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ABSTRACT: Heat loss is a major challenge in heat transfer problems. Several researchers have minimized
heat loss for different heat transfer cases, focusing on one optimization technique; however, not all
optimization techniques are suitable for a given problem. A limited number of studies have compared
different techniques for a given problem under boundary conditions and constraints. This review revisits
basic heat transfer problems and identifies a promising technique for each problem to minimize heat loss.
The paper considers three techniques: nonlinear least-squares error (LSE), interior point linear programming
(IPLP), and genetic algorithm. Two cases are studied: 1. heat loss optimization from cylindrical insulating
surfaces and 2. laminar airflow on a heated plate. The results are compared for each technique, and a suitable
technique is recommended for each considered case. Nonlinear LSE is found to be most suitable for case 1.
IPLP and GA are recommended for the Case 2 problem. The average thermal conductivity is found to be
0.081 W/mK. The average insulation thickness is found to be 213.25 mm. This research will act as a basis for
future research to justify and implement suitable techniques for different heat transfer problems.

1. INTRODUCTION
Energy demands have risen tremendously with modernization
and improved living standards.1 Fossil fuels, the most widely
used energy source, negatively impact the environment and have
thus been replaced with hydrogen, nuclear power, biomass, and
geothermal energy.2 Residential buildings and industries use
more than 60% of the energy produced.3,4 The scientific
approach to mitigating an energy shortage is to generate new
energy using different sources or optimize the available
energy.5,6 Using an insulating layer on the surface of the heat
source vessel effectively reduces the heat loss from the surface.7

Accordingly, the thermal performance and optimal thickness of
insulation materials for a given scenario have long interested
researchers,8 and these issues are now being investigated in light
of the current need for energy conservation in the face of finite
energy resources.9−12 Several heat transfer-related investigations
have aimed to compute the optimal generation, loss, or transfer
of heat in different scenarios and setups with or without thermal
insulation.13 These setups differ regarding shape, requirements,
and utility, which has increased the requirement to optimize
thermal systems.14−17 Numerous studies have reportedmethods
to optimize heat transfer problems using different optimization
techniques, as described below. These techniques define a
problem with a mathematical objective function, subject to
boundary conditions and constraints.18−20

One of the most frequently employed techniques in heat
transfer problems have been the genetic algorithm (GA). Najafi
et al.21 optimized several geometrical parameters of a plate and
fin heat exchanger to minimize its yearly operating cost and

maximize the heat transfer rate using a multiobjective GA.
Bidabadi et al.22 applied GA to optimize a spiral heat exchanger’s
performance parameters (i.e., heat transfer coefficient and
operating cost). The technique increased the heat transfer
coefficient by 13% and reduced overall cost by 50% compared
with basic design calculations. Shi et al.23 integrated a surrogate
model with GA and numerical methods to optimize nonuniform
fluid flow through a microchannel ceramic heat exchanger. Ge et
al.24 integrated the concepts of computational fluid dynamics
andmultiobjective GA to optimize the structural design of a heat
sink by reducing thermal resistance and pumping power. Their
analysis reduced resistance by 36% and power by 53%, acting as
a basis for a better design of heat sinks. A similar approach was
implemented by Mekki et al.25 for topology optimization of fins
used in aerospace heat exchangers. Bagherzadeh et al.26

subsequently applied artificial neural networks and GA to
optimize the pressure drop and heat transfer coefficient of
nanofluid flowing through a pipe. A similar approach was
implemented by Zhang et al.27 to optimize the structural design
of elliptical tube fin heat exchangers.
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Another widely used optimization technique in heat transfer-
related research is the teaching-learning-based optimization
algorithm (TLBO).28,28−32 Rao and Patel33 implemented
multiobjective TLBO for optimizing plate-fin and shell-tube
types of heat exchangers, with annual operating cost as a design
parameter. They reported that this algorithm performed better
than GA and TLBO applied by Khosravi et al.30 to optimize
three design parameters and the annual operating cost of a 100
MW solar power tower system. Wei et al.29 reported that a
forward and inverse method, when combined with the TLBO
algorithm, can solve complex heat transfer problems. The
researchers first computed coupled radiation-conduction heat
transfer in a semitransparent medium using a forward method
and then implemented TLBO and an inverse method to
compute radiative properties. They optimized a semitransparent
medium’s temperature-dependent radiative properties (i.e.,
refractive index and absorption coefficient). McCaughtry and
Kim28 improved the thermal and hydraulic design of a shell and
tube heat exchanger by reducing the design cost and improving
efficiency using the improved TLBO technique and the Bell−
Delaware method. They optimized the heat transfer coefficient,
pressure drop, and temperature at the tube and shell sides.
Kuru32 applied the TLBO algorithm to optimize operating
conditions and geometrical features of plate fin heat sinks. The
researchers defined multiple objectives to minimize entropy
generation, base plate temperature, total mass, and volume and
maximize the profit factor.
The Bees algorithm is another important optimization

