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Introduction
Terminalia catappa is one of the most abundant tree species in 
coastal communities in Western Pacific island nations.1 The 
ability of these trees to withstand harsh coastal conditions 
allows it to thrive alongside other trees that protect the coast-
line (Figure 1A). This ability is one of the reasons for introduc-
ing the tree throughout the equatorial regions of the world, and 
it now grows in most tropical and subtropical countries. In 
addition to coastal stabilization, the species has numerous gas-
tronomic, medicinal, and utilitarian uses.1,2

Several non-native beetle species on the island of Guam 
that feed on T. catappa leaves cause numerous small holes 
throughout the laminae, often causing a shot-hole appearance 
of the damaged leaves (Figure 1B). Phytorus leaf beetle 
(Phytorus lineolatus Weise; Coleoptera: Chrysomelidae), a wee-
vil (Trigonops vulgaris Zimmerman; Coleoptera: Curculionidae), 
and the Chinese rose beetle (Adoretus sinicus Burmeister; 
Coleoptera: Scarabaeidae) are the beetles that have invaded the 
island of Guam to cause this damage. There are no native her-
bivores that damage leaves in a similar manner.

Variation of chemotypic expression of a dominant tree species 
that is being preferentially attacked by specialist insect herbivores 
can have substantial ecological consequences including changes in 
biogeochemical cycling.3,4 Therefore, increased knowledge about 
leaf and litter quality of T. catappa is needed in a changing world 
where more invasive species exert their influence on ecological 
traits of the invaded communities in Western Pacific islands.

In this study, I addressed the hypothesis that T. catappa leaf 
damage by beetle herbivores will change leaf chemistry, and that 
these changes will persist through leaf senescence. I further 
determined if leaf chemical changes following beetle herbivory 
increased or decreased litter quality and predicted decomposi-
tion rate using established litter quality characteristics.5

Materials and Methods
Site traits
Ten sites throughout northern Guam were selected where shot-
hole leaf damage from the non-native beetle herbivory was evi-
dent in T. catappa leaves. The soils for all 10 locations were 
formed from sediment overlying porous limestone on uplifted 
plateaus (Clayey, gibbsitic, nonacid, isohyperthermic Lithic 
Ustorthents).6 Leaf and soil samples were collected from each 
site from 1 to 5 November 2017. A soil sample from 0 to 15 cm 
depth was collected from each site and combined into a compos-
ite sample. The pH was 7.5, and elemental content was 6.9 
mg·g-1 nitrogen, 60.1 µg·g-1 phosphorus, 125.2 mg·g-1 carbon, 
0.7 mg·g-1 potassium, 1.1 mg·g-1 magnesium, 56.9 µg·g-1 man-
ganese, 14.8 µg·g-1 iron, 2.0 µg·g-1 copper, and 81.5 µg·g-1 zinc.

Tissue collection

The youngest fully expanded green T. catappa leaves are gener-
ally healthy in the presence of these beetle herbivores, and the 
feeding damage occurs after full expansion. Therefore, healthy 
youngest fully expanded leaves were used to compare with all 
senesced leaves (described below). The green leaves were col-
lected from at least eight locations surrounding the canopy of 
the 10 sampled trees and combined into one sample. Leaves 
were collected from the canopy periphery at ca. half the height 
for each tree. Senesced leaves with no herbivory of any kind 
and senesced leaves with beetle shot-hole damage were har-
vested from the ground beneath the same experimental trees 
that provided the green leaf tissue. To ensure the senesced 
leaves were fresh litterfall, no fully desiccated leaves were 
included. Fresh senesced leaves of this species are red or yellow, 
so diagnosing fresh litterfall was unambiguous. Restricting 
senesced leaf collections from the ground also ensured natural 
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abscission of the litter samples. Leaf selection was restricted to 
leaves that appeared to have about 50% of the laminae removed. 
A digital photograph of each leaf was captured and ImageJ 
(http://imagej.nih.gov/ij/) was used to quantify the area of the 
holes and the total area within the outline of each leaf. These 
data were used to calculate how much lamina had been removed 
by the feeding. The height of each tree was measured.

