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What is a Biofilm?

Biofilms have been defined as complex microbial associations 
anchored to abiotic or biotic surfaces. This structure may be 
formed by a single or multiple microbial species. The cells are 
embedded in extracellular matrix produced by the biofilms 
themselves by which they interact with each other and the 
environment. However, a new definition of biofilm has been 
proposed taking other physiological attributes of the micro-
organisms forming biofilm into account. Therefore, biofilm is 
defined as a microbiologically derived sessile community charac-
terized by cells that are irreversibly attached to a substratum or 
interface or each other, are embedded in a matrix of extracellular 
polymeric substances that they have produced and exhibit an 
altered phenotype with respect to growth rate and gene tran-
scription.1 Biofilm formation has been observed by most of the 
bacteria found in natural, clinical and industrial settings. The 
matrix contains several substances such as polysaccharides, pro-
teins and DNA from the microorganisms and this matrix pro-
vides structural stability to the biofilm.2 The biofilm structure 
provides protection to the cells against host-defense mecha-
nisms, phagocytosis, biocides, hydrodynamic shear forces and 
antibiotic treatment.3,4 Biofilm is considered to be responsible 
for 65% of all bacterial infections.5
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Biofilms are complex microbial associations anchored to abiotic 
or biotic surfaces, embedded in extracellular matrix produced 
by the biofilms themselves where they interact with each other 
and the environment. One of the main properties of biofilms 
is their capacity to be more resistant to antimicrobial agents 
than planktonic cells. Efflux pumps have been reported as one 
of the mechanisms responsible for the antimicrobial resistance 
in biofilm structures. Evidence of the role of efflux pump in 
biofilm resistance has been found in several microorganisms 
such as Pseudomonas aeruginosa, Escherichia coli and Candida 
albicans. However, in spite of the studies on the importance 
of efflux pumps in biofilm growth and about their relevance 
in antimicrobial resistance forming biofilm, the exact role of 
these efflux systems has not been determined as yet.
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Biofilm formation is developed in three main stages (Fig. 1): 
(1) attachment, the cells arrive to the surface and adhere to this 
surface; (2) growth and maturation, they begin to produce the 
exopolysaccharide that constitutes the matrix and mature from 
microcolonies to multilayered cell clusters; (3) detachment, the 
cells take on a planktonic state and can thereby form biofilm in 
other settings.6 It has been proposed that detachment mecha-
nisms can be divided into two categories: active and passive. 
Active detachment refers to mechanisms initiated by the bac-
teria themselves, such as enzymatic degradation of the biofilm 
matrix, quorum sensing, etc. On the other hand, passive detach-
ment refers to that mediated by external forces such as fluid shear, 
abrasion and human intervention.7 It has also been proposed that 
the detachment process may be caused by bacteriophage activity 
within the biofilm.8

Mechanisms of Antimicrobial Resistance  
in Bacteria inside the Biofilm Structures

One of the main properties of bacteria in biofilms is their capac-
ity to be more resistant to antimicrobial agents than planktonic 
cells. This feature makes it difficult to eradicate infections caused 
by biofilm forming bacteria, constituting a serious clinical prob-
lem.9 Biofilm structures show maximum resistance to antibiotics 
in the mature stage.2

Several mechanisms are reportedly responsible for the antimi-
crobial resistance in biofilm structures:

(1) poor diffusion of antibiotics through the biofilm polysac-
charide matrix, although some antibiotics are able to penetrate 
the matrix;10

(2) physiological changes due to slow growth rate and star-
vation responses (oxygen, nutrient deprivation or environmental 
stress);11,12

(3) phenotypic change of the cells forming the biofilm;4

(4) quorum-sensing, although their exact role is not clear;13

(5) the expression of efflux pumps;14

(6) persister cells: small fractions of persistent bacteria that 
resist killing when exposed to antimicrobials. The persistent cells 
are not mutants.15

