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Abstract

Real-time functional magnetic resonance imaging (fMRI) neurofeedback is an experimental 

framework in which fMRI signals are presented to participants in a real-time manner to change 

their behaviors. Changes in behaviors after real-time fMRI neurofeedback are postulated to be 

caused by neural plasticity driven by the induction of specific targeted activities at the neuronal 

level (targeted neural plasticity model). However, some research groups argued that behavioral 

changes in conventional real-time fMRI neurofeedback studies are explained by alternative 

accounts, including the placebo effect and physiological artifacts. Recently, decoded 

neurofeedback (DecNef) has been developed as a result of adapting new technological 

advancements, including implicit neurofeedback and fMRI multivariate analyses. DecNef provides 

strong evidence for the targeted neural plasticity model while refuting the abovementioned 

alternative accounts. In this review, we first discuss how DecNef refutes the alternative accounts. 

Second, we propose a model that shows how targeted neural plasticity occurs at the neuronal level 

during DecNef training. Finally, we discuss computational and empirical evidence that supports 

the model. Clarification of the neural mechanisms of DecNef would lead to the development of 

more advanced fMRI neurofeedback methods that may serve as powerful tools for both basic and 

clinical research.
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1. Introduction

Real-time functional magnetic resonance imaging (fMRI) neurofeedback refers to a tool that 

provides participants with real-time feedback based on fMRI signals to modify participants’ 

behavior (Sitaram et al., 2017). This article reviews findings obtained from the use of a new 

real-time fMRI neurofeedback method, termed decoded neurofeedback (DecNef) (Shibata et 

al., 2011), and discusses how DecNef modifies neural mechanisms that subsequently result 

in behavioral changes.

DecNef has been developed by integrating recently advanced technologies of real-time fMRI 

neurofeedback, including implicit neurofeedback, and the introduction of an fMRI 

multivariate analysis to real-time fMRI neurofeedback (Shibata et al., 2011; Watanabe et al., 

2017). In most conventional real-time fMRI neurofeedback studies, feedback is based on the 

overall mean amplitude of fMRI signals within a target brain region, and participants are 

provided with certain explicit strategies to effectively regulate their brain activities 

(deCharms et al., 2004, 2005; Scharnowski et al., 2012; Scheinost et al., 2013). On the other 

hand, DecNef induces specific fMRI signal patterns in a local and target brain region and 

changes a specific behavior without participants’ awareness of the purpose of the experiment 

(Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2011, 

2016b; Taschereau-Dumouchel et al., 2018). DecNef has been reported to change various 

behaviors, including visual sensitivity (Shibata et al., 2011), color perception (Amano et al., 

2016), fear memory (Koizumi et al., 2016; Taschereau-Dumouchel et al., 2018), perceptual 

confidence (Cortese et al., 2016, 2017) and facial preference (Shibata et al., 2016b). 

Importantly, DecNef resulted in behavioral changes in a study using a double-blind 

procedure (Taschereau-Dumouchel et al., 2018).

Despite these successful results, the underlying neural mechanisms of DecNef remain 

unclear. For instance, some research groups argued that, at least in conventional real-time 

fMRI neurofeedback studies, the effects of neurofeedback training could be explained by the 

placebo effect or physiological artifacts (Thibault et al., 2016, 2017b, 2017a). Thus, in an 

attempt to obtain a comprehensive understanding of the neural mechanisms of DecNef, 

discussions and examinations of whether the neural and behavioral changes reported in the 

previous DecNef studies occurred due to DecNef training itself or other factors, including 

the placebo effect and physiological artifacts, are important. In this review, we propose the 

“targeted neural plasticity model” in which DecNef leads to plasticity at the neuronal level 

in a target brain region, which in turn causes behavioral changes.

First, we describe how the results of DecNef support the targeted neural plasticity model and 

refute alternative accounts, including the placebo effect and physiological artifacts. Second, 

we explain computational aspects of the model. In particular, we discuss how specific 

activities at the neuronal level are induced by neurofeedback signals that are generated at the 

voxel (a spatial unit of fMRI signals) level. Third, based on datasets obtained from previous 

DecNef studies (Amano et al., 2016; Cortese et al., 2016; Koizumi et al., 2016; Shibata et 

al., 2011, 2016b), we provide empirical evidence to support the model. Finally, we show the 

results of neural-network simulations based on the model and indicate how DecNef may 

selectively enhance specific activities at the neuronal level based on the feedback signal 

Shibata et al. Page 2

Neuroimage. Author manuscript; available in PMC 2019 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computed at the voxel level. Clarification of these mechanisms would further advance fMRI 

neurofeedback techniques as powerful neuroscientific tools.

2. How DecNef results support the target plasticity model

We propose the targeted neural plasticity model, in which DecNef induces specific target 

activities at the neuronal level in a target brain region and repetitive inductions of these 

activities cause plasticity, which in turn results in a specific behavioral change, to clarify 

how DecNef sequentially alters neural mechanisms and behaviors (Fig. 1, red arrows).

We first outline the characteristics of DecNef and achievements of studies using DecNef 

(Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2011, 

2016b; Taschereau-Dumouchel et al., 2018). Next, we indicate the validity of this model 

while refuting alternative accounts.

2.1. Outline of DecNef

DecNef has been developed as a result of the integration of recently advanced technologies, 

including implicit neurofeedback and fMRI multivariate analysis. In the following sections, 

we describe each of these methodological aspects of DecNef.

2.1.1. Implicit neurofeedback—An implicit neurofeedback method provides 

participants with no explicit instructions to achieve better neurofeedback performance 

during fMRI neurofeedback training (Watanabe et al., 2017). This implicit neurofeedback 

differs from conventional methods in which participants are provided with guidance and/or 

certain explicit strategies to effectively regulate their fMRI signals. At the end of each trial 

of a neurofeedback training session, participants are presented with a number or a visual 

stimulus that reflects how well induced fMRI signals from the target brain region reflect a 

predetermined criterion. In an implicit neurofeedback method, participants are merely asked 

to make an effort to achieve better scores, without being informed of the purpose of the 

experiment, how the criterion has been determined or how to match induced fMRI signals to 

the criterion. According to recent studies, the implicit neurofeedback procedure works well 

and significant behavioral changes have occurred as a result of training with implicit 

neurofeedback (Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Ramot 

et al., 2016; Sepulveda et al., 2016; Shibata et al., 2011, 2016b; Taschereau-Dumouchel et 

al., 2018). One advantage of implicit neurofeedback is that this type of feedback reduces or 

eliminates the possibility that a specific intention or explicit strategy influences changes in 

neural activity related to the intention or strategy and participants’ behavior (Watanabe et al., 

2017).

2.1.2. Introduction of an fMRI multivariate analysis to neurofeedback—Real-

time fMRI neurofeedback technologies have been greatly advanced as a result of introducing 

an fMRI multivariate analysis to neurofeedback. The fMRI multivariate analysis is a method 

to extract or decode certain information from fMRI signal patterns (Haxby et al., 2001; 

Haynes and Rees, 2005; Kamitani and Tong, 2005). For example, the multivariate analysis 

enables researchers to identify an orientation that is presented to a participant among 

different orientations based on fMRI signal patterns in the visual cortex with high accuracy 
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(Haynes and Rees, 2005; Kamitani and Tong, 2005). The introduction of the multivariate 

analysis allows neurofeedback to obtain information about signal patterns in a target region 

(deBettencourt et al., 2015; La Conte et al., 2007; Shibata et al., 2011).

In a study by Shibata and colleagues (Shibata et al., 2011), neurofeedback training was 

conducted with feedback scores based on the multivariate signals of activations induced by 

exposure to a specific orientation. In the first stage, a decoder was constructed to classify an 

fMRI signal pattern into one of three different orientations using the multivariate method. 

Participants were exposed to each of the three orientations in an MRI scanner and fMRI 

signal patterns in the early visual cortex were measured. Based on the measured fMRI signal 

patterns, a machine-learning algorithm (Yamashita et al., 2008) computed a set of decoder 

weights for voxels in the early visual cortex to classify the fMRI signal patterns into one of 

the three orientations. In the second stage, one of the three orientations was selected as a 

target orientation for neurofeedback training. An fMRI signal pattern corresponding to the 

target orientation was defined as a target fMRI signal pattern. In the third stage, participants 

underwent real-time neurofeedback training to learn to achieve a larger feedback score. 

During this ‘induction’ stage, a measured fMRI signal pattern in the early visual cortex was 

input into the decoder in real time. Feedback scores reflected the output of the decoder that 

represents likelihood of the target orientation. In this type of neurofeedback training, a disk 

was presented to participants, and a size of the disk reflected feedback scores. Participants 

were instructed to increase the size of the disk to the greatest extent possible. By doing so, 

participants obtained feedback information based on a neural pattern in the target area, and 

repetitive feedback leads to plasticity related to the neural pattern.

2.2. Characteristics of DecNef

Here, we summarize the characteristics of DecNef.

2.2.1. Successful induction of fMRI signal patterns—Using DecNef, participants 

successfully learned to induce a target fMRI signal pattern in a target region (Amano et al., 

2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2011, 2016b; 

Taschereau-Dumouchel et al., 2018). For example, DecNef training significantly increased 

the likelihood of the target orientation from fMRI patterns of activation in early visual areas, 

which was the targeted area (Shibata et al., 2011).