technique for solving heat transfer problems.34−40 Bozorgan et
al.35 improved the geometrical characteristics of a shell and tube
heat exchanger (tube length, baffle spacing, tube internal and
outer diameters, shell diameter, and pitch size) to maximize the
heat transfer coefficient while minimizing overall pressure loss.
They increased the heat transfer coefficient by 23% and reduced
the overall pressure drop by 2% compared to the original shell
and tube heat exchanger. Daneshgar and Zahedi36 employed the
Bees algorithm to optimize cost, fuel consumption, and harmful
emissions while researching the gas microturbine in dual power

and heat generation mode. Unal et al.39 maximized the efficiency
of a solar chimney while minimizing the investment cost by
optimizing the topology of the chimney and collector using the
Bees algorithm.
A few researchers have applied the Gray Wolf optimizer

algorithm for heat transfer problems.41,42 Li et al.41 integrated
computational fluid dynamics, artificial neural network, and the
optimizer algorithm for maximizing indoor thermal environ-
mental comfort while minimizing energy consumption. Lara-
Montaño and Goḿez-Castro42 reported Gray Wolf Optimizer
as an effective and time-saving technique for minimizing the
annual operating cost of shell and tube-type heat exchangers.
Other researchers have applied the Cohort Intelligence
technique to solve heat transfer problems.43−46 Xu et al.43

highlighted this technique as convenient and less time-
consuming to maximize heat transfer capacity and minimize
the pressure drop of an annual radiator. Iyer et al.45 integrated
GA and Cohort Intelligence for optimizing geometrical
configurations of a shell and tube heat exchanger. Similarly,
Kumar et al.46 used this technique to optimize shell and helical
coil heat exchangers.
In addition to the optimization techniques discussed above, a

limited number of studies have investigated the Cuckoo Search
Algorithm,47 linear programming,48−50 finite volume method
(for topology optimization),51,52 and nonlinear least-squares
error.53 However, justification for the applicability and usage of
these techniques to different heat transfer problems has been
missing in these studies, as not all optimization techniques could
fit any problem,54,55 depending on the given constraints and
objectives. Only one study, conducted by Asadi et al.,55

compared the cohort intelligence technique, GA, and particle
swarm optimization for optimizing shell and tube heat
exchanger design. The authors reported that three algorithms
could better optimize the design; however, the first algorithm
performed better than the others. This study was done to
optimize STHE, which may or may not be appropriate for other
heat transfer problems. Therefore, revisiting basic heat transfer
problems is important to understanding which algorithm fits a

Figure 1. Flowchart of the linear programming optimization technique.
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given equation. This study first considers the least explored
techniques, i.e., linear programming and nonlinear least-squares
error techniques, to solve two cases: (a) heat loss optimization
from cylindrical insulating surfaces and (b) laminar airflow on a
heated plate. The results are compared to those obtained from
the genetic algorithm, the most widely implemented technique.
The results of GA were adopted from Akpinar.56 The first case is
solved to determine the thermal insulation material (based on
optimal thermal conductivity) and optimal insulation thickness
to minimize heat loss through a cylindrical insulating material
surrounding a heat source. The second case aims to optimize the
thermal boundary layer thickness and heat flow over the plate to
the air. This study aims to investigate these two heat transfer
cases using nonlinear LSE or linear programming optimization
techniques, depending on the available data and optimization
constraints. A proper optimization technique for each problem is
reported, and results are discussed for the applicable technique
in each case. This study can act as a basis for future research to
select a suitable optimization technique for design computation
in other heat-transfer-related problems.
The rest of the paper is arranged as follows: Section 2

describes the optimization techniques and the two cases solved
in this problem. Section 3 reports the results and findings,
Section 4 discusses the results, and Section 5 highlights the
research conclusions.