Drug efflux is a key mechanism of resistance in Gram-
negative bacteria. These systems pump solutes out of the cell. 
Efflux pumps allow the microorganisms to regulate their internal 
environment by removing toxic substances, including antimicro-
bial agents, metabolites and quorum sensing signal molecules.16 
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of virulence factors as well as biofilm differ-
entiation.30 Chan et al.31 demonstrated that 
QS controlled processes such as biofilm for-
mation were dependent on BpeAB-OprB 
efflux pump function in Burkholderia pseu-
domallei. In Pseudomonas aeruginosa, it has 
been observed that a mutation in a probable 
RND-like efflux pump transporter downreg-
ulates QS-dependent lecA::lux expression.32 
Posterior studies have also demonstrated that 
QS is partly dependent upon efflux. Thus, the 
signal molecule 3OC12-HSL requires active 
transport through an efflux pump (through 
efflux pumps?) to diffuse across the cell mem-

brane in P. aeruginosa.16 Therefore, an increase in efflux pump 
activity could have several effects on biofilm formation through 
an increase in the extrusion or intrusion of QS molecules.33

The Role of Efflux Pumps  
in Pseudomonas aeruginosa Biofilms

P. aeruginosa is one of the main causes of both nosocomial infec-
tions in immunocompromised patients and chronic infections in 
patients with cystic fibrosis.16

The intrinsic resistance of P. aeruginosa to numerous antibiot-
ics is even more pronounced when this organism is found grow-
ing in a biofilm.5

Several studies have demonstrated that some antibiotics can 
diffuse through the biofilm exopolysaccharide matrix while 
showing a reduced rate of transfer.34,35

It is known that biofilms are constituted by metabolically 
active and inactive cell subpopulations. These subpopulations 
show different susceptibility phenotypes against antibiotics since 
many antibiotics require metabolically active cells to be effec-
tive.36 The slow growing cells of a biofilm therefore represent 
a resistant population.11 It has been observed that active sub-
populations show sensitivity to ciprofloxacin, tetracycline and 
tobramycin, and inactive subpopulations are resistant to these 
antibiotics.36

Multidrug resistance (MDR) pumps play an important role 
in the antibiotic resistance of planktonic P. aeruginosa.37 This 
microorganism presents several putative MDR efflux pump 
encoding genes belonging to the RND family of bacterial trans-
porters. Among these, MexAB-OprM, MexCD-OprJ, MexEF-
OprN and MexXY have been the most widely studied.38-41

P. aeruginosa biofilms exhibit increased resistance to several 
antibiotics, such as tetracycline, chloramphenicol, quinolones, 
β-lactams and these resistance patterns are closely related to drug 
profiles that are actively effluxed by the MexAB-OprM pump. 
It has been demonstrated that MexAB-OprM plays a role in 
the resistance of aztreonam, gentamicin, tetracycline and tobra-
mycin in biofilm structures. However, both MexCD-OprJ and 
MexEF-OprN do not seem to contribute to antibiotic resistance 
in biofilms.30

The expression of MexAB-OprM differs among the biofilm 
populations, being maximum in cells located in the substratum.30

Efflux pumps may be formed by a single-component or by multi-
ple components, with the latter being found exclusively in Gram-
negative bacteria.17

Bacterial drug efflux pumps have been classified into six fam-
ilies by the number of components, the number of transmem-
brane-spanning regions, the energy source used by the pump and 
the types of molecules that the pump exports18,19 (Fig. 2):

(1) the ATP-binding cassette (ABC) superfamily;20

(2) the major facilitator superfamily (MFS);21

(3) the multidrug and toxic compound extrusion (MATE);22

(4) the small multidrug resistance (SMR) family;23

(5) the resistance-nodulation-division (RND) superfamily;24-26

(6) the drug metabolite transporter (DMT) superfamily.19

The major clinically relevant efflux systems in Gram-negative 
bacteria belong to the RND superfamily and are typically com-
posed of a cytoplasmic membrane pump, a periplasmic protein 
and an outer membrane protein channel. Over the past several 
years, while further characterizing previously-studied drug efflux 
pumps including RND systems, novel efflux systems have also 
been identified in Gram-negative bacteria.27 In the case of Gram-
positive bacteria, MFS (for example, Bmr and Blt in Bacillus sub-
tilis and NorA in Staphylococcus aureus) and the ABC transporters 
are the most frequently efflux pumps systems found.27 For fur-
ther review, see reference 27.