2.2.2. Locational specificity of induced fMRI signals—In DecNef studies, the 

induction of a target fMRI signal pattern is mostly confined to the targeted local cortical 

region (Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 

2011, 2016b; Taschereau-Dumouchel et al., 2018). The location-specific induction of the 

target fMRI signal pattern was tested using a method termed leak analysis, which employs 

the logic described below. During DecNef training, the size of a feedback disk is based on 

the similarity between a current fMRI signal pattern and the target fMRI signal pattern in the 

target region. However, this procedure alone does not ensure that the induction of the target 

fMRI signal pattern is confined to the target region. In concert with the successful induction 

of the target pattern in the target region, fMRI signal patterns representing the induced 

information may occur in some other regions outside the target region during DecNef 
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training. If the target pattern in the target region “leaked out” and induced the patterns 

representing the induced information in other regions, the fMRI signal patterns in those 

regions should be able to reconstruct the information related to the target patterns in the 

target region. In the aforementioned orientation DecNef study, the results of the leak analysis 

showed that fMRI signal patterns located outside the early visual cortex during DecNef 

training were not informative to estimate the likelihood of a target orientation computed 

from fMRI signal patterns within the early visual cortex (Shibata et al., 2011). Based on this 

result, orientation-related information did not leak from the early visual cortex to other 

regions outside the early visual cortex during orientation DecNef training.

Results of recent DecNef studies further supported this locational specificity (Amano et al., 

2016; Shibata et al., 2016b). In these studies, significant information leakage from a target 

region to regions outside the target region occurred when participants were presented with 

actual visual stimuli (Amano et al., 2016) or asked to report their preferences to presented 

face stimuli (Shibata et al., 2016b). Thus, the information leak analysis possesses a sufficient 

power to sensitively detect information leak from the target region to other regions. 

However, during DecNef training, significant information leak to regions outside the target 

region has not been observed (Amano et al., 2016; Shibata et al., 2016b). The results of 

these two analyses further support the locational specificity during DecNef training. 

However, the absence of significance during DecNef training does not necessarily indicate 

an absence of the leak during DecNef training. Thus, a direct statistical comparison between 

the results of the two analyses will be necessary in future studies.

2.2.3. Specificity of behavioral changes—DecNef induces a specific behavioral 

change (Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 

2011, 2016b; Taschereau-Dumouchel et al., 2018). For instance, in the orientation DecNef 

study, participants’ visual sensitivity was specifically improved for the target orientation, but 

not for nontarget orientations (Shibata et al., 2011). Since a specific pattern of behavior 

tends to be subserved by a certain neural activity pattern(s), DecNef is likely to induce 

specific activity pattern(s) at the neuronal level.

2.2.4. No awareness of the material to be learned—As mentioned above, during 

DecNef training, participants are largely unaware of the purpose of experiments and what 

feedback scores represent during DecNef training (Amano et al., 2016; Cortese et al., 2016, 

2017; Koizumi et al., 2016; Shibata et al., 2011, 2016b; Taschereau-Dumouchel et al., 2018). 

This finding was confirmed by two observations. First, answers to the questionnaires 

administered after the entire DecNef procedure have shown that the explicit strategies 

participants thought they had employed during DecNef training generally were not related to 

the purpose of the experiment. Only two of the total number of 90 participants in the 

previous DecNef studies reported that they occasionally used a strategy related to a target 

stimulus during DecNef training. Second, even after participants were informed about the 

general purpose of the experiment, they were not able to specify exactly what they learned. 

In the orientation DecNef study (Shibata et al., 2011), after the end of the experiment, 

participants were informed of the general purpose of the experiment but not in as much 

detail regarding what orientation was supposed to be learned. Then, they were asked to 
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choose which one of three different orientations they thought was supposed to be learned. 

The percentage of participants who chose the correct orientation was not significantly 

different from chance. These results have also been observed in other DecNef studies 

(Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2016b; 

Taschereau-Dumouchel et al., 2018). Based on these findings, DecNef changes participants’ 

behavior in a targeted fashion without participants’ knowledge of the target material to be 

learned.

This implicit nature of DecNef is potentially suitable for avoiding the aversive natures of 

conventional therapeutic methods, such as prolonged exposure therapy that aims to reduce 

the mental distress from which a patient suffers. A problem with exposure therapy is that the 

therapy requires the patient to remember an incident associated with the distress, causing a 

high rate of dropout from therapy (Schnurr et al., 2007). However, because the participants 

were unaware of the purpose of the DecNef experiments, DecNef would be particularly 

effective on reducing distress (Watanabe et al., 2017). For instance, DecNef induces a target 

fMRI signal pattern that represents a certain visual stimulus related to fearful experiences 

without evoking participants’ fear responses to the aversive stimulus (Koizumi et al., 2016), 

at least partially because DecNef did not present the aversive stimulus.

2.2.5. Replication of DecNef results using a double-blind procedure—The 

abovementioned reduction in fear responses by DecNef have been replicated in another 

DecNef experiment that included a double-blind procedure (Taschereau-Dumouchel et al., 

2018). In a double-blind procedure, neither participants nor experimenters were informed of 

which condition or group a participant was assigned (Linden and Turner, 2016; Thibault et 

al., 2017a, 2017b). This procedure excludes the possibility that observed fMRI signals and 

resulting behavioral changes are attributed to the placebo effect and/or specific experimental 

biases when participants guess the purpose of the experiment. Thus, the replication of the 

reduction in fear responses with the double-blind procedure indicates that the placebo effect 

and experimental biases are unlikely to explain the reduction in fear responses.

Notably, the standard DecNef and double-blind DecNef techniques utilize basically the same 

experimental procedure, except for the double-blind procedure to ensure that both 

participants and experimenters were unaware of the purpose of the experiment. Thus, this 

replication of the reduction in fear responses through the double-blind DecNef experiment 

suggests that the same or similar mechanisms underlie learning induced with the standard 

DecNef and double-blind DecNef methods.

2.3. DecNef refutes alternative accounts to the targeted neural plasticity model

The targeted neural plasticity model assumes that real-time fMRI neurofeedback changes 

behaviors due to neural plasticity by inducing specific activities at a neuronal level. 

However, a research group has suggested that changes in fMRI signals and behaviors 

reported in conventional fMRI neurofeedback studies are reflected by other mechanisms 

than targeted neural plasticity (Thibault et al., 2016, 2017b, 2017a). In conventional fMRI 

neurofeedback studies, participants were provided with explicit cognitive strategies that 

enabled them to effectively regulate fMRI signals in a target region (deCharms et al., 2004, 
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2005; Scharnowski et al., 2012; Scheinost et al., 2013). In addition, in most cases, feedback 

signals reflected the overall fMRI amplitudes averaged over voxels within a target brain 

region or a difference in the overall amplitudes between the target and other regions 

(deCharms et al., 2004, 2005; Scharnowski et al., 2012; Scheinost et al., 2013; Sepulveda et 

al., 2016; Weiskopf et al., 2003). Under such experimental settings, various factors, 

including the placebo effect and physiological artifacts, may influence fMRI signals and 

behaviors (Table 1; see Thibault et al., 2017b for a systematic review). In other words, 

behavioral changes observed in the conventional fMRI neurofeedback studies might not be 

due to the induction of neural activities that were targeted during neurofeedback training 

(Fig. 1, blue arrows). This criticism has prompted alternative accounts than the targeted 

neural plasticity model that have been proposed to explain the results of conventional fMRI 

neurofeedback studies (Thibault et al., 2017a, 2017b). In this section, we summarize each of 

these accounts and conclude that none of these accounts applies to DecNef.

2.3.1. Effects of conscious strategy—In conventional fMRI neurofeedback studies, 

participants are instructed to use a certain explicit strategy in order to regulate fMRI signals 

in a target region (deCharms et al., 2004, 2005; Scharnowski et al., 2012; Scheinost et al., 

2013). However, this procedure raises the possibility that neural activities in the target region 

contain the activities related to the strategy itself. Namely, if participants explicitly use a 

specific strategy during fMRI neurofeedback training, it may activate neurons outside and 

inside the target region. Neuronal activities outside the target region might lead to behavioral 

changes.

However, this outcome is unlikely to occur with DecNef in which implicit neurofeedback is 

used and participants remain unaware of the purpose of the experiments during training (see 

Section 2.2.4 for details).

2.3.2. Cardiorespiratory artifact—Respiration influences fMRI signals (Thibault et 

al., 2017b). Cardiorespiratory changes cause a global increase or decrease in fMRI signal 

amplitudes (Abbott et al., 2005; Kastrup et al., 1999). Thus, one possibility is that induced 

changes in fMRI signals are not due to changes in neural activity but to cardiorespiratory 

regulation that participants implicitly learned to induce during fMRI neurofeedback training.

However, the cardiorespiratory artifact is highly unlikely to account for the results of 

DecNef. As discussed above (Section 2.2.1), DecNef allows participants to induce a fine-

grained fMRI signal pattern in a local brain region. The induction of localized fMRI signal 

patterns is not caused by cardiorespiratory regulation that leads to global changes in fMRI 

signal amplitudes. Furthermore, cardiorespiratory artifacts are unlikely to cause behavioral 

changes, including the increased sensitivity to a specific target orientation (Shibata et al., 

2011).

2.3.3. Leakage of neuronal activities from a target region to other regions—
Another possibility is that the induced neuronal activities would leak out from the target 

region and activate specific neurons outside the target region. If this possibility is true, then 

subsequent behavioral changes may be interpreted as resulting from neural plasticity that 

occurred outside the target region.
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However, this possibility was refuted by a number of DecNef studies (Amano et al., 2016; 

Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2011, 2016b; Taschereau-

Dumouchel et al., 2018). First, induced fMRI signal patterns are largely confined to a target 

region (Section 2.2.2). Second, behavioral changes are highly correlated with induced fMRI 

signal patterns in the target region (Section 2.2.3). These results are consistent with our 

model that DecNef activates specific neurons and induces neural plasticity in the target 

region.