2. METHODS
2.1. Optimization Techniques. 2.1.1. Interior Point

Linear Programming Optimization Technique. A flowchart
of this technique is given in Figure 1. This technique identifies a
global solution to a mathematical optimization problem by
traversing the interior of the feasible region from one point on

the objective function to another,57 a commonly used approach
to solving linear and nonlinear programming problems. It
frequently employs a two-phase technique, with the first
focusing on identifying a practical solution and the second on
refining the solution to optimality. Interior point methods are
frequently more powerful and efficient than traditional
approaches, such as the simplex algorithm.
This optimization technique takes an initial value xi and a

range within which optimal solution is required, i.e., x ∈ [xmin,
xmax]. x is a vector of unknown parameters to be optimized.
Accordingly, xmin and xmax are vectors of the minimum and
maximum values of unknown parameters, respectively. Further,
termination rules are determined. In this study, this algorithm
was set to terminate at 85 maximum iterations with a function
tolerance of 10−8. A flowchart of the technique is illustrated in
Figure 1. With these inputs, objective functions and constraints
were defined before an algorithm was run in MATLAB 2020.
The optimization technique is an iterative method. The initial
guess vector is updated by adding Δxi, as shown in Figure 1. i
denotes the iteration in the range of 0 to 85.

2.1.2. Nonlinear Least-Squares Error (LSE) technique.
Figure 2 shows a flowchart for the nonlinear LSE technique.
This is a regression technique for nonlinear optimization
problems. Since independent variables are nonlinear, it is an
iterative process. To solve a nonlinear mathematical model in
“n” unknown parameters, a nonlinear least-squares study can be
used to fit a collection of m (>n) observations. The basic idea of
this method is to estimate the model using a linear model and
then iteratively adjust the parameters. The data set is given by
“m” data points {(x1, y1), (x2, y2), (x3, y3),···, (xm, ym)}. The
nonlinear fitting curve is given by ŷ = f(x, β), where β is a vector
of unknown parameters. Finding this vector allows the curve to

Figure 2. Flowchart for nonlinear LSE technique.
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best match the provided data in the least-squares sense�that is,
the sum of squares is given as eq 1.58,59

=
=

O y f x( ( , ))
i

m

i i
1

2

(1)

Since the derivatives in a nonlinear system
i
k
jjj y

{
zzz[ ]j n, 1,O

j

rely on both the independent variable and the parameters; these
gradient equations typically lack a closed solution. Instead, the
parameters must be given as the beginning values (β0). The
parameters are then repeatedly refined, i.e., repeated iterations
derive values. This optimization technique takes an initial value
of βi and a range within which optimal solution is required, i.e., β
∈ [βmin, βmax]. x is a vector of unknown parameters to be
optimized. Accordingly, βmin and βmax are vectors of minimum
and maximum values of unknown parameters, respectively.
Further, termination rules are determined. The maximum
number of iterations in this study was 400. The maximum
number of function evaluations was 100. After each iteration, the
maximum change in independent and dependent variables
should not exceed 10−6. Derivatives were approximated by
Newton’s forward difference method. Minimum and maximum
perturbations were 0 and ∞, respectively. These inputs define
objective functions and constraints before running an algorithm
in MATLAB 2020. The optimization technique is an iterative
method. The initial guess vector is updated by adding Δβi, as
shown in Figure 1. i denotes the iteration in the range of 0 to 85.
2.2. Problem Brief. 2.2.1. Case 1: Heat Loss Optimization

from Cylindrical Insulating Surfaces. An insulation material
and its optimal layer thickness surrounding a heat source were
identified/computed to minimize heat loss (Q) to the
surroundings. Figure 3 shows a schematic diagram of an

insulating material with internal (heat source radius) and outer
radii of ri and ro, respectively, surrounding a heat source (S).
Insulation thickness t was computed as ro − ri. The length of the
insulating material was denoted by L. The inner and outer
insulation surface temperatures of the layer are given as Ti and
To, respectively. The thermal conductivity of the insulating
material and its convection coefficient are denoted with k and h,
respectively. Q was computed using eq 2.56

=
+( )

Q
L T T2 ( )
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k

r
r r h

i

1 1o

i o (2)