Chemical traits

Leaf surfaces were washed with tap water, rinsed with reverse 
osmosis water, dried at 75°C for 24 hour, and milled to pass 
through 20-mesh screen. All green and senesced leaf tissue was 
analyzed for essential micro and macronutrients. Total nitrogen 
and carbon were determined by dry combustion (FLASH 
EA1112 CHN Analyzer, Thermo Fisher, Waltham, Mass, 
U.S.A.), and all other elements were determined by inductively 
coupled plasma optical emission spectroscopy (ICP-OES) fol-
lowing extraction by diethylenetriaminepentaacetic acid 
(Spectro Genesis; SPECTRO Analytical Instruments, Kleve, 
Germany).7 Several metals were also quantified using nitric 
acid extraction and ICP-OES. Moreover, lignin was quantified 
in the senesced leaf tissue by means of the acetyl-bromide 
method.8

Statistical analyses

Resorption efficiency was calculated for nitrogen, phosphorus, 
and potassium as [(green concentration – senesced concentra-
tion)/green concentration]*100. For the beetle-damaged leaves, 
cumulative resorption included all induced chemical changes in 
response to the herbivory followed by all resorption behaviors 
during senescence. Stoichiometric traits that are relevant for lit-
ter quality were calculated with lignin or carbon as the 

numerator and nitrogen, phosphorus, or potassium as the 
denominator. The stoichiometric variables were log-transformed 
for analysis. Prerequisites for parametric tests were met for the 
remaining response variables. A paired t-test was used to com-
pare beetle-damaged versus healthy leaves for all response 
variables.

Results
The beetle-damaged senesced leaves contained holes that rep-
resented 44% of the lamina area. The mean tree height was 4.2 
m. Macronutrient concentrations of green T. catappa leaves were 
within expected ranges and followed the order nitrogen > 
potassium > calcium > phosphorus > magnesium > sulfur 
(Table 1). Micronutrient concentrations were also as expected 
and followed the order manganese > iron > zinc > boron = 
copper > nickel. Of the metals, lead and selenium were detected 
but cadmium, cobalt, and chromium were not detected. 
Nitrogen:phosphorus was 4.8 ± 0.3, nitrogen:potassium was 
1.2 ± 0.1, and potassium:phosphorus was 4.0 ± 0.1.

Beetle herbivory exerted a marked influence on leaf chem-
istry of senesced leaves (Table 2). Lignin was reduced 39% 
and nitrogen was reduced 22% in beetle-damaged leaves in 
comparison to healthy leaves. Other nutrients that were 
reduced by beetle herbivory were calcium, magnesium, man-
ganese, and boron. In contrast, the potassium content of bee-
tle-damaged leaves was 45% higher than the potassium levels 
in healthy leaves. Nickel content of beetle-damaged leaves 
was 300% higher than the nickel levels in healthy leaves. 
Carbon, phosphorus, sulfur, iron, zinc, and copper were nutri-
ents that were unaffected by beetle herbivory. Of the metals, 
cadmium and chromium were reduced by beetle herbivory, 
but cobalt, lead, and selenium were not influenced by beetle 
herbivory.

Figure 1.  Healthy Terminalia catappa tree (red arrow) grows adjacent to a beach with mangrove trees (A). Shot-hole appearance of T. catappa leaves 

caused by beetle herbivory (B).

http://imagej.nih.gov/ij/
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Table 1.  Chemical traits from the youngest fully expanded green Terminalia catappa leaves (n = 10).

Trait Mean + SE Trait Mean + SE

Nitrogen (mg·g-1) 12.9 ± 1.2 Copper (µg·g-1) 15.5 ± 0.7

Phosphorus (mg·g-1) 2.7 ± 0.1 Boron (µg·g-1) 16.8 ± 2.5

Potassium (mg·g-1) 10.8 ± 0.2 Cadmium (µg·g-1) ND

Calcium (mg·g-1) 9.3 ± 2.8 Cobalt (µg·g-1) ND

Magnesium (mg·g-1) 2.1 ± 0.2 Chromium (µg·g-1) ND

Sulfur (mg·g-1) 1.7 ± 0.1 Nickel (µg·g-1) 1.1 ± 0.3

Iron (µg·g-1) 32.2 ± 3.8 Lead (µg·g-1) 0.4 ± 0.3

Manganese (µg·g-1) 41.2 ± 3.9 Selenium (µg·g-1) 7.6 ± 0.2

Zinc (µg·g-1) 26.3 ± 2.5  

ND: not detected.