2.3.4. Experimenter effect—An experimenter effect refers to an experimental artifact 

in which participants consciously or unconsciously aim to produce the results that meet their 

presumption of the experimenter’s expectations (Kennedy and Taddonio, 1976). In 

conventional fMRI neurofeedback studies, experimenters typically determine to which 

condition and/or experimental group each participant is assigned. In this procedure, 

experimenter effects may occur; participants may try to employ specific strategies based on 

what they think experimenters expect them to do.

However, DecNef results are highly unlikely to be contaminated by the experimenter effect. 

Notably, in the DecNef studies, participants remained unaware of the purpose of the 

experiment (Section 2.2.4) and behavioral changes were still obtained in the DecNef 

experiment using the double-blind procedure (Section 2.2.5). Under these experimental 

conditions, participants would not have the opportunity to determine the experimenter’s 

expected results.

2.3.5. Use of a specific strategy without awareness—One may argue that 

participants use a specific strategy without being aware of using the strategy. Without the 

instruction to use explicit strategies (Section 2.3.1), first, participants might somehow 

manage to notice the true workings of fMRI neurofeedback training and develop a strategy 

that closely matches the target behavior. Second, if participants were unaware of the use of 

the strategy or forgot that they had used the strategy during fMRI neurofeedback training, it 

may not be reported in a postexperiment questionnaire. In this case, changes in behaviors 

might occur due to the use of this type of unconscious strategy.

This account is also highly unlikely to explain the results of DecNef studies. First, with an 

implicit neurofeedback method, participants would not be likely to determine the true 

purpose of DecNef experiments and therefore to develop an effective conscious or 

unconscious strategy for DecNef training. Second, a recent DecNef study using the double-

blind procedure (Taschereau-Dumouchel et al., 2018) replicated the reduction in fear 

responses reported in a DecNef study that did not use the double-blind procedure (Koizumi 

et al., 2016). The same result from the double-blind experiment further reduces the 

probability that participants used a specific strategy that led to the behavioral changes after 

DecNef training. Third, the use of an effective strategy, if any, should lead to better 

neurofeedback scores, and this successful experience of an association between the effective 

strategy and better neurofeedback scores should be clearly remembered by participants. 

However, participants’ reports on their strategies were not related to the true workings of the 

experiment (Section 2.2.4). Thus, it is unlikely that participants used a specific strategy 

during DecNef training.
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The five accounts mentioned above are highly unlikely to explain the results of DecNef. Yet, 

DecNef leads to a specific change in a target behavior, but not in nontarget behaviors 

(Section 2.2.3) (Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata 

et al., 2011, 2016b; Taschereau-Dumouchel et al., 2018). All of these findings are consistent 

with the targeted neural plasticity model and refutes all of the other accounts discussed 

above.

3. Proposed mechanisms of targeted neural plasticity

How does targeted neural plasticity occur through DecNef? As discussed above, during 

DecNef training, the induction of specific target activities at the neuronal level in a target 

region is likely to cause neural plasticity that is manifested as changes in behavior.

In this section, we first introduce a prerequisite and an assumption by which DecNef may 

critically achieve the target neural plasticity. The proposed reinforcement learning 

characteristics necessitate a low dimensionality of neuronal activities. Furthermore, a target 

neuronal activity is included in the spontaneous neuronal activities of a target region from 

the beginning of the induction stage. Next, we discuss the computational plausibility of the 

prerequisite and assumption. Third, we discuss how the target neural plasticity model built 

based on the prerequisite and assumption (Fig. 2) resolves possible computational issues in 

DecNef.

3.1. Reinforcement learning based on feedback signals during DecNef

How does the brain learn to induce specific target activities at the neuronal level based on 

feedback signals during DecNef training? Since DecNef is a type of learning in the brain, it 

should follow at least one of the three learning principles: unsupervised, supervised and 

reinforcement learning (Doya, 1999). Unsupervised learning is driven by the principle of an 

increased probability of previous activities based on external sensory inputs, including visual 

stimuli. Supervised learning is based on the principle that neural activities are modified 

toward exact target activities as teaching signals. Reinforcement learning occurs by the 

modification of neural activities such that specific neuronal activities become more likely to 

occur when the activities are correlated with a reward.

First, unsupervised learning does not match the DecNef procedures. As described above, 

unsupervised learning is driven by external sensory inputs including visual stimuli that are 

intended to be learned during DecNef training. However, these external inputs are not 

presented to participants during DecNef training. A feedback signal about the success of 

DecNef induction, which is visually presented to participants in the form of the size of a 

disk, is not designed to contain any information related to the stimulus (e.g., orientation, 

color, or preference) to be learned.

Second, supervised learning may not occur through DecNef either. As described above, 

supervised learning requires target neuronal activities that are presented to participants as 

teaching signals. A feedback signal presented to participants during DecNef training 

represents a single scalar value, not a target neural activity itself. Thus, the feedback does 

not work as a teaching signal for supervised learning.
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While the two aforementioned types of learning principles are not driving factors of DecNef, 

the principle of reinforcement learning seems to fit well with DecNef. During DecNef 

experiments, a monetary reward is given to participants in proportion to a feedback score 

based on an fMRI signal pattern in a target region. Thus, the feedback score is regarded as a 

reward and serves as a reinforcement factor (Fetz, 1969; Haruno and Kawato, 2006; Haruno 

et al., 2004; Rosenfeld et al., 1969). Reward-driven learning specifically enhances target 

neuronal activities among other nontarget activities. Thus, a reasonable assumption is that 

targeted neural plasticity induced by DecNef occurs through reinforcement learning.

3.2. Low dimensionality of neuronal activities

One question is how the induction of target activities at the neuronal level occurs based on 

feedback signals computed at the voxel level. Since each voxel typically represents activity 

signals from millions of neurons, logically, the same fMRI signal pattern measured at the 

voxel level can be generated from a large number of different patterns of neuronal activities. 

Therefore, a one-to-many correspondence from an fMRI activity pattern to neuronal activity 

patterns may exist. In addition, only a subset of neuronal activities from the entire space of 

possible neuronal activities may be related to a target behavior. This mapping issue has 

prompted some researchers to postulate that the manipulation of fMRI signal patterns at the 

voxel level does not induce a specific pattern of target activities at the neuronal level 

(Huang, 2016).

However, this potential ill-posed problem caused by the one-to-many correspondence is 

unlikely to occur in the processing of information by the brain (Watanabe et al., 2017). Some 

principles of brain processing have recently been shown to function as constraints to resolve 

or loosen the one-to-many correspondence issue. Neuronal activities do not occur randomly 

because of abundant synaptic connections among neurons (Blumenfeld et al., 2006; 

Goldberg et al., 2004). Physiological studies have shown that spontaneous activities of 

neurons in a brain subsystem are strongly correlated and constrained on a particular low-

dimensional manifold (Berkes et al., 2011; Kenet et al., 2003; Luczak et al., 2009; Mochol et 

al., 2015; Renart et al., 2010; Ringach, 2009; Sadtler et al., 2014). If neuronal activities are 

constrained on a low-dimensional manifold, fMRI signal patterns should also be constrained 

on a low-dimensional manifold at the voxel level. These constraints would make the ill-

posed problem due to the one-to-many correspondence unlikely.

3.3. Inclusion of target neuronal activities in spontaneous neuronal activities

How are specific target activities induced at the neuronal level in a target region during 

DecNef training? According to the procedure of the decoder construction stage of DecNef 

experiments (see Section 2.1.2 for details), target activities at the neuronal level should be 

determined based on specific sensory stimuli or tasks in the decoder construction stage. 

However, during DecNef training in the induction stage, participants are not presented with 

the stimuli or asked to perform the tasks. Thus, the target activities must be induced without 

the stimuli or tasks. If the target activities do not overlap with neuronal activities that 

initially occur in the induction stage, the brain should not easily be able to increase the 

contributions of the target neuronal activities in the target region during DecNef training 

(Sadtler et al., 2014).
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Importantly, the results of recent physiological studies suggest an overlap between 

spontaneous neuronal activities and activities evoked by the presentation of sensory stimuli 

or performance of certain tasks (Luczak et al., 2009; Sadtler et al., 2014). Specifically, as 

shown in the study by Sadtler et al., animals more effectively learn to induce target activities 

of neurons when the target activities are included in a repertoire of activities of those 

neurons at the beginning of training.

Thus, to enable efficient learning of induction of target neuronal activities it is reasonable to 

assume that the target neuronal activities are included in neuronal activities present at the 

beginning of DecNef training.

3.4. Mechanisms of targeted neural plasticity

The abovementioned prerequisite and characteristics delineate possible mechanisms of 

targeted neural plasticity as described below. First, the induction of target activities at the 

neuronal level in a target region occurs without performance of a task or presentation of 

sensory stimuli that evoke the target activities because spontaneous activities already include 

target activities (Section 3.3). Second, the low dimensionality of activities at the neuronal 

level in a target region (Section 3.2) enables the induction of target activities at the neuronal 

level based on feedback signals computed at the voxel level. Third, due to reinforcement 

learning (Section 3.1), repetitive pairing of the induction of the target neuronal activities and 

monetary reward (i.e., larger feedback score) drives neural plasticity in the region. These 

plastic changes at the neuronal level eventually manifest as changes in a target behavior.

3.5. Resolution of the curse of dimensionality

The proposed mechanisms of the model may lead to the resolution of the potential 

computational problem in DecNef training. While a feedback score presented during 

DecNef training is one-dimensional scalar value (i.e., the size of a disk), a target region 

typically contains several hundred or more voxels that would result in a huge number of 

possible fMRI signal patterns. This large voxel space could pose a problem called the curse 

of dimensionality in the context of reinforcement learning; the number of potential fMRI 

signal patterns would be too large for participants to complete a search for inducing a target 

fMRI signal pattern within a period of DecNef training (Huang, 2016). However, in the 

DecNef studies, participants often showed significant induction learning within a few 

hundred trials (Amano et al., 2016; Shibata et al., 2011, 2016b), indicating that the curse of 

dimensionality does not realistically apply to DecNef.