In spite of the studies related to the importance of efflux 
pumps in biofilm growth and their relevance in biofilm antimi-
crobial resistance, the exact role of these efflux systems has yet to 
be determined.

We present a review of the literature about the role of efflux 
pumps in biofilm resistance.

The Relationship between Quorum Sensing  
and Efflux Systems

Quorum sensing (QS), or cell-to-cell signaling, is the controlled 
expression of specific genes in response to extracellular chemical 
signals produced by bacteria themselves.16

It is well known that QS plays a role in the development of 
biofilm.28 The connection between QS and biofilm is known as 
sociomicrobiology.29

Efflux systems have been implicated in QS regulation, and 
it is well known that QS controls the expression of a number 

Figure 1. Steps in biofilm formation.
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The Role of Efflux Pumps  
in Escherichia coli Biofilms

E. coli is the Enterobacteriaceae most studied worldwide. It can 
be found as a comensal microorganism in the human gut but can 
also be found as a pathogen causing several infections such as 
urinary tract infections (UTIs), sepsis, etc. Several studies have 
reported that E. coli biofilms have higher antibiotic resistance 
than planktonic cells and that expression of several gene-encoded 
efflux pumps was increased in biofilm.45

The AcrAB-TolC system which belongs to the RND family is 
the best characterized efflux pump in E. coli and has been found 
to be overexpressed by clinical isolates.46 The substrates that this 
pump can export include chloramphenicol, fluoroquinolones, 
fusidic acid, rifampicin, tetracycline, ethidium bromide, bile 
salts, SDS, etc.47 The AcrAB-TolC efflux pump-encoded genes 
have been found to be upregulated under growth in biofilms and 
exposure to several antibiotics.47-49

In uropathogenic E. coli (UPEC), the putative multidrug-
resistant pump YhaQ was reported to be involved in antibiotic 
resistance of bacteria in biofilm. The RapA regulatory protein 
appears to increase the transcription of the putative multidrug 
resistance pump gene yhcQ and evidence suggests that this 

Other studies have reported that MexAB-OprM and 
MexCD-OprJ are involved in biofilm resistance to the macrolide 
azithromycin.42

Zhang et al.43 described a novel efflux pump in P. aeruginosa 
named PA1874-1877, the expression of which was higher in bio-
film than during planktonic growth. This pump appears to be 
involved in biofilm resistance to ciprofloxacin, gentamicin and 
tobramycin.

It has been demonstrated that colistin is able to kill the inac-
tive subpopulation located deep in P. aeruginosa biofilm, whereas 
the active subpopulation located in the upper layer survives this 
compound. Studies using colistin as an antimicrobial agent have 
shown that the mexAB-oprM genes are expressed by the active 
subpopulation in P. aeruginosa biofilm under colistin exposure 
and these genes are required for the development of colistin 
tolerance.36

It has also been demonstrated that resistance to ofloxacin is 
dependent on the expression of the MexAB-OprM pump at a low 
range of ofloxacin concentrations.42

In addition, the mexCD-oprJ genes were also induced in the 
active subpopulation in P. aeruginosa biofilm under colistin expo-
sure and these genes were required for tolerance of the active sub-
population in P. aeruginosa biofilm against colistin.44

Figure 2. Efflux pump families.
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fluconazole resistance in early-phase biofilms. The expression of 
the genes encoding these efflux pumps is temporally regulated 
in C. albicans biofilms at different phases of development.67 
Therefore, C. albicans biofilm resistance is a complex and mul-
tifactorial phenomenon and cannot be explained by one mecha-
nism alone.