The steady-state one-dimensional (1D) flow of heat was
assumed.60 Thermal conductivity was considered to be constant

with temperature, and internal resistance was not considered.
The initial guess values for this optimization were taken as k = 1
W/m °C (stage 1) and t = 1 mm (stage 2). The case was
investigated in two stages, as stated below:
Stage 1: Insulation material was decided based on its k,

optimized for different values of target heat loss (Qo) varying
between 91 and 121 W in intervals of 2 W. The outer
temperature (To) and inner temperature (Ti) of insulation
cylinders were considered as 75 and 500 °C, respectively. The
heat source radius was ri = 30 mm. The insulation thickness was
200 mm (or ri = 230 mm). k was subsequently optimized using
nonlinear least-squares error (LSE) and linear programming
techniques. Accordingly, the heat loss was computed (Qc).
Average thermal conductivity (kavg) was computed by the
algebraic summation of x1 for all eight considered cases, given in
Table 2, divided by 8. The standard insulation material is
recommended based on the lowest and average value of k. The
fitness function Z1 was minimized using eq 3 by computing x1,
which was the unknown thermal conductivity, optimized in the
range 0 to 5.
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Stage 2: The thickness of the insulating material was
computed for the minimum heat loss given kavg as the maximum
thermal conductivity. Insulation thickness was optimized for
different values of target heat loss (Qo) varying between 91 and
121 W in intervals of 4 W. To, Ti, and ri were the same as those
given in stage 1. t was optimized by considering computed heat
loss (Qc) equal to Qo. The fitness function Z2, given in eq 4, was
minimized by optimizing x2 (mm), denoting the unknown
insulation thickness of the insulation material. The range of
optimization was from 0 to 500.
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2.2.2. Case 2: Laminar Airflow on a Heated Plate. The
thermal boundary layer thickness was estimated for laminar
airflow, where the air characteristics and temperature of the air
and plate remained unchanged. Irradiation was neglected.
Figure 4 shows a schematic diagram of a flat plate with laminar,

turbulent, and transitional regions. Airflow across a hot plate was
considered to flow at a specific velocity warmer than that of the
air. Airflow in the laminar region was considered. Two separate
target variables were computed for this laminar boundary layer
problem, subjected to different design variables and constraints,
as shown in Table 1. The variable was optimized for the
minimum, maximum, and target values. First, the thermal

Figure 3. Schematic diagram of insulating material around a cylinder
surrounding a heat source.

Figure 4. Schematic diagram of the laminar flow of air particles over a
heated plate.
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boundary layer thickness (δt) was computed. The second case
determined the flow of heat from the plate to air (Q in W). A
constant air temperature of 65.6 °C was considered for both
problems. Heat flow zone temperature was the mean temper-
ature of air and plate. The air was at atmospheric pressure, whose
properties (thermal conductivity (k), air velocity (u∞) in the
flow area, density (ρ), and specific heat at constant pressure
(cp)) were adopted from Holman.13 The values of these
variables may change depending on the plate’s temperature. For
problem 1, the initial guess for design variable T was 1 °C, and
for x was 1 mm, whereas, for the second case, the design
variables began at T = 1 °C, x = 1 mm, and δt = 1 mm.
The condition for the transition from laminar to turbulent

flow is given in eq 556

= = > ×Re
u x u x

5 105

(5)

where x depicts the distance from the leading edge, u∞ depicts
the free stream velocity, and ϑ denotes the kinematic viscosity,
the ratio of dynamic viscosity (μ) and density (ρ).
The Prandtl number is given in eq 6.56 It has been assumed to

be 0.7189 at 69.5 °C. Cp is the specific heat at constant pressure,
and α is the diffusivity constant.

= =Pr k
Cp (6)

The Nusselt number (Nu), for identifying the convective heat
transfer for lamellar flow (Re < 5 × 105), is given as eq 7.56

=Nu Re Pr0.332x
1/2 1/3 (7)

The heat transfer coefficient (h) is given as eq 8.56

=h Nu k x/x (8)

The average heat transfer coefficient h̅ is given as eq 9.56

Equation 9 is a simplification assumption used to estimate the
average heat transfer coefficient in a forced convection
environment. It is predicted on the assumption that the local
heat transfer coefficient is generally greatest near the plate’s
leading edge and decreases as one moves downstream. This
assumption is expected to provide a reasonable estimate of the
overall heat transfer characteristics of the entire plate.

=h h2 (9)

The heat flow is computed using eq 10,56 where A is the
surface area of the plate and T∞ = 65.6 °C and Tw are the
temperatures of the fluid outside and at the thermal boundary,
respectively.