How does DecNef circumvent the curse of dimensionality? Based on the prerequisite we 

identified, fMRI signal patterns should be constrained on a low-dimensional manifold due to 

the low dimensionality of neuronal activities. Then, the curse of dimensionality should not 

be a problem since the number of possible fMRI signal patterns is substantially reduced 

(Watanabe et al., 2017).

In addition to the low dimensionality of fMRI signal patterns, another reason why the curse 

of dimensionality should not apply to DecNef has been identified (Watanabe et al., 2017). 

Functions used as decoders in the DecNef studies are either pseudolinear (Amano et al., 

2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2011; Taschereau-
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Dumouchel et al., 2018) or linear (Shibata et al., 2016b) and monotonically increasing 

functions. In this case, it is possible to calculate an error signal for each voxel within a target 

region (see Appendix A for details). Thus, using these decoders, reinforcement learning to 

induce a specific fMRI signal pattern is simplified to learning that induces a certain fMRI 

signal amplitude in each voxel. In other words, using linear functions as decoders, the search 

for inducing the specific pattern is no longer required (Watanabe et al., 2017).

4. Empirical support for the proposed model

In this section, we introduce experimental support for the characteristics, prerequisite, major 

prediction, and assumption of the targeted plasticity model. For this purpose, we reanalyzed 

fMRI datasets obtained from five previous DecNef studies (Amano et al., 2016; Cortese et 

al., 2016; Koizumi et al., 2016; Shibata et al., 2011, 2016b). First, we show the results of the 

reanalyses that support the main characteristics, prerequisite and assumption: reinforcement 

learning, low dimensionality of neuronal activities and inclusion of target neuronal activities 

in spontaneous neuronal activities in a target region (Section 4.1–4.3). Then, we show that 

changes in fMRI signal patterns as a result of DecNef training are consistent with the major 

prediction of the model (see Section 4.4).

4.1. Experimental support for the reinforcement learning characteristics

In this section, we provide experimental support for the reinforcement learning 

characteristics (see Section 3.1 for details).

4.1.1. Responses of reward-related brain regions to feedback scores during 
DecNef training—If targeted neural plasticity through DecNef occurs based on 

reinforcement learning, neural circuits that have been implicated in reward processing 

should be activated by feedback signals during DecNef training. In particular, fMRI signal 

amplitudes in reward-related regions, including the ventral striatum and putamen (Haruno 

and Kawato, 2006), should be correlated with the size of feedback signals.

We conducted a standard general linear model (GLM) analysis (Paulesu et al., 1995; see 

Appendix B for details) on a combined dataset from 73 participants in the five DecNef 

studies to test this hypothesis (Amano et al., 2016; Cortese et al., 2016; Koizumi et al., 2016; 

Shibata et al., 2011, 2016b). Notably, the datasets from 17 participants in a recent DecNef 

study (Taschereau-Dumouchel et al., 2018) were not included in this analysis since this 

study had not been published when we started the analysis. According to the results of the 

GLM analysis, the size of the feedback disk was significantly correlated with fMRI 

amplitudes in response to the presentation of the disk in the ventral striatum, putamen and 

medial prefrontal cortex (Fig. 3A; two-tailed one-sample t-test, P < 0.05 after Bonferroni 

correction for multiple comparisons across voxels), all of which have been suggested to be 

related to reward-related processing (Behrens et al., 2007; Haruno and Kawato, 2006). This 

result is consistent with the hypothesis.

4.1.2. Overlaps among brain networks of conventional fMRI neurofeedback, 
DecNef and brain-machine interfaces—It has been suggested that reinforcement 

learning also plays a role in the training on conventional fMRI neurofeedback and brain-

Shibata et al. Page 12

Neuroimage. Author manuscript; available in PMC 2019 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



machine interfaces (Emmert et al., 2016; Kasahara et al., 2015; Papageorgiou et al., 2013; 

Sitaram et al., 2017). During training on conventional fMRI neurofeedback, brain-machine 

interfaces and DecNef, participants are required to learn to induce target neural activities 

based on feedback signals. If reinforcement learning is a common principle for conventional 

fMRI neurofeedback, brain-machine interfaces and DecNef, overlaps are predicted to occur 

between brain networks involved in DecNef training and networks that have been suggested 

to be involved in conventional fMRI neurofeedback and brain-machine interfaces. We 

conducted the GLM analysis to specify regions that are activated during the induction period 

in which participants were asked to regulate their brain activities to test this prediction.

Significant increases in fMRI signal amplitudes were observed in the insular, cerebellum, 

supplementary motor area, posterior parietal cortex and dorsal striatum during the induction 

period (Fig. 3B; two-tailed one-sample t-test, P < 0.05 after Bonferroni correction for 

multiple comparisons across voxels). Importantly, different target regions (early visual, 

cingulate, parietal and frontal cortices) were used across the five DecNef studies. Thus, the 

abovementioned regions were significantly activated, regardless of which brain region was 

selected as a target region during DecNef training. In addition, these regions are included in 

the network that has been suggested to be involved in neurofeedback and brain-machine 

interfaces (Emmert et al., 2016; Kasahara et al., 2015; Papageorgiou et al., 2013; Sitaram et 

al., 2017). Based on these results, the induction of neural activities through DecNef shares a 

common neural basis with the learning of conventional neurofeedback and brain-machine 

interfaces.

4.2. Experimental support for the low dimensionality prerequisite

The low dimensionality prerequisite (see Section 3.2 for details) indicates that activities at 

the neuronal level in a target region are constrained to a low-dimensional manifold due to 

abundant synaptic connections among neurons. As described in Section 3.2, the low 

dimensionality of neuronal activities also constrains fMRI signal patterns at the voxel level 

on a low-dimensional manifold. This low dimensionality is the prerequisite for efficient 

reinforcement learning (see Section 3.5). Thus, according to the low dimensionality 

prerequisite, the fMRI signal patterns in target regions are not random, but highly structured, 

and therefore, low-dimensional.

We reanalyzed fMRI signal patterns in the target regions in each of the five DecNef studies 

to test this hypothesis (Amano et al., 2016; Cortese et al., 2016; Koizumi et al., 2016; 

Shibata et al., 2011, 2016b) using the principal component analysis (PCA). PCA quantifies 

the components of fMRI signal patterns (Behroozi et al., 2011; Shibata et al., 2016a) (see 

Appendix C for examples of PCA results for individual participants). In particular, we used a 

proportion of principal components (PCs) that account for 80% of the data variance (PC80%) 

(Mazzucato et al., 2016) as an estimate of dimensionality of fMRI signal patterns. This 

threshold of 80% has frequently been employed in other studies using PCA (Varmuza and 

Filzmoser, 2009; Zuur et al., 2007). If 80% of PCs is necessary to account for 80% of the 

variance in fMRI signal patterns, we predict that fMRI signal patterns are close to random, 

and therefore, high-dimensional. If the proportion of PCs accounting for 80% of data 
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variance is significantly less than 80%, we presume that fMRI signal patterns are not 

random, but low-dimensional.

First, PCA was applied to fMRI signal patterns measured in the induction stages of each 

DecNef experiment. In the orientation DecNef study, for instance, (Shibata et al., 2011), 

PC80% was significantly less than 80% in the induction stage (two-tailed one-sample t-test, P 
< 10−9; Fig. 4A, red bar). The same pattern of statistical results was obtained in the other 

four DecNef studies (Fig. 4B–E, red bars). Thus, fMRI signal patterns in the target regions 

during DecNef training were not random, but well structured, and thus low-dimensional.

Second, PCA was applied to fMRI signal patterns obtained from the decoder construction 

(DC) stage in the same way as described above. In the orientation DecNef study (Shibata et 

al., 2011), PC80% was also significantly less than 80% in the DC stage (two-tailed one-

sample t-test, P < 10−8; Fig. 4A, blue bars). Basically the same pattern of statistical results 

was obtained in the other four DecNef studies (Fig. 4B–E, blue bars). These results satisfy 

the prerequisite that fMRI signal patterns in a target region of DecNef are constrained to a 

low-dimensional manifold.

4.3. Experimental support for the target neuronal activities included in neuronal activities 
existing at the beginning of DecNef training

In this section, we provide experimental support for the model characteristic that target 

neuronal activities are already included in neuronal activities existing at the beginning of 

DecNef training (see Section 3.3 for details). If this prerequisite is satisfied in DecNef 

training, the inclusion of the target activities in activities recorded during DecNef training 

should be reflected in relationships between fMRI signal patterns in the DC and induction 

stages of DecNef experiments. In particular, we tested two predictions derived from this 

prerequisite, as detailed below.

4.3.1. FMRI signal patterns in the induction stage contain subcomponents of 
fMRI signal patterns in the DC stage—In DecNef experiments, a target fMRI signal 

pattern in a target brain region in the induction stage is determined by a decoder while 

utilizing fMRI signal patterns measured in the DC stage (Section 2.1.2). In the subsequent 

induction stage, the target fMRI signal pattern is induced. Thus, it is expected that fMRI 

signal patterns in the induction stage as a whole contain subcomponents of fMRI signal 

patterns in the DC stage.

