functionality in the liver,
findings support the incorporation of biological target context
when using in vitro data to inform mechanisms of in vivo toxicity.

A critical attribute shown to influence in vitro-in vivo re-
sponse concordance was chemical dose, where the selection of
doses estimated to likely cause in vivo activity based on in vitro
AC50 values was found to increase concordance, regardless of
whether or not data were filtered for activity. This finding high-
lights the importance of considering how concentrations used
in vitro relate to in vivo toxicity and vice versa, which in part, can
be addressed by the in silico toxicokinetic approaches used here.

The incorporation of in silico toxicokinetic tools in chemical
assessments is not necessarily new; yet there have been recent
advances in pharmacokinetic parameter predictions that better
capitulate experimentally derived data. These advances, cou-
pled with improvements in human dosimetry models, result in
in vitro-in vivo extrapolation estimates that are continually being
improved and expanded upon (Kratochwil et al., 2017; Rotroff
et al., 2010; Sipes et al., 2017; Wetmore et al., 2013). Incorporating
such in silico modeling strategies to better gauge in vitro dose ap-
plicability clearly improves HTS data interpretation.

Chemical-specific attributes were also identified to influence
in vitro-in vivo concordance and included the physicochemical
properties, logP and logKoa. These properties are interrelated
and are commonly used as chemical solubility metrics that in-
form chemical concentration/suitability in study designs. As an
example, logP has been used to evaluate the suitability of chem-
icals for testing in ToxCast/Tox21, where chemicals with logP
<�1 or >7 were identified to show potential issues related to
DMSO solubility and/or inability to transport through lipid
bilayers (Richard et al., 2016). In this study, chemicals with logP

Figure 8. Contribution of physicochemical properties toward global concordance. A, Variable importance plot (based on random forest modeling): the top nine variables

are listed, from most (top) to least (bottom) importance significance. B–D, Relationships between the model-predicted versus observed concordance, colored according

to the three most important predictors, logP, water solubility, and logKoa.
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<4.785 generally showed higher in vitro-in vivo concordance.
Chemicals with logP < 2.615 showed the highest average concor-
dance, and only three chemicals having logP <�1; thus, these
values are generally within range of those suggested as suitable
for HTS. LogP is also informative within in vivo study designs, as
it can influence chemical protein binding and distribution. For
example, logP is used as a criterion for the biopharmaceutics
classification system, with drugs showing logP > 1.72 considered
highly permeable and likely to be absorbed within the gastroin-
testinal tract (Dahan et al., 2009). Filtering for chemicals with
lower logP would therefore eliminate highly permeable com-
pounds; although additional studies are needed to confirm the
applicability of this filter in different models/target tissues.

Incorporating the attributes identified in this study (summa-
rized in Table 1) can facilitate researchers when interpreting
in vitro HTS data to inform in vivo mechanisms of toxicity. For
example, 2-acetylaminofluorene was found to elicit in vitro bio-
activity in the Tox21 assay probing for AhR agonism. By gauging
how the attributes associated with this specific chemical are re-
lated to the attributes that were found to increase in vitro-in vivo
response concordance, an increased confidence can be ascribed
to the in vitro data. Specifically, the Tox21 AhR agonism assay
was conducted in liver cells and queried for AhR activation, rep-
resenting a cell type and pathway associated with increased
concordance in instances of in vitro activity. In addition, the
concentration eliciting in vitro activity was estimated to be
within a 10� range of the dose evaluated in the rat, meeting the
dose applicability filter. Furthermore, the chemical attributes of
2-acetylaminofluorene, including logP, logKoa, density, and
melting point, were within ranges associated with increased
concordance. In this case, 2-acetylaminofluorene was found to
up-regulate the AhR pathway in vivo, in the rat liver, based on
the analysis of transcriptomic signatures from the DrugMatrix
database. Further supporting these findings, 2-acetylamino-
fluorene is recognized to bind to AhR and cause cancer in the
liver of rats (Cikryt et al., 1990; NIEHS/NTP, 2011). This case study
shows how researchers can therefore use the attributes

identified in the current evaluation to bolster understanding of
mechanistic in vivo toxicity when using in vitro HTS bioactivity.

Whereas this study provides insight toward understanding
in vitro-in vivo response concordance, it is not without limita-
tions. Importantly, the in vivo transcriptomic data were only
from the liver, representing a major site of chemical-induced
toxicity. This inherently biased the concordance to assays
whose receptors are most active in the liver, although the ex-
pression levels of all evaluated receptors were confirmed to be
above background in these samples (data not shown). Future
studies evaluating different organs, species, endpoints, and
data comparison approaches will further inform this research
area. An additional challenge within this investigation, as well
as the larger HTS community, is the incorporation of potential
chemical metabolism (Wilk-Zasadna et al., 2015). This study
considered chemical metabolism, in particular during the in sil-
ico derivations of each chemicals’ Cmax related to parent com-
pound clearance rates and associated doses required to elicit
likely in vivo activity (Ring et al., 2017; Sipes et al., 2017). Still, in
silico predictions of chemical metabolism have limitations and
uncertainties (Kirchmair et al., 2015; Zhang et al., 2011), making
future analyses that focus on the effects of chemical metabo-
lism during in vitro-in vivo comparisons of high interest.

In conclusion, results from this study provide increased un-
derstanding of the potential ranges of applicability for using
in vitro assay data to predict or inform mechanisms of in vivo
toxicity, with a focus on pathway alterations in the rat liver.
Future studies could additionally evaluate the molecular/cellu-
lar responses in relation to apical endpoints and further develop
computational models to predict in vivo activity based on in vitro
observations. This in vitro-in vivo concordance analysis, in itself,
provides an important baseline understanding of the attributes
that influence whether or not a mechanistic response observed
in vitro may also be observed in vivo, and vice versa. Results sup-
port the need to consider whether in vitro activity versus inactiv-
ity is observed, as findings were heavily influenced by the large
abundance of inactivity. Results also consistently showed that

Figure 9. Decision tree modeling of the most significant concordance predictors showing discrete ranges of predictor data associated with increased global concor-

dance. At each node (split), the listed condition is true on the right branch, and false on the left branch. At each terminal node, the average percent agreement is shown

in blue, and the number of chemicals at the node is shown in red. As an example, chemicals with logP <2.615 showed higher concordance, on average, in comparison

with chemicals with logP >2.615. Note that one chemical did not have data for at least one of these physicochemical parameters and was thus excluded from this fig-

ure. Units are as follows: logP (unitless), logKoa (unitless), water solubility (mol/l). (For interpretation of the reference to color in this figure legend, the reader is referred

to the web version of this article.)
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considerations of dose applicability using high-throughput toxi-
cokinetic modeling and dose equivalent estimates increased
in vitro-in vivo concordance. These findings highlight that
in vitro-in vivo concordance varies according to chemical, and
there are experimental, pathway, dose, and chemical-specific
attributes that should be considered when using in vitro HTS
data to predict in vivo chemical toxicity.
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online.
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