The Role of Efflux Pumps in Other Bacteria Biofilms 
(Salmonella Typhimurium, Staphylococcus aureus 

and Listeria monocytogenes)

Salmonella Typhimurium, together with Salmonella Enteritidis, 
are the two Salmonella serotypes most frequently isolated. These 
bacteria cause gastroenteritis, and only 1–4% of human infec-
tions are caused by invasive salmonellosis. As in the case of  
E. coli, the AcrAB-TolC system is the efflux pump most fre-
quently studied in Salmonella Typhimurium, being similar to 
that of E. coli.68 Several studies have observed an increase of rela-
tive expression levels of the acrA and acrB genes in biofilm cells 
of this microorganism.69 Another study observed that the pres-
ence of the biocide triclosan upregulates the expression of acrAB 
pump genes and marA pump activator genes in Salmonella bio-
film cells.70

Recently, the role of 9 multidrug-resistant efflux pumps of 
Salmonella has been demonstrated in biofilm formation. Mutants 
in these efflux pumps showed differences in curli production, 
which is an essential component of the Salmonella extracellular 
matrix of biofilm, and is, therefore, in biofilm.71

S. aureus is an important community- and major hospital-
acquired pathogen.72 Six efflux pumps have been described as 
mechanisms of resistance in S. aureus. For instance, NorA, NorB 
and NorC are MDR pumps that confer resistance to quinolones 
and other antimicrobial agents; ant Tet38 is specific for tetra-
cycline resistance.73 In relation to biofilm, one study reported 
finding a polymicrobial-biofilm-associated multidrug S. aureus 
isolate carrying a multidrug resistant(?) gene cluster including 
the macrolide efflux pump msrA.74

Listeria monocytogenes is a Gram-positive bacteria responsible 
for listeriosis outbreaks and causes severe infections in fetuses, 
newborns and immunocompromised individuals, with a mortal-
ity rate of about 28%.75 Biofilm has been suggested to be the main 
mechanism of persistence used by L. monocytogenes.76 An ABC-
transporter, involved in negative regulation of biofilm formation 
by L. monocytogenes, has been identified (Lm.G_1771ABC). A 
mutant in one of the components of this ABC transporter causes 
a stronger increase in the capacity to form biofilm. This trans-
porter may be an efflux protein exporting signaling molecules 
that activates a pattern of genome expression characteristic of 
planktonic growth of L. monocytogenes.75

The Effect of Efflux Pump Inhibitors on Biofilm

Efflux-pump inhibitors (EPIs) are substances that inhibit the flux 
of substances mediated by efflux pumps. These efflux pumps 
are considered as important drug targets for the development of 
combination strategies using antibiotic efflux inhibitors.77,78

protein also contributes to the biofilm-specific penicillin G 
resistance.50

Enteroaggregative E. coli (EAEC) is an emerging enteric 
pathogen in both developing and developed countries.51,52 The 
main characteristics of this pathogen are its capacity of aggrega-
tive adherence to Hep-2 cells in culture53 and to form biofilm in 
the intestinal mucosa.54

The protein TolC, that acts a channel in the transport of 
molecules across the outer membrane and in the export of many 
molecules such as antibiotics,55 is also required for adhesion and 
biofilm formation in EAEC. Mutants of the tolC gene showed a 
decrease in adhesion and biofilm formation, related to a reduc-
tion in aggregative fimbriae expression.56 This protein, together 
with the AcrAB proteins, form an efflux pump. The AcrAB-
TolC system has been reported to be associated with bacterial 
colonization and persistence.19 Results from different studies are 
contradictory. Maira-Litran et al.57 observed that ciprofloxacin 
resistance in biofilms did not correlate with the expression of 
AcrAB or MarA in E. coli; however, other studies have shown 
that the expression of AcrAB only protects E. coli forming biofilm 
against low concentrations of ciprofloxacin.57

Most of the studies on the relationship between efflux pumps 
and biofilm formation in E. coli are related to their role in biofilm 
formation. It has been demonstrated that E. coli mutants lack-
ing the emrD, emrE, emrK, acrD, acrE and mdtE efflux pump 
encoding genes show extremely lower biofilm formation than the 
original strain. These six genes belong to the genes encoding the 
proton motive force (PMF) pump. Therefore, PMF pumps are 
considered to have important roles in the biofilm formation of 
E. coli. Indeed, these pumps may contribute to biofilm formation 
via the export or import of some substances that are necessary for 
or harmful to biofilm formation.58