We tested this core assertion of the target neural plasticity model by performing the analysis 

described below. First, PCs and transformation loadings were computed based on fMRI 

signal patterns recorded in the DC stage. Second, the transformation loadings were applied 

to fMRI signal patterns obtained from all training days during the induction stage. We call 

this method the DC → Induction PCA. If less than 80% of PCs in the DC stage is necessary 

to account for 80% of the variance in fMRI signal patterns measured in the induction stage, 

we assert that fMRI signal patterns in the induction stage contain subcomponents of fMRI 

signal patterns in the DC stage.
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For the orientation DecNef study, PC80% was significantly less than 80% (two-tailed one-

sample t-test, P < 10−4; Fig. 4A, magenta bar). The same statistical tendencies of results of 

the DC → Induction PCA were also obtained for the other four studies (Fig. 4B–E, magenta 

bars). These results are consistent with the major assertion of the target neural plasticity 

model.

4.3.2. A target pattern is contained in fMRI signal patterns in the induction 
stage from the beginning of DecNef training—The results obtained in the above 

sections support the major assertion that target neuronal activities are induced in neuronal 

activities recorded over the entire course of DecNef training. However, we have not yet 

determined whether a target fMRI pattern is included in fMRI signal patterns from the 

beginning in the induction stage. If the answer is no, the aforementioned results would 

indicate that the target pattern was newly generated by DecNef training during the induction 

period.

We conducted another analysis to clarify whether a target fMRI pattern occurs from the 

beginning in fMRI signal patterns in the induction stage. First, PCs and the transformation 

loadings were computed based on fMRI signal patterns recorded on each day of the 

induction stage. Second, the transformation loadings were applied to fMRI signal patterns in 

the DC stage. We call this method the day-by-day Induction → DC PCA. This day-by-day 

Induction → DC PCA represents the extent to which the PCs in each day of the induction 

stage account for the variance in the fMRI data in the DC stage. If DecNef training newly 

generated the target fMRI signal pattern that was not contained in the fMRI signal patterns 

at the beginning in the induction stage, this newly generated pattern should result in changes 

in a PC space that in turn lead to significant decrease in the proportion of PCs of day-by-day 

induction stage that account for 80% of the data variance in the DC stage.

We applied the day-by-day Induction → DC PCA to fMRI data obtained in the orientation 

DecNef study (Shibata et al., 2011). Since this study utilized the longest training period (10 

days) among the previous DecNef studies, we should be able to detect any potential changes 

in PC80% that occurred during the 10 days of the induction stage. However, we did not 

observe significant changes in PC80% between Day 1 and Day 10 (Fig. 5A). This result 

contrasts the alternative possibility that the target pattern was newly generated by DecNef 

training. Thus, a target fMRI pattern is already included in fMRI signal patterns existing 

from the beginning of the induction stage. Collectively, these results are consistent with the 

characteristics of the model in which target neuronal activities are included in neuronal 

activities present at the beginning of DecNef training.

4.4. Experimental support for the major prediction of the model

As described in Section 3.4, the results of DecNef experiments are explainable by the 

mechanisms of the targeted neural plasticity model. Namely, repetitive inductions of specific 

target neuronal activities in a target region drive neural plasticity, which in turn leads to 

behavioral changes. If so, it can be hypothesized that DecNef renders changes in fMRI 

signal patterns in the induction stage closer to a target fMRI signal pattern. In other words, 

fMRI signal patterns in a target region should contribute to the target pattern during DecNef 
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training to a greater extent. We again focused on the orientation DecNef study (Shibata et 

al., 2011) that employed the longest training period (10 days) among the previous DecNef 

studies to test this major prediction of the model.

We tested this prediction using two steps (Steps 1 and 2). In Step 1, we tested whether fMRI 

signal patterns observed in the induction stage contained more subcomponents of fMRI 

signal patterns recorded in the DC stage after DecNef training compared to the beginning of 

DecNef training. In Step 2, we tested if the increased subcomponents are related to 

orientation information.

For Step 1, we conducted the DC → Induction PCA (see Section 4.3.1 for details) on a 

daily basis. The transformation loadings computed based on fMRI data in the DC stage were 

applied to fMRI signal patterns obtained on each of the 10 days in the induction stage. 

PC80% reflects the proportion of PCs in the DC stage that is necessary to account for 80% of 

the variance in fMRI signal patterns on each day of the induction stage. Thus, a significant 

decrease in PC80% during the induction stage would indicate that fMRI signal patterns in the 

induction stage contain more subcomponents of fMRI signal patterns in the DC stage as a 

result of DecNef training. The results of the day-by-day DC → Induction PCA showed a 

decrease in PC80% on Day 10 compared to Day 1, with a probability close to a significance 

threshold (one-tailed paired t-test, P = 0.056; Fig. 5B).

In Step 2, we tested whether the decrease in PC80% is explained by changes in PCs that 

contain orientation information about visual stimuli and contribute to the decoding of 

orientations. As mentioned above, the orientation DecNef study was aimed at enhancing the 

orientation processing of a target orientation in the target region (the early visual cortex). 

The results of Step 1 are consistent with the prediction that fMRI signal patterns in the 

induction stage became closer to an fMRI signal pattern that represent the target orientation. 

We divided the PCs included in PC80% (Fig. 5B) into the top and bottom halves according to 

the extent to which each PC contributed to orientation decoding to further test this 

prediction. The contribution of each PC was quantified by calculating the absolute value of 

the inner product between the transformation loading vector and the weights of the decoder 

on voxels in the target region for each participant. If the changes in fMRI signal patterns in 

the induction stage are specifically due to changes in the orientation-related PCs, the 

variance accounted for (VAF) by the top-half PCs should specifically increase during the 

induction period. As predicted, the VAF by the top-half PCs was significantly greater on 

Day 10 than on Day 1 (Fig. 5C, green; one-tailed paired t-test, P = 0.037).

These results are consistent with the major prediction of the model that as participants learn 

during DecNef training, fMRI signal patterns in a target region change in a manner 

approaching a target fMRI signal pattern to a greater degree.

4.5. Complementary analyses

While the PCA results shown above are consistent with the characteristics, prerequisite, 

major prediction, and assumption of the model, some researchers may wonder about the 

robustness and validity of the results, depending on specific details of the analysis methods 

(PC80%) shown in Sections 4.2–4.4. Thus, we conducted new analyses that are 

Shibata et al. Page 16

Neuroimage. Author manuscript; available in PMC 2019 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complementary to PC80%. First, the results of PCA were replicated with a different method 

(Figs. 6 and 7). Second, we excluded the possibility that the differences in the results of the 

DC → Induction PCA and Induction → DC PCA (Fig. 5A, B, 7A and 7B) were due to 

differences in fMRI signal qualities between the DC and induction stages.

4.5.1. PCA based on VAF by the top 10% of PCs—In the aforementioned PCA, we 

used a proportion of PCs that accounts for 80% of the data variance (PC80%) as an estimate 

of the dimensionality of fMRI signal patterns since this metric was used in a previous study 

(Mazzucato et al., 2016). However, this method may exhibit potential bias, since the 

proportions of PCs vary across participants.

We conducted an additional PCA based on a complementary method, which used the same 

proportion of PCs (10%, arbitrary determined) across participants, to test the robustness of 

the original PCA results. In this method, we calculated VAF by the top 10% of PCs. If VAF 

by the top 10% of PCs only accounted for approximately 10% of the variance in fMRI signal 

patterns, we would predict that fMRI signal patterns are close to random, and therefore, 

high-dimensional. If VAF by the top 10% of PCs was significantly greater than 10% of the 

variance, we would predict that fMRI signal patterns are not random and low-dimensional. 

Other aspects of PCA were identical to those of the original method using PC80%, as 

described in Sections 4.2–4.4.

As shown in Figs. 6 and 7, the results of the PCA based on the complementary method were 

highly consistent with those based on the original method. First, for both the DC and 

induction stages, VAF by the top 10% of PCs was significantly greater than 10% (Fig. 6, red 

and blue bars). Second, the results of the DC → Induction PCA showed that the top 10% of 

PCs in the DC stage accounted for more than 10% of the variance of fMRI signal patterns 

measured in the induction stage (Fig. 6, magenta bars). Third, the results of the day-by-day 

Induction → DC PCA on the orientation DecNef study showed no significant changes in 

VAF by the top 10% of PCs (Fig. 7A). Fourth, the results of the day-by-day DC → 
Induction PCA on the orientation DecNef study showed that VAF by orientation-related PCs 

was significantly greater on Day 10 than on Day 1 (Fig. 7B and C). Based on these results, 

the characteristics, prerequisite, major prediction, and assumption of the targeted plasticity 

model are supported by the results of both the original and complementary PCA methods.

4.5.2. Comparison of fMRI signal qualities between the DC and induction 
stages—Based on the differences between the results of the day-by-day Induction → DC 

PCA (Figs. 5A and 7A) and day-by-day DC → induction PCA (Fig. 5B, C, 7B and 7C), we 

argue that fMRI signal patterns in the early visual cortex contained orientation-related 

components at the beginning of the induction stage and that these components became 

stronger after DecNef training. However, the differences might have been derived from other 

factors, such as differences in fMRI signal qualities between the induction and DC stages.

We compared fMRI signal amplitudes of each of voxels within the early visual cortex 

between the induction and DC stages (Fig. 8) to test whether the overall amplitudes were 

different between the two stages. In the induction stage, fMRI signal amplitudes during the 

induction period were z-score-normalized in each fMRI run and averaged over all runs for 
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each voxel. In the DC stage, fMRI responses to orientation stimuli were also z-score-

normalized in each fMRI run and averaged over all runs for each voxel. Namely, we 

compared overall mean absolute values of the z-scores across the voxels between the two 

stages. A significant difference between these values was not observed (Fig. 8A; two-tailed 

paired t-test, P = 0.662). We also tested if the mean absolute z-scores recorded during the 

10-day induction stage were consistent between Day 1 and Day 10. A significant change in 

the mean z-scores between Day 10 and Day 1 was not observed (Fig. 8B; two-tailed paired 

t-test, P = 0.638). These results are inconsistent with the possibility that the differences in 

the results between the Induction → DC and DC → Induction PCA are due to differences 

in fMRI signal qualities between the two stages.