Table 2.  Chemical traits from senesced Terminalia catappa leaves as influenced by beetle herbivory. Mean ± SE (n = 10).

Trait Healthy Beetle-damaged t-value P

Lignin (mg·g-1) 227.4 ± 10.0 137.7 ± 8.7 8.93 <.0001

Carbon (mg·g-1) 452.1 ± 7.5 444.7 ± 8.1 0.74 .4802

Nitrogen (mg·g-1) 8.7 ± 0.5 6.8 ± 0.4 4.14 .0025

Phosphorus (mg·g-1) 1.0 ± 0.1 0.9 ± 0.2 0.68 .2515

Potassium (mg·g-1) 1.1 ± 0.1 1.6 ± 0.2 3.63 .0055

Calcium (mg·g-1) 38.9 ± 2.6 30.4 ± 2.0 3.16 .0116

Magnesium (mg·g-1) 3.6 ± 0.2 3.2 ± 0.1 2.57 .0303

Sulfur (mg·g-1) 0.6 ± 0.01 0.6 ± 0.01 1.76 .1120

Iron (µg·g-1) 54.3 ± 3.8 56.6 ± 3.1 0.60 .5631

Manganese (µg·g-1) 270.0 ± 29.6 142.3 ± 22.6 4.31 .0020

Zinc (µg·g-1) 33.8 ± 1.8 35.4 ± 2.5 0.64 .5384

Copper (µg·g-1) 7.9 ± 0.5 9.5 ± 0.8 2.08 .0677

Boron (µg·g-1) 41.3 ± 2.5 33.6 ± 1.8 3.07 .0134

Cadmium (µg·g-1) 0.4 ± 0.03 0.3 ± 0.02 3.85 .0039

Cobalt (µg·g-1) 0.2 ± 0.02 0.2 ± 0.01 0.85 .4171

Chromium (µg·g-1) 1.0 ± 0.2 0.5 ± 0.03 2.91 .0174

Nickel (µg·g-1) 0.3 ± 0.04 1.2 ± 0.3 3.48 .0070

Lead (µg·g-1) 1.7 ± 0.5 1.0 ± 0.4 1.36 .2057

Selenium (µg·g-1) 2.5 ± 0.3 2.1 ± 0.2 1.60 .1449
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The derived stoichiometry traits that define litter quality and 
leaf senescence dynamics were varied in the direction of change 
in response to beetle herbivory (Table 3). Lignin:nitrogen, 
lignin:phosphorus, lignin:potassium, and carbon:potassium of 
beetle-damaged leaves were greatly reduced when compared to 
healthy leaves (range of 26%–56% reduction). In contrast, 
carbon:phosphorus was not affected and carbon:nitrogen was 
increased 22% by beetle herbivory. Nitrogen resorption was 
increased 43%, potassium resorption was decreased 6%, and 
phosphorus resorption was unaffected by beetle herbivory.

Discussion
No native herbivore is known to damage T. catappa leaves with 
the shot-hole appearance, so attributing the changes that were 
measured to the three non-native beetles that produce this 
form of damage is unambiguous. This first look at how non-
native beetle damage to T. catappa leaves altered leaf chemistry 
indicated the changes were substantial. The results provide an 
example of the need to consider all direct and indirect plant 
responses to non-native insect herbivory as a means of under-
standing chemical ecology changes as a component of invasion 
biology.9–11

Lignin, nitrogen, calcium, magnesium, and manganese were 
among the chemical constituents that were significantly 
reduced by beetle herbivory. This response could be due to 
preferential consumption of these constituents in relation to 
the other leaf constituents, or it could be due to stimulation of 
increased resorption during senescence following the 
herbivory.