The Role of Efflux Pumps  
in Candida albicans Biofilms

Candida is a pleomorphic fungus that can exist either as a com-
mensal or opportunistic pathogen with the capacity to cause a 
wide variety of infections.59 Candida biofilms share several char-
acteristics with bacterial biofilms: (1) biofilm growth enhanced 
resistance to antimicrobial agents and (2) biofilm protects against 
host-defenses. Both characteristics are the main reasons why 
biofilm-associated infections are difficult to eradicate by conven-
tional treatment.60

C. albicans possess two types of efflux-pumps: (1) adenosine 
triphosphate-binding cassette (ABC) transporters encoded by 
the CDR genes and (2) major facilitators encoded by the MDR 
genes.61,62 Genes encoding for both types of efflux pumps are 
upregulated during biofilm formation and development.63,64 The 
efflux pumps encoded by the CDR1, CDR2 and MDR1 genes 
are first employed as a means of cellular detoxification exporting 
toxic substances to the exterior of the cell.64

C. albicans biofilms are resistant to the antifungal agent fluco-
nazole. It has been estimated that biofilms are up to 4,000 times 
more resistant to fluconazole in comparison with planktonic 
cells.65,66 Efflux pumps play an additive role in contributing to 
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bacteria, such as E. coli, Klebsiella pneumonia, S. aureus and 
P. putida.82 PAβN was the first EPI identified and, in combina-
tion with fluoroquinolones, showed inhibitory capacity against 
AcrAB-TolC, MexAB-OprM, MexCD-OprJ and MexEF-OprN 
pumps.78 PAβN and CCCP (a proton motive force uncouple) 
had great ability to repress biofilm formation by the inhibition 
of efflux pumps.71

EPIs from natural sources have also shown antibiofilm activity. 
Thus, the natural EPI caffeoylquinic acid (CQA) from Artemisa 
absinthium reduces biofilm viability in combination with subin-
hibitory concentrations of ethidium bromide and moxifloxacin 
in S. aureus and Enterococcus faecalis. This EPI acts by enhancing 
the killing effect of these compounds.83

Therefore, due to their characteristics, EPIs could be used as 
enhancers of the antibiotics used in the treatment of biofilm.82

In summary, there is currently insufficient knowledge as to the 
role of efflux pumps in biofilm resistance and, thus, further stud-
ies are needed to elucidate the role of these systems in bacterial 
biofilms. However, the existing studies show that efflux pumps 
could be an attractive target for antibiofilm drug development.
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EPIs are generally simple, robust and cheap chemicals which 
are well tolerated by humans.79 EPI compounds must show the 
following criteria:80

(1) they must enhance the activity of the pump substrates;
(2) they should not show activity in efflux pump mutants;
(3) they must increase the accumulation and decrease the 

extrusion of efflux pump substrates;
(4) they must not affect the proton gradient across the cyto-

plasmic membrane.
Inhibition of this efflux activity may be performed in different 

ways:81

(1) Alternating the regulatory steps in the expression of efflux 
pumps,

(2) Inhibiting the functional assembly of the multi-compo-
nent pump,

(3) Blocking the outer membrane channel (TolC, OprM) 
with a plug,

(4) Collapsing the energy of efflux,
(5) Creating competitive or non-competitive inhibition with 

a nonantibiotic molecule to the affinity sites of the efflux pump,
(6) Changing the chemical design of previous antibiotics to 

reduce the affinity for efflux recognition and binding sites.
Some EPIs can also inhibit bacterial biofilm formation. Thus, 

thioridazine, Phe-Arg β-naphthylamide (PAβN) or the arylpi-
perazine NMP are some of the compounds categorized as efflux 
pump inhibitors. It has been observed that the addition of these 
compounds significantly reduced formation of biofilm in several 
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