5. Neural network simulation of the proposed model

Can we pragmatically induce target activities at the neuronal level with the characteristics, 

prerequisite and assumption of the model, such as reinforcement learning, low 

dimensionality of neural activities and inclusion of target neuronal activities in spontaneous 

neuronal activities in a target region? To further examine computational plausibility of the 

principles, we tested whether target activities are efficiently induced by DecNef at the 

neuronal level by performing a biologically plausible neural network simulation that 

includes the characteristics, prerequisite and assumption. We used the simulation to test 

whether target activities at the neuronal level are induced in the neural network simulation 

under a computational environment that mimicked DecNef experiments.

A computational simulation with reinforcement learning replicates the results of the 

orientation DecNef study (Oblak et al., 2017). However, this study simulated learning only 

at the voxel level, without addressing the correspondence between activities at the neuronal 

level and fMRI signal patterns at the voxel level. Computations both at neuronal and voxel 

levels and their interactions must be included to clarify the neural mechanisms of DecNef 

since we assume that DecNef causes neural plasticity at the neuronal level.

This simulation focused on plasticity in the early visual cortex because half of the DecNef 

studies have targeted the early visual cortex (Amano et al., 2016; Koizumi et al., 2016; 

Shibata et al., 2011). In particular, we conducted the simulation based on the results of the 

orientation DecNef study (Shibata et al., 2011) since a well-established neural network 

model of orientation processing in the early visual cortex exists (Blumenfeld et al., 2006; 

Goldberg et al., 2004). We tested whether orientation processing at the neuronal level is 

modified by feedback based on voxel-level activities during DecNef training.

5.1. Structure of the simulation

The model used in the simulation consisted of neuronal-level and voxel-level layers (Fig. 9; 

see Appendix D for details).

We applied a well-established neural network to the neuronal-level layer (Blumenfeld et al., 

2006; Goldberg et al., 2004). This network is composed of a number of neurons that were 

interconnected with each other through synapses. Each neuron has unique orientation 

selectivity, analogous to neurons in the early visual cortex (Hubel et al., 1978). In this 
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network, neurons that have similar orientation selectivities share strong bidirectionally 

connected positive synaptic weights while synaptic weights between neurons with different 

types of orientation selectivity are weakly positive or negative (Blumenfeld et al., 2006; 

Goldberg et al., 2004). Due to this synaptic weight pattern, neuronal activities are 

constrained on a low-dimensional manifold, termed a ring attractor (Blumenfeld et al., 2006; 

Goldberg et al., 2004). After initial random activities are assigned to the neurons, an activity 

pattern of the neurons converges to one of the points on a ring-shaped manifold composed of 

activity patterns evoked by orientation stimuli.

Feedback scores were computed based on fMRI signal patterns at the voxel-level layer (Fig. 

9). We specifically employed the model reported by Kamitani and Tong that describes how 

fMRI signal patterns occur based on activities of neurons in the early visual cortex 

(Kamitani and Tong, 2005). In this model, each voxel in the early visual cortex has a weak 

orientation selectivity that presumably reflects a nonuniform distribution of orientation 

columns in the voxel. Using this model, we computed fMRI signal patterns at the voxel-level 

layer based on the activities of neurons in the neuronal-level layer.

In the simulation, we first constructed an orientation decoder based on fMRI signal patterns 

obtained from the voxel-level layer. As in the decoder construction stage of the orientation 

DecNef experiment (Shibata et al., 2011), we trained a decoder using fMRI signal patterns 

evoked by the presentations of actual orientation stimuli.

Next, the induction stage of the simulation was conducted with the same procedure as the 

orientation DecNef experiment (Shibata et al., 2011). Feedback scores reflected the 

likelihood of a target orientation computed at the voxel-level layer. Based on the feedback 

scores, synaptic weights among the neurons at the neuronal-level layer were updated. This 

update followed the Hebbian rule modulated by reinforcement signals driven by the 

feedback (see Appendix D for details). We tested whether under this learning framework, the 

dynamics of activities of neurons at the neuronal-level layer changes such that these 

neuronal activities will be more likely to converge to activities related to a target orientation 

through DecNef.

5.2. Results of the simulation

Based on the results of the simulation, after DecNef training, activities at the neuronal-level 

layer became more converged to the activities corresponding to a target orientation than 

other nontarget orientations. Fig. 10 shows the distributions of the likelihood that activities 

with random initial values converged to activities corresponding to different orientations. 

Before DecNef training, the distribution was close to uniform, indicating that an activity 

pattern with random initial values converged equally likely to each of different orientations 

(Fig. 10, blue). After DecNef training, the distribution became bell-shaped around the target 

orientation (Fig. 10, red). The probability of the target orientation was significantly higher 

after training than before training (two-tailed paired t-test, P = 0.003). Thus, DecNef-specific 

orientation-related activities at the neuronal-level layer are efficiently enhanced by feedback 

based on activities at the voxel-level layer within a reasonable number of neurofeedback 

trials (1800 trials; see Appendix D for details).
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5.3. Implications of the generalizability of the simulation

Does the proposed model account for the results of other DecNef studies examining 

functions or features other than orientation? Although the current simulation focused on 

orientation processing in the early visual cortex, a similar computational simulation should 

work for other brain regions where the activities of neurons are constrained on a low-

dimensional manifold. As discussed in Section 3.2, previous physiological studies have 

reported these types of low-dimensional manifolds in the visual, auditory, motor, and 

prefrontal cortices (Berkes et al., 2011; Kenet et al., 2003; Luczak et al., 2009; Mochol et al., 

2015; Renart et al., 2010; Ringach, 2009). Our PCA on fMRI signal patterns of DecNef 

studies described in the previous section also indicates low dimensionality. Thus, the 

proposed model is likely applicable to neuronal dynamics in various cortical regions. Indeed, 

recent DecNef studies have shown that induction learning occurs in regions outside the early 

visual cortex (Cortese et al., 2016, 2017; Shibata et al., 2016b; Taschereau-Dumouchel et al., 

2018).

6. Limitations

While the results of our analyses and simulations provide empirical and computational 

support for the targeted neural plasticity model, these analyses and simulations have certain 

limitations. We discuss these limitations below.

First, some of the PCA results (Figs. 5 and 7) were based on fMRI data obtained only from 

the orientation DecNef study (Shibata et al., 2011). The reason for analyzing this limited 

dataset was that this study had the longest training period (10 days) among the previous 

DecNef studies, allowing us to examine the temporal characteristics of changes in fMRI 

signal patterns during DecNef training. Many other studies used three days of DecNef 

training. Since other DecNef studies focused on other types of processing, such as color, 

preference, fear memory and confidence, we were unable to clearly determine whether these 

PCA results would be generalized to types of processing other than orientation.

Second, the purpose of the simulations was to show that the principles of DecNef that we 

presume enable to circumvent the potential computational problems due to the one-to-many 

correspondence from fMRI activity patterns to neuronal activity patterns and the curse of 

dimensionality. Thus, we did not plan or intend that the simulations would quantitatively 

explain every aspect of the experimental data reported in the DecNef studies.

Some researchers may question whether a discrepancy indeed exists between the simulation 

and experimental data. We found one instance of results that were inconsistent with the 

results of the simulations. The results of the simulations showed that after DecNef training, 

the activities of neurons in the neuronal-level layer with random initial values became more 

converged to the activities corresponding to a target orientation than other nontarget 

orientations (Fig. 10). Based on the results, we predicted that after DecNef training, fMRI 

signal patterns, even those recorded in the baseline period of the induction stage, became 

closer to fMRI signal patterns that represent the target orientation, regardless of whether 

participants were asked to regulate their brain activities. We conducted the DC → Induction 

PCA on fMRI data obtained from a baseline period during which participants were merely 
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asked to fixate on the center of a display at the beginning of each fMRI run to test this 

hypothesis. If the prediction was correct, a proportion of PCs that account for 80% of the 

data variance during the baseline period (PC80%) should be significantly smaller on Day 10 

than on Day 1. However, we did not detect a significant change in PC80% (Fig. 11; one-tailed 

paired t-test, P = 0.149). Thus, a more complex model will be necessary to completely 

explain every aspect of the experimental data reported in the DecNef studies.

Third, researchers may refute our assumption that the low dimensionality of fMRI signals 

(Figs. 4 and 6) indicates a low dimensionality of neuronal activities. The low dimensionality 

of the fMRI signals might merely be determined by the physiological mechanisms by which 

fMRI signal are measured that do not depend on the dimensionality of the underlying 

neuronal activities. Since a causal relationship between dimensionalities at the neuronal and 

fMRI voxel levels is still being debated, we only presume that a low dimensionality of fMRI 

signals indicates a low dimensionality of the neuronal activities. However, the assumption is 

likely to be valid for the following reasons. First, the relationship between neural activities 

and fMRI signals has been extensively investigated (Logothetis et al., 2001; Logothetis and 

Wandell, 2004). The relationship is almost linear, at least under a certain environment. 

Second, as discussed in Section 3.2, a growing number of studies has reported the low 

dimensionality of neuronal activities in various cortical areas, including the sensory and 

prefrontal cortices (Berkes et al., 2011; Kenet et al., 2003; Luczak et al., 2009; Mochol et al., 

2015; Renart et al., 2010; Ringach, 2009; Sadtler et al., 2014). Third, the dimensionality of 

fMRI signal patterns is modulated by a task and context (Diedrichsen et al., 2013). This 

context- and task-dependent modulation of dimensionality should not occur if the 

dimensionality of fMRI signals is only determined by the physiological mechanisms for 

fMRI measurements. These findings collectively support the validity of the assumption that 

the dimensionality of fMRI signals reflects the dimensionality of neuronal activities.