Several published reports of T. catappa leaf chemistry allow 
direct comparisons to my results. Analyses of metal content of 
T. catappa leaves was reported in India to more fully understand 
how leaves used for herbal remedies may pose a human health 
risk.12 The relative ranking of manganese, zinc, iron, and lead 

contents were similar to the results herein. Copper and zinc 
concentrations reported herein were within the range of T. cat-
appa leaves from various contaminated sites in India, but my 
cadmium and lead concentrations were below the range from 
these same sites.13 In Philippine sites containing excessive cad-
mium or chromium, cadmium was accumulated in T. catappa 
roots and chromium was accumulated in stems, but neither 
revealed appreciable concentration in leaves.14 Unfortunately, 
none of these reports included adequate detail about leaf age in 
the methods, and only two included the date of collection, so 
meaningful comparisons among the studies are not readily 
enabled. Numerous minerals were quantified in T. catappa tis-
sues in Brazil,15 but because total content rather than concen-
tration was reported, there is no approach to compare their 
results with the literature. Element mass expressed on leaf mass 
or leaf area basis is accepted for use so experimental results can 
be contributory to the worldwide leaf economic spectrum lit-
erature on green16,17 or senesced18 leaf traits.

Green leaf stoichiometry indicated these T. catappa trees 
were nitrogen-limited by using nitrogen:phosphorus or 
nitrogen:potassium as the diagnostic.19–23 The potassium: 
phosphorus quotient revealed phosphorus was more limiting of 
T. catappa in these Guam habitats than was potassium.19

Climate,24,25 soil chemical and biological traits,26 and litter 
quality27,28 are the main drivers of decomposition rate. In an 
insular setting where climate and soils are similar, the chemical 
and structural traits of the individual components of leaf litter 
exert the greatest influence on leaf litter decomposition. 
Therefore, stoichiometric traits of senesced leaf tissue allow a 
prediction of litter decomposition speed. The direction and 
extent of changes to litter quality caused by insect herbivory are 
not universal. Following herbivory, litter quality and speed of 
litter decomposition can be increased or decreased depending 
on the host-herbivore combination.29-31

Table 3.  Stoichiometry and resorption traits of senesced Terminalia catappa leaves as influenced by beetle herbivory. Mean ± SE (n = 10).

Trait Healthy Beetle-
damaged

t-value, log-
transformed

P

Lignin:nitrogen 27.6 ± 2.6 20.3 ± 2.4 2.40 .0272

Lignin:phosphorus 234.0 ± 20.0 158.1 ± 14.1 3.63 .0019

Lignin:potassium 214.9 ± 18.0 94.8 ± 13.2 5.96 <.0001

Carbon:nitrogen 53.4 ± 2.8 65.4 ± 2.7 3.29 .0041

Carbon:phosphorus 466.0 ± 28.4 502.3 ± 40.2 0.66 .5176

Carbon:potassium 424.9 ± 33.5 297.1 ± 23.7 3.75 .0015

Nitrogen resorption (%) 32.8 ± 3.1 47.0 ± 3.4 4.13 .0025

Phosphorus resorption (%) 64.2 ± 2.2 66.2 ± 2.3 0.64 .5359

Potassium resorption (%) 90.0 ± 1.4 84.8 ± 1.0 3.81 .0041
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The use of senesced T. catappa leaf stoichiometry to predict 
litter decomposition speed revealed contrasting results. All three 
quotients derived with lignin as the numerator indicated beetle 
herbivory would increase T. catappa litter decomposition speed, 
as the quotients were reduced by herbivory. However, the three 
quotients derived with carbon as the numerator were erratic 
with regard to decomposition predictions. Carbon:potassium 
predicted increased, carbon:nitrogen predicted decreased, and 
carbon:phosphorus predicted no change in litter decomposition 
speed following beetle herbivory. As a group, the absolute lignin 
and carbon content and the stoichiometric traits indicate beetle 
herbivory increased litter quality of senesced T. catappa leaves.5

Recent invasions of Guam by specialist herbivore insects of 
Cycas micronesica32 and Cocos nucifera33 generated similar leaf 
chemical responses to the feeding damage. Universally, senesced 
leaf litter quality was increased by the damage caused by the 
non-native insects. The combined results from multiple host 
tree species in Guam indicate that the patterns of nutrient 
sequestration in the litter layer may be disrupted by the invasive 
pests such that the rate of nutrient release will be substantially 
increased. This will shorten the timespan in which carbon is 
sequestered in the litter layer of Guam and therefore exert rel-
evance to the ongoing debate of how anthropogenic activities 
are influencing the carbon cycle.
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