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ABSTRACT Since its emergence in 2019, circulating populations of the new corona-
virus (CoV) continuously acquired genetic diversity. At the end of 2020, a variant
named 20I/501Y.V1 (lineage B.1.1.7) emerged and replaced other circulating strains
in several regions. This phenomenon has been poorly associated with biological evi-
dence that this variant and the original strain exhibit different phenotypic character-
istics. Here, we analyze the replication ability of this new variant in different cellular
models using for comparison an ancestral D614G European strain (lineage B1).
Results from comparative replication kinetics experiments in vitro and in a human
reconstituted bronchial epithelium showed no difference. However, when both
viruses were put in competition in human reconstituted bronchial epithelium, the
20I/501Y.V1 variant outcompeted the ancestral strain. All together, these findings
demonstrate that this new variant replicates more efficiently and may contribute to
a better understanding of the progressive replacement of circulating strains by the
severe acute respiratory CoV-2 (SARS-CoV-2) 20I/501Y.V1 variant.

IMPORTANCE The emergence of several SARS-CoV-2 variants raised numerous ques-
tions concerning the future course of the pandemic. We are currently observing a
replacement of the circulating viruses by the variant from the United Kingdom
known as 20I/501Y.V1, from the B.1.1.7 lineage, but there is little biological evidence
that this new variant exhibits a different phenotype. In the present study, we used
different cellular models to assess the replication ability of the 20I/501Y.V1 variant.
Our results showed that this variant replicates more efficiently in human reconsti-
tuted bronchial epithelium, which may explain why it spreads so rapidly in human
populations.
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Novel severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) emerged in
China by the end of 2019 and rapidly spread worldwide. In a few months, the

D614G spike mutation was rapidly fixed in almost all circulating SARS-CoV-2 popula-
tions, without evidence of higher CoV disease 2019 (COVID-19) mortality or clinical se-
verity (1). It is still being debated whether it is due to a random founder effect (1) or,
more probably, whether the mutation enhances viral loads in the upper respiratory
tract, increasing the infectivity and stability of virions (2–4).

In September 2020, a variant named 20I/501Y.V1 from lineage B.1.1.7 (initially
named VOC 2 2020212/01) emerged in the United Kingdom. It spread rapidly and is
becoming dominant in Western Europe (5) and the United States (6). There is consist-
ent epidemiological evidence that this so-called “UK variant” is more efficiently trans-
mitted (7) than the preexisting European strains, in particular in young patients.
Moreover, this variant has also been associated in some studies with an increased risk
of mortality (8–10), without any differences in symptomatology (11).

Citation Touret F, Luciani L, Baronti C, Cochin
M, Driouich J-S, Gilles M, Thirion L, Nougairède
A, de Lamballerie X. 2021. Replicative fitness of
a SARS-CoV-2 20I/501Y.V1 variant from lineage
B.1.1.7 in human reconstituted bronchial
epithelium. mBio 12:e00850-21. https://doi
.org/10.1128/mBio.00850-21.

Editor Peter Palese, Icahn School of Medicine
at Mount Sinai

Copyright © 2021 Touret et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Franck Touret,
franck.touret@univ-amu.fr.

Received 22 March 2021
Accepted 8 June 2021
Published

July/August 2021 Volume 12 Issue 4 e00850-21 ® mbio.asm.org 1

OBSERVATION

6 July 2021

https://orcid.org/0000-0002-4734-2249
https://orcid.org/0000-0002-0738-5957
https://orcid.org/0000-0003-2326-2938
https://doi.org/10.1128/mBio.00850-21
https://doi.org/10.1128/mBio.00850-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mbio.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.00850-21&domain=pdf&date_stamp=2021-8-31


Here, we present a comprehensive analysis of the replication ability in vitro and ex
vivo of the 20I/501Y.V1 variant (strain UVE/SARS-CoV-2/2021/FR/7b isolated in
February 2021 in Marseille, France; GISAID accession no. EPI_ISL_918165), using for
comparison the lineage B.1 BavPat D614G strain that circulated in Europe in February/
March of 2020.

The first experiments were performed in two cell lines: VeroE6/TMPRSS2 cells, com-
monly used for SARS-Cov-2 isolation and propagation (12), and Caco-2 cells, which
endogenously express the ACE2 receptor and TMPRSS2 coreceptor at levels similar to
those in Calu-3 cells (13). Results of these experiments revealed highly similar replica-
tion kinetics, supporting the results of complete genome sequencing of both viral
strains with regard to the integrity of the multibasic cleavage site in the spike protein
(Fig. 1A and B and see Table S1 in the supplemental material) (14).