7. Conclusions

In this review, we discussed possible neural mechanisms of DecNef that alter a target 

behavior. First, we have proposed and introduced experimental support for the targeted 

neural plasticity model in which DecNef changes specific neural activities, leading to a 

certain behavior change, and refuted other proposed accounts for the behavioral changes. 

Second, we have proposed reinforcement learning with a low dimensionality of activities at 

the neuronal level in a target region as major mechanism of the model. Third, we have 

shown that both the results of the reanalyses of fMRI data and neural network simulation are 

consistent with the characteristics, prerequisite, major prediction, and assumption of the 

model. This global framework will prompt new investigations that directly measure DecNef-

induced changes in neuronal activity in an animal brain.
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Appendices.

A. Details of avoiding the curse of dimensionality for linear decoders

In this section, we describe how reinforcement learning to induce a target fMRI signal 

pattern is transformed into quasi-supervised learning that induces a certain fMRI signal 

amplitude in each voxel within a target region using a linear or pseudolinear decoder during 

DecNef training (see Section 3.5). This principle can be applied to both regression and 

classification problems, regardless of the numbers of classes.

First, let us focus on the simplest case: a linear regression. A reward value r reflects a 

feedback score computed as a linear weighted sum of fMRI signal amplitudes across N 
voxels in a target region. Thus, r is obtained from the equation

r =
i = 1

N
WiAi + b

Here, Ai represents the fMRI signal amplitude of ith voxel. Wi indicates a linear weight for 

the ith voxel; b corresponds to a constant value. In reinforcement learning, an efficient 

change in Ai is calculated to increase the reward by a small amount Δr

ΔΑi ∝ dr
dAi

Δr = wiΔr

Thus, in the case of the linear regression, learning can occur separately for each of the 

voxels in the target region.

Second, we focus on the case of a binary classification, such as logistic regression. r is 

obtained with the equation

r = f
i = 1

N
WiAi + b

where f represents a sigmoid function, which is pseudolinear and monotonically increasing 

function. In this case, a change in Ai is described by

ΔAi ∝ dr
dAi

Δr ∝ wiΔr

Thus, an fMRI signal amplitude can be updated separately for each of the voxels.
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Third, let us consider a case of a classification with M classes. The value for r is obtained 

with the equation

r = f i = 1
N WiT Ai + bT

j = 1
M

i = 1
N

Wi jAi + b j

Here, T corresponds to a target class during DecNef training. Again, f represents a sigmoid 

function. As in the second case, a change in Ai is described by

ΔAi ∝ dr
dAi

Δr ∝ wiTΔr

Thus, the same learning rule can be used for the multiclass case.

B. Details of GLM analysis

A standard GLM analysis (Paulesu et al., 1995) was conducted. We analyzed five fMRI 

datasets obtained from experiments in which participants underwent training with DecNef 

(Amano et al., 2016; Cortese et al., 2016; Koizumi et al., 2016; Shibata et al., 2011, 2016b). 

All analyses were conducted using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). 

Before preprocessing and statistical analyses, we discarded the first 15 fMRI volumes in 

each fMRI run. Preprocessing of fMRI data was conducted as described below. First, motion 

correction was conducted for each fMRI run. In the motion correction step, all fMRI 

volumes in the run were aligned to a mean volume of the run. Second, slice timing 

correction was conducted. Third, the motion-corrected fMRI volumes were spatially 

normalized to MNI space using a transformation matrix obtained from the normalization of 

the mean fMRI volume to the EPI template in SPM8. Finally, the normalized volumes were 

spatially smoothed with an isotropic Gaussian kernel of 8 mm (full-width at half-maximum).

The GLM analysis consisted of first- and second-level analyses. In the first-level analysis, 

we modeled all types of events that occurred in each trial of DecNef training for each study 

(Fig. A1; see original articles for details of time-courses and events for a trial). Six head 

motion parameters were also included in the model as nuisance regressors. We specifically 

focused on the following contrasts: induction period vs. fixation period and the correlation 

between activation amplitudes in a feedback period and neurofeedback scores. The induction 

period refers to the period in which participants were asked to regulate their neuronal 

activities. The feedback period is the period in which neurofeedback scores were presented 

to participants.

In the second-level analysis, contrast maps from all five studies and all participants were 

combined for each of the two contrasts mentioned above. We used the t-test to determine 

whether the mean contrast value was significantly greater than zero for each voxel. P-values 

were corrected using Bonferroni correction for multiple comparisons across voxels.
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Fig. A.1. Representative time course of a trial during DecNef training.
In the induction period, participants were asked to regulate their brain activities. During the 

fixation period and intertrial interval (ITI), participants were asked to fixate on the center of 

the display. In the feedback period, participants were presented with a feedback disk. See the 

original articles for detailed descriptions of the experiments. (A) Representative time course 

used in the study by Shibata et al., in 2011. (B) Representative time course used in the 

studies by Amano et al., in 2016 and Koizumi et al., in 2016. (C) Representative time course 

employed in the 2016 study by Shibata et al. (D) Representative time course employed in the 

study by Cortese et al., in 2016.1

C. Representative PCA results

Here, we present representative PCA results for individual participants in the study by 

Shibata et al., in 2011 in which the early visual cortex was used as a target region for 

DecNef.
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Fig. A.2. Relationships between variance accounted for (VAF) and numbers of principal 
components (PCs) for individual participants in Shibata et al. (2011).
Each panel represents one participant. Red and blue lines represent results from the PCA in 

the induction and decoder construction (DC) stages, respectively. Magenta lines show results 

from the PCA in which transformation loadings were computed from fMRI data in the DC 

stage and VAF was calculated from fMRI data obtained from the entire period of the 

induction stage (DC → Induction PCA).2

D. Details of the simulation

Codes for the simulation are available at our webpage (https://bicr.atr.jp/decnefpro/?

page_id=222).

D.1. Neuronal-level layer

The neuronal-level layer consisted of the well-established neural network model 

(Blumenfeld et al., 2006). Synaptic weights among neurons are defined as follows:

W = J2rxrycos θx − θy + J0

where for a given neuron i, θi represents a preferred orientation of the neuron and ri 

measures the degree to which the response of neuron i is modulated by the orientation of the 

stimulus (i.e., selectivity). The parameter J2 > 0 is a global scaling factor of this term, and 

the parameter J0 represents global excitation (if J0 > 0) or global inhibition (if J0 < 0). We 

maintained all the parameters described in the original paper (Blumenfeld et al., 2006), 

Shibata et al. Page 25

Neuroimage. Author manuscript; available in PMC 2019 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://bicr.atr.jp/decnefpro/?page_id=222
https://bicr.atr.jp/decnefpro/?page_id=222


except for the data-driven variables. Specifically, we computed the preferred orientation θ by 

training a self-organizing map (SOM, or Kohonen map) with a size of 42 × 17 on a set of 

orientation stimuli (Gabor patches). The 20 × 20 stimuli could adopt one of six different 

orientations (i.e., 30, 60, 90, …, 180 deg) and one of eight different signal-to-noise ratios 

(SNRs) (i.e., 0.2, 0.3, …, 0.9). For each combination of an orientation and SNR, 50 samples 

were generated, for a total of 2400 orientation stimuli to train the SOM. Therefore, the 

weights of the SOM represented the preferred orientation θ. According to the original paper, 

J2 = 5 and J0 = —2 were used, and for simplicity we kept a constant selectivity of ri = 1.

The evolution of the neuronal activity mi at a given neuron i is described by the standard rate 

equation:

τẊi = − mi + Ii
rec + Ii

a f f − T +

where Ẋi is the derivative of mi, Ii
rec is the input to neuron i due to recurrent connections, 

Ii
a f f  is the afferent input, τ = 10 is a time constant, T = 1 is the firing threshold and ▯+ 

represents the ramp gain function ([γ]+ = γ if γ > 0 and[γ]+ = 0 if γ ≤ 0). The recurrent 

input Ii
rec is computed using the following equation:

Ii
rec = 1

A dyWxymy

where the integral is calculated over the whole neuronal region and A = 11:7 mm2 represents 

the area of that region.

The model formulated above exhibits spontaneous activity when the afferent input is 

constant and exceeds a threshold (i.e., Ii
a f f = C and C > T). After a short transient, this 

activity converges toward one of the available orientation patterns, according to a uniform 

distribution. Otherwise, if the input is structured according to a specific orientation stimulus, 

the evoked activity of the recurrent network will always converge toward the pattern of that 

specific orientation. Given a desired orientation ϕaff, the afferent input is computed as 

follows:

Ii
a f f = C 1 + εricos θi − ϕa f f

where ε = 0:1 is the modulation of the orientation encoding term.

D.2 Voxel-level layer and decoder construction

The voxel-level layer was modeled according to the technique proposed in a previous study 

(Kamitani and Tong, 2005). The position of the 714 (i.e., 42 × 17) neurons was randomly 

permuted and arranged on a one-dimensional column. Then, this column was partitioned 

into 50 blocks, representing the 50 voxels. The activity of the neurons within a partition was 

averaged to represent the voxel intensity. The partitioning was jittered on each trial 
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according to a Gaussian distribution with an SD of 20% of the voxel size to simulate head 

motions during fMRI measurements. Moreover, random Gaussian noise was added to the 

activity at SNR sufficient to achieve an average decoding accuracy of 80%, as described in 

the next paragraph.