=Q h A T T( )w (10)

The hydraulic boundary layer is given in eq 11.56

i
k
jjjjj

y
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zzzzz=

Re
x4.64
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Thermal boundary layer thickness is given in eq 12.56

i
k
jjjj

y
{
zzzz=

Pr
0.977

t 1/3 (12)

The present study solves two cases of this problem. First,
thermal boundary layer thickness (δt) is estimated. The second
case determines the heat flow from the plate to air (Q inW). The
optimization function for conditions 1 and 2 is given in eqs 13
and 14, respectively. Equations 10 and 12 were computed based
on optimized variables.

< < <

< < ° < < °

x Re

Re Q

x T

minimize ( , )

subjected to: 50 000, 140 W 190 W

200 mm 1000 mm, 80 C 130 C

t

(13)

<
<
< °
<
< °

Q x T

Re

T

minimize ( , , )

subjected to:
50 000, 0.01 mm

20 mm, 80 C

130 C

t

t

(14)

Table 1. Design Variables and Constraints of Distinct Goals
with Two Cases

problem type goal-range

1 objective maximum,minimum, and target (19.6mm) values of
δt

constraints Re < 50,000, 140 W < Q < 190 W
design
variables

200 mm < x < 1000 mm, 80 °C < T < 130 °C

2 objective maximum, minimum, and target (160.43 W) values
of Q

constraints Re < 50,000
design
variables

200 mm < x < 1000 mm, 80 °C < T < 130 °C,
0.01 mm < δt < 20 mm,

Table 2. Results for Case 1

stage 1 stage 2

Qo (W) k (W/mK) Qa (W) t (mm) Qo (W) kavg (W/mK) Qa (W) ta (x2) (mm)

91 0.069 90.46 200 91 0.081 91 293
95 0.072 94.39 200 95 0.081 95 262
99 0.076 99.64 200 99 0.081 99 237
103 0.079 103.57 200 103 0.081 103 215
107 0.082 107.50 200 107 0.081 107 196
111 0.085 111.44 200 111 0.081 111 181
115 0.088 115.37 200 115 0.081 115 167
119 0.091 119.30 200 119 0.081 119 155
average 0.08025 213.25
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3. RESULTS
3.1. Nonlinear LSE. 3.1.1. Case 1 Heat Loss Optimization

from Cylindrical Insulating Surfaces.The results of both stages
by nonlinear LSE are presented in Table 2. For stage 1, model
convergence occurred after 19 iterations. It was found that Qo
andQc values were not significantly different (Table 2). Figure 5

shows the variation of the thermal conductivity with heat loss.
Results indicate that the thermal conductivity increased linearly
with heat loss (coefficient of correlation is 0.99). This
observation is consistent with eq 2, where Q is inversely
proportional to 1/k. In other words,Q is directly proportional to
k. kavg value was 0.081W/mK (Table 1). In the second stage, kavg
was taken as constant to determine the optimal thermal
insulation thickness, which decreased with the heat transfer
amount following a decremental logarithmic curve (coefficient
of correlation is 0.99) (Figure 6). This observation is in

accordance with numerical eq 2, where Q is inversely

proportional to +( )nl
k

r
r r h

1 1o

i o
. Considering ( )ln

k
r
r r h

1 1o

i o
, Q

is inversely proportional to ( )ln r
r
o

i
. Since ro = ri + t, where t is the

insulation thickness and Q is inversely proportional to ln(t).

Therefore, the relation will be a logarithmic decrement, as
predicted by the optimization technique.

3.1.2. Case 2 Determination and Optimization of Thermal
Boundary Layer Thickness. The case did not fit with the
nonlinear LSE due to the unavailability of target data (δt or Q).
3.2. Interior Point Linear Programming Optimization

Technique. 3.2.1. Case 1 Heat Loss Optimization from
Cylindrical Insulating Surfaces. The case needed to compare
the target variable to the computed variable. The considered
optimization technique does not require a target values.
Accordingly, this technique did not predict close results based
on the constraints.

3.2.2. Case 2 Determination and Optimization of Thermal
Boundary Layer Thickness. Table 3 shows the findings from
each condition. When the design factors, average values, and
restrictions in conditions 1 and 2 were explored, the findings of
issue 2 (Table 3) showed that all readings in the “average” rows
in the goal column were not significantly different. Accordingly,
the outcomes could be accurately estimated globally even if the
impact parameters changed the constraint and design variable.