We then assessed the replicative fitness of both strains using a previously described
model of reconstituted human airway epithelium (HAE) of bronchial origin (15).
Following the inoculation of the epithelia through their apical side at a multiplicity of
infection (MOI) of 0.1 in order to mimic the natural route of infection, we monitored
the excretion of new virions at the apical side between 2 and 4 days postinfection (dpi)
and measured the intracellular viral RNA yields at 4 dpi. Infectious titers (Fig. 1D) and
viral RNA yields (Fig. 1E) at the apical side at 3 and 4 dpi, as well as intracellular viral

FIG 1 In vitro and ex vivo replication ability of a 20I/501Y.V1 (B.1.1.7) variant in comparison with a lineage B.1 D614G strain. (A and B) Replication kinetics
in VeroE6 TMPRSS2 (A) and Caco-2 (B) cells. Viral replication was assessed using an RT-qPCR assay. (C) Graphical representation of experiments with
reconstituted human airway epithelium (HAE) of bronchial origin. (D and E) Kinetics of virus excretion at the apical side of the epithelium measured using
a 50% tissue culture infective dose (TCID50) assay (D) and an RT-qPCR assay (E). (F) Estimation of virion infectivities (i.e., the ratio of the number of
infectious particles to the number of viral RNA particles). (G) Intracellular viral RNA yields measured at 4 dpi using an RT-qPCR assay. (A to G) Data
represent means 6 standard deviations (SD) from triplicate experiments. No statistical difference was observed between the two viral strains (P. 0.05,
unpaired Mann-Whitney test). (H) Follow-up of the B.1.1.7/B.1 ratios at the apical side. Each line represents results from an HAE insert. (I) Individual B.1.1.7/
B.1 ratios estimated from intracellular viral RNAs at 4 dpi (I). (H and I) P values were determined against the initial ratios using the Kruskal-Wallis test
followed by an uncorrected Dunn post hoc analysis. The graphical representation was created with BioRender.

Touret et al. ®

July/August 2021 Volume 12 Issue 4 e00850-21 mbio.asm.org 2

https://mbio.asm.org


RNA yields at 4 dpi (Fig. 1G), were slightly higher for the B.1.1.7 variant. However, differ-
ences were not significant, and estimated relative virion infectivities (i.e., the ratio of
the number of infectious particles to the number of viral RNA particles) were similar for
the two viruses at all sampling times (Fig. 1F). All together, these results are in line with
our findings for common cell lines and with a recent report (16).

Based on these results, we performed competition experiments, which have previ-
ously been demonstrated to be effective to detect moderate replicative fitness differ-
ences (2, 17). Accordingly, we inoculated epithelia with both viruses simultaneously as
described above, sampled the apical side between 2 and 4 dpi, and extracted intracel-
lular viral RNA yields at 4 dpi. Three infection inoculum ratios (B.1.1.7/B1 ratios, 70/30,
50/50, and 30/70) were used. Using two specific reverse transcription-quantitative PCR
(RT-qPCR) assays (Fig. S1), we estimated the proportion of each viral genome in the vi-
ral population (expressed as the B.1.1.7/B1 ratio in Fig. 1H and I). Regardless of the ini-
tial ratio, we observed similar patterns in which B1 was outcompeted by the B.1.1.7
variant; all B.1.1.7/B1 ratio values estimated from apical-side washes were above 1 and
over 57, 22, and 8 at 4 dpi for epithelia inoculated at the initial ratios of 70/30, 50/50
and 30/70, respectively (Fig. 1H). Notably, B.1.1.7/B1 ratios measured at 4 dpi were sig-
nificantly higher than the initial 50/50 and 30/70 inoculum ratios (P = 0.0475 and
P=0.0082, respectively, with the Kruskal-Wallis test with an uncorrected Dunn post hoc
analysis). Similar results were observed when estimating the B.1.1.7/B1 ratios from in-
tracellular viral RNAs (Fig. 1I); B.1.1.7/B1 ratios measured at 4 dpi were significantly
higher than the initial 50/50 and 30/70 inoculum ratios (P = 0.0208, P= 0.0082, and
P=0.0475 with the 70/30, 50/50, and 30/70 inoculum ratios, respectively, as deter-
mined by the Kruskal-Wallis test with an uncorrected Dunn post hoc analysis).

Our results demonstrated that the 20I/501Y.V1 (B.1.1.7) variant is more fit than the line-
age B.1 BavPat D614G strain in reconstituted bronchial human epithelium. This may be
explained by the presence of the N501Y mutation in the receptor binding domain (RBD)
of the spike protein, which enhances viral particle binding to the ACE2 receptor (18). This
may translate into a fitness advantage, as demonstrated in a recent study with engineered
viral strains (19). Similar observations have been made with the D614G mutation, with
which the new G614 strains overcame the original D614 strains when put in competition
(2). All together, these findings may contribute to a better understanding of the progres-
sive replacement of circulating strains by the SARS-CoV-2 20I/501Y.V1 variant (20).
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