A voxel-level sparse logistic regression decoder (Yamashita et al., 2008) was trained to 

classify a voxel intensity pattern into one of three different orientations (10, 70, and 130 

deg). For this purpose, the evoked activity at the neuronal-level layer was simulated, 

followed by a projection to the voxel-level layer. This procedure was performed 100 times 

for each orientation to create a training set, and another 100 times to create a test set. As 

explained above, the parameters in the voxel-level layer were tuned to achieve an average 

test decoding accuracy (i.e., average sensitivity) of 80%.

D.3. DecNef induction and synaptic plasticity

During the DecNef simulation, synaptic weights among neurons at the neuronal-level layer 

were updated according to the Hebbian rule. In each simulated trial, the network 

spontaneously converged toward one of the orientation patterns, and it was rewarded if the 

pattern was congruent with the target orientation pattern. The reward was computed by 

applying the decoder to voxel intensities. Specifically, the synaptic weights at the neuronal-

level layer were updated, depending on whether the decoded angle θ corresponded to the 

target angle θ :

Wi j n + 1 = Wi j n + RξXi n X j n

R = 1 if θ=θ or

R = 0 i f θ ≠ θ

where Wij[n+1] is the synaptic weight between neuron i and j at iteration n + 1, ξ is the 

learning rate, and Xi[n] is the activation of neuron i at iteration

D.4. DecNef simulation

We accounted for the diversity of participants by creating different conditions for the 

simulation. For a given condition, a new SOM at the neuronal-level layer and W were 

constructed and a synaptic learning rate ξ was assigned. We created 10 different conditions 

in which the learning rate ξ varied on an evenly spaced set of 10 values over the interval 

[0.00004, 0.0001]. For each condition of the simulation, the DecNef induction was repeated 

1800 times (i.e., trials), as described in the original paper (Shibata et al., 2011).
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Fig. 1. Possible mechanisms by which DecNef induces changes in a target behavior.
In the targeted neural plasticity model (red arrows), the induction of specific target activities 

at the neuronal level by DecNef drives neural plasticity in a target region that is manifested 

as changes in a target behavior. In alternative accounts (blue arrows), various cognitive 

factors and physiological artifacts lead to changes in neuronal activities outside the target 

activities during fMRI neurofeedback training. In this case, changes in behaviors, if any, are 

not attributed merely to neural plasticity driven by induction of the targeted activities at the 

neuronal level in the target region. See also Table 1 for a detailed list of these alternative 

accounts.
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Fig. 2. 
Schematic of the proposed model of targeted neural plasticity through DecNef.

Shibata et al. Page 32

Neuroimage. Author manuscript; available in PMC 2019 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Results of the GLM analysis of datasets obtained from DecNef studies.
(A) Responses to the feedback disk during DecNef training. In the colored voxels, fMRI 

signal amplitudes in response to the disk were significantly correlated with the size of the 

disk (two-tailed one-sample t-test, P < 0.05 after Bonferroni correction; see Appendix B for 

details of the analysis). (B) Activation observed during the induction period in which 

participants were asked to regulate brain activation. The colored voxels showed significant 

increases in the fMRI signal amplitude during the induction period (two-tailed one-sample t-
test, P < 0.05 after Bonferroni correction).
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Fig. 4. PCA results.
(A) Results from an analysis of the data reported by Shibata et al., in 2011 in which the early 

visual cortex (V1 and V2) was targeted. (B) Results from an analysis of the data reported by 

Amano et al., in 2016 in which the early visual cortex (V1 and V2) was targeted. (C) Results 

from an analysis of the data reported by Koizumi et al., in 2016 in which the early visual 

cortex (V1 and V2) was targeted. (D) Results from an analysis of the data reported by 

Shibata et al., in 2016 in which the cingulate cortex was targeted. (E) Results from an 

analysis of the data reported by Cortese et al., in 2016 in which the parietal and frontal 

cortices were targeted. (F) Summary of the five studies. The red and blue bars represent the 

results of the induction and decoder construction (DC) stages, respectively. The magenta 

bars show the results of the PCA in which transformation loadings were computed from 

fMRI data in the DC stage and proportions of PCs accounting for 80% of the variance 

(PC80%) were calculated from fMRI data obtained from the entire period of the induction 

stage (DC → Induction PCA). The results of the DC → Induction PCA indicate that if 

PC80% is significantly less than 80%, fMRI signal patterns in the Induction stage contain 

subcomponents of fMRI signal patterns in the DC stage. In all PCAs for each study, PC80% 

was significantly less than 80% (two-tailed one-sample t-test, P < 10–4). Black lines in the 

box plots represent median values. Areas with darker colors indicate 95% confidence 

intervals and areas with lighter colors indicate 1 SD. Gray dots show individual data points.
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Fig. 5. PCA results across the 10 training days.
(A) The results of the Induction → decoder construction (DC) PCA for each of the 10 days 

during DecNef training in the study by Shibata et al. published in 2011. Transformation 

loadings were computed based on fMRI data obtained from each of the 10 days during the 

induction stage, and the transformation loadings were applied to fMRI data in the DC stage. 

No significant change in the proportions of PCs accounting for 80% of the variance (PC80%) 

was found. (B) The results of the DC → Induction PCA. A trend toward a decrease in 

PC80% on Day 10 was observed compared to Day 1 (one-tailed paired t-test, P = 0.056). (C) 

An additional analysis of data shown in (B). The PCs included in PC80% were classified into 

top and bottom halves according to contributions to orientation decoding (see the text for 

details). A significant increase in the variance accounted for (VAF) by the top-half PCs was 

observed on Day 10 compared to Day 1 (green; one-tailed paired t-test, P = 0.037). The 

exact opposite change was observed in VAF by the bottom-half PCs (black). This opposite 

change occurred because a total VAF by the top- and bottom-half PCs should always be 

80%. Shaded areas represent SEM.
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Fig. 6. The results of the PCA based on the complementary method (VAF by the top 10% of 
PCs).
(A) Results from an analysis of the data reported by Shibata et al., in 2011 in which the early 

visual cortex (V1 and V2) was targeted. (B) Results from an analysis of the data reported by 

Amano et al., in 2016 in which the early visual cortex (V1 and V2) was targeted. (C) Results 

from an analysis of the data reported by Koizumi et al., in 2016 in which the early visual 

cortex (V1 and V2) was targeted. (D) Results from an analysis of the data reported by 

Shibata et al., in 2016 in which the cingulate cortex was targeted. (E) Results from an 

analysis of the data reported by Cortese et al., in 2016 in which the parietal and frontal 

cortices were targeted. (F) Summary of the five studies. The red and blue bars represent the 

results of the induction and decoder construction (DC) stages, respectively. The magenta 

bars show the results of the PCA in which transformation loadings were computed from 

fMRI data in the DC stage and VAF by the top 10% of PCs was calculated from fMRI data 

obtained from the entire period of the induction stage (DC → Induction PCA). The results 

of the DC → Induction PCA indicate that if the VAF by the top 10% of PCs is significantly 

greater than 10%, fMRI signal patterns in the Induction stage contain subcomponents of 

fMRI signal patterns in the DC stage. In all PCAs for each study, VAF by the top 10% of 

PCs was significantly greater than 10% (two-tailed one-sample t-test, P < 10–5). Black lines 

in the box plots represent median values. Areas with darker colors indicate 95% confidence 

intervals and areas with lighter colors indicate 1 SD. Gray dots show individual data points.
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Fig. 7. PCA results calculated across 10 training days based on the complementary method (VAF 
by the top 10% of PCs).
(A) The results of the Induction → decoder construction (DC) PCA for each of the 10 days 

during DecNef training in the study by Shibata et al. reported in 2011. Transformation 

loadings were computed based on fMRI data obtained from each of 10 days during the 

induction stage, and the transformation loadings were applied to fMRI data in the DC stage. 

No significant change in VAF by the top 10% of PCs was observed. (B) The results of the 

DC → Induction PCA. A trend toward an increase in VAF by the top 10% of PCs was 

observed on Day 10 compared to Day 1 (one-tailed paired t-test, P = 0.055). (C) An 

additional analysis of the data shown in (B). The top 10% of PCs were classified into top 

and bottom halves according to contributions to orientation decoding (see text for details). A 

significant increase in VAF by the top-half PCs was observed on Day 10 compared to Day 1 

(green; one-tailed paired t-test, P = 0.033). No significant change in VAF by the bottom-half 

PCs (black) was identified. Shaded areas represent SEM.
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Fig. 8. Comparison of fMRI signal qualities.
(A) Mean absolute z-scores across voxels for the induction and decoder construction (DC) 

stages. No significant difference was observed between values (two-tailed paired t-test, P = 

0.662). Black lines in the box plots represent median values. Areas with darker colors 

indicate 95% confidence intervals and areas with lighter colors indicate 1 SD. Gray dots 

show individual data points. (B). Mean absolute z-scores across voxels on each day of the 

induction stage. No significant difference was observed between Day 1 and Day 10 (two-

tailed paired t-test, P = 0.638). Shaded areas represent SEM.
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Fig. 9. Schematic of the structure of the neural network simulation.
See the text and Appendix D for details.
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Fig. 10. The results of the neural network simulation.
Each line shows a probability distribution of the likelihood that the activities of neurons in 

the neuronal-level layer with random initial values converged to activities corresponding to 

different orientations before (blue) and after (red) DecNef training. The simulation was 

repeated 10 times with slightly different initial parameters to account for the diversity of 10 

participants in the original study (Shibata et al., 2011). Shaded areas represent SEM. See 

Appendix D.4 for details.
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Fig. 11. Results of the DC → Induction PCA on fMRI data obtained from a baseline period.
No significant difference in the proportions of PCs accounting for 80% of the variance was 

observed between Day 1 and Day 10 (one-tailed paired t-test, P = 0.149). Shaded areas 

represent SEM.
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