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Abstract

Increased synthesis of serotonin and/or activity of serotonin in pulmonary arteries has been implicated in the pathobiology of

pulmonary arterial hypertension (PAH). The incidence of PAH associated with diet pills such as aminorex, fenfluramine, and

chlorphentermine initially led to the ‘‘serotonin hypothesis of pulmonary hypertension.’’ Over the last couple of decades there

has been an accumulation of convincing evidence that targeting serotonin synthesis or signaling is a novel and promising approach

to the development of novel therapies for PAH. Pulmonary endothelial serotonin synthesis via tryptophan hydroxlase 1 (TPH1) is

increased in patients with PAH and serotonin can act in a paracrine fashion on underlying pulmonary arterial smooth muscle cells

(PASMCs), In humans, serotonin can enter PASMCs via the serotonin transporter (SERT) or activate the 5-HT1B receptor;

5-HT1B activation and SERT activity cooperate to induce PASMC contraction and proliferation via activation of downstream

proliferative and contractile signaling pathways. Here we will review the current status of the serotonin hypothesis and discuss

potential and novel therapeutic targets.
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Introduction

The serotonin hypothesis of pulmonary hypertension (PH)
was suggested in the 1990s following the observation that
there was increased plasma serotonin in some patients with
primary PH associated with platelet storage pool defects.1

In addition, diet pill-induced pulmonary arterial hyperten-
sion (PAH) was thought to be associated with the indir-
ect serotonergic effects of aminorex, fenfluramine, and
chlorphentermine.2–7

Serotonin is a neurotransmitter in the central nervous
system and an autocoid in the periphery. It is synthesized
from L-tryptophan through the activity of tryptophan
hydroxylase (TPH) which converts L-tryptophan to
5-hydroxy-L-tryptophan (5-HT). This is converted to sero-
tonin by 5-hydroxytryptophandecarboxylase and aromatic
L-amino acid decarboxylase. Serotonin is metabolized to
5-hydroxyindoleacetic acid (5-HIAA) via monoamine
oxidase (MAO) and aldehyde dehydrogenase (Fig. 1). The
enterochromaffin cells of the gut produces 80% of the

body’s serotonin; 30–80% is metabolized by the liver at
first pass and 90% of the remainder is metabolized in the
lung. The remaining 10% is taken up by platelets. The con-
centration of free serotonin in the blood is therefore nor-
mally extremely low. Indeed, carefully controlled studies in
patients devoid of platelet storage pool disease have failed to
demonstrate an increase in free serotonin in the blood of
patients with PAH.8

Since the 1990s, researchers have been interrogating the
serotonin system in the pulmonary circulation and a sum-
mary of some of these studies is shown in Fig. 2.

We now know that in patients with PAH, pulmonary
arterial endothelial TPH1 expression is increased and that

Corresponding author:

Margaret (Mandy) R. MacLean, Research Institute of Cardiovascular and Medical

Sciences, College of Medical, Veterinary and Life Sciences, Room 448, West

Medical Building/Wolfson Link Building, University of Glasgow, Glasgow G12

8QQ, UK.

Email: mandy.maclean@glasgow.ac.uk

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution

4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and dis-

tribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open

Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

! The Author(s) 2018.

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

journals.sagepub.com/home/pul

https://doi.org/10.1177/2045894018759125
https://uk.sagepub.com/en-gb/journals-permissions
journals.sagepub.com/home/pul


endothelial-derived serotonin can act on the underlying pul-
monary arterial smooth muscle cells (PASMCs) in a para-
crine fashion.9 Recently, this has been shown to be
facilitated by myoendothelial gap junctions.10 Endothelial
TPH1 expression is also increased in animal models of
PH.11 Pathologically, PAH is characterized by vasoconstric-
tion of the small pulmonary arteries and proliferation in all
layers of the vessel wall as well as fibrosis and inflammation.
Therefore, serotonin may have many pathological influences
on the pulmonary arterial circulation. In PASMCs, it can
activate serotonin receptors to induce proliferation and con-
traction,12–16 inhibit voltage-gated Kþ currents which
would elevate vascular tone,17 or enter the cell via the sero-
tonin transporter (SERT). Serotonin can subsequently acti-
vate mitogen-activated tyrosine kinases via superoxide
production.18–20 It can induce Rho kinase-induced nuclear
translocation of ERK1/ERK2 to cause mitogenesis.18–21

Serotonin can increase the susceptibility of BMPR2þ/�
mice to hypoxia-induced PH. PASMCs from BMPR2(þ/�)
mice exhibited a heightened DNA synthesis and activation
of extracellular signal-regulated kinase 1/2 in response to
serotonin compared with wild-type cells. Serotonin inhibits
BMP signaling via Smad proteins and the expression of
BMP responsive genes.22

Fig. 1. Serotonin is synthesized from L-tryptophan through the

activity of TPH which converts L-tryptophan to 5-HT. This is con-

verted to serotonin by 5-hydroxytryptophandecarboxylase and aro-

matic L-amino acid decarboxylase. Serotonin is metabolized to 5-HIAA

via MAO and aldehyde dehydrogenase.
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Fig. 2. Serotonin synthesis via tryptophan hydroxylase 1 (TPH1) is increased in pulmonary artery endothelial cells (PAECs) from rodent models

of PH (inset showing a small pulmonary artery from a control and hypoxic rat with TPH1 staining in the PAECs) and patients with PAH. Serotonin

can act in a paracrine fashion on underlying PASMCs, facilitated by myoendothelial gap junctions (connexion intercellular channels). Serotonin can

enter the PASMC via the