4. DISCUSSION
This study aimed to identify a promising optimization technique
for two basic heat transfer cases. In the first case, heat loss was
minimized through a cylindrical insulating material surrounding
a heat source. In particular, optimal thermal conductivity was
computed to determine the insulation material, followed by
optimal insulation thickness. The average thermal conductivity
was 0.081 W/mK, computed using a nonlinear LSE
optimization technique. The average thermal insulation thick-
ness was 213.25 mm. These values were generated considering
heat loss should not exceed 110 W. tavg was found to be 213.25
mm (Table 1). Akpinar56 performed a similar calculation where
GA was employed to determine the optimal insulation thickness
for cylinder problems. It was found that kavg was 0.079 W/mK
(near to the figure predicted by the nonlinear LSE technique),
and optimal material insulation thickness was 141.28 mm, less
than predicted by nonlinear LSE. The linear programming
technique does not fit this problem. Accordingly, this study
stated that the nonlinear LSE optimization technique is better
than GA, in that linear programming techniques are not suitable
to solve such problems. The slightly higher thermal conductivity
significantly influences the rate of heat loss in comparison to the
convective heat transfer coefficient.61

For different applications, the optimal insulation thickness
was determined in several previous studies. Ndubuisi et al.61

estimated the optimal insulation thickness for a cylindrical
ceramic crucible. They found that the increased length of the
crucible enhanced its thermal mass, causing it to lose heat at a
higher rate.61 Applying more refractories beyond the optimum
range will not decrease heat loss considerably and will make the
insulating refractory bulkier. Insulation costs rise linearly as

Figure 5. Variation of thermal conductivity with heat loss.

Figure 6. Variation of insulation thickness with heat loss.

Table 3. Optimized Values from Case 2 Using a Linear Programming Technique

objective x (mm) Tw (°C) Re δt (mm) Q (W)

condition 1 minimum 377.3 131.89 15,001 16.9 135.14
average 606.6 121.23 24,506 19.6 161.21
maximum 907.2 108.53 41,326 24.3 598.63

condition 2 minimum 198.6 83.20 9057 18.04 12.11
average 602.1 100.01 27,222 13.74 160.40
maximum 1010.2 127.36 40,199 0.04 601.01
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insulation thickness increases, whereas energy costs drop. It was
also observed that the entire cost, including the cost of energy
and insulation, decreased to certain levels of insulation thickness
before increasing.62 In summary, other factors such as material
cost, a wide range of outer and inner temperatures (depending
on the application), time factor, other optimization algorithms,
etc., need to be considered and recommended for the
investigation of optimal insulation thickness in future studies.
To further support the applicability of nonlinear LSE, case 1

was reinvestigated, considering the initial insulation thickness
equal to the average predicted thickness (i.e., 213.25 mm). The
final solution was the same as that given in the fourth column of
stage 2 of Table 1. This signifies that the technique predicted
global optimization.
The optimal thermal boundary layer thickness and heat flow

from the plate to the air were also determined in a previous study
by using a GA,56 and it was found that results from the applied
linear programming optimization technique employed here
were very close to GA results published in the previous study.56

During the study, only the nonlinear LSE technique was suitable
for estimating optimal insulation thickness and can be
recommended for future studies. On the other hand, the linear
programming and GA optimization technique was found
suitable for determining the optimal boundary layer thickness.
It can be recommended for future studies, while the nonlinear
LSE technique is unsuitable.
This study has certain limitations. This research compared

only three optimization techniques, while other techniques may
be better than those to solve the two cases. The nonlinear LSE
and programming optimization techniques can also be utilized
in more complex heat transfer problems. Other factors, such as
material cost, a wide range of outer and inner temperatures
(depending on the application), the time factor, and other
optimization algorithms (like artificial bee colony, particle
swarm optimization, etc.), need to be considered and
recommended for the investigation of optimal insulation
thickness in future studies.

5. CONCLUSIONS
The nonlinear least-squares error optimization technique has
been a promising technique to minimize heat loss through a
cylindrical insulating material surrounding a heat source. GA is
another good technique but less promising than nonlinear LSE
to solve such problems. The average thermal conductivity was
found to be 0.081 W/mK. The average insulation thickness
(tavg) was found to be 213.25 mm. Linear programming and GA
are promising techniques for minimizing hot plate airflow, while
nonlinear LSE techniques do not fit such problems. The analysis
demonstrated that the computations could identify the optimal
results in the solution space using an optimization technique.
This technique should be wisely selected, as it does not ensure
the best solution will be found. It was found that the thermal
conductivity increased linearly with increased heat transfer. The
boundary layer thickness results indicate that although the target
variable is determined, the outcomes could be accurately
estimated globally even if the impact parameters change the
constraint and design variable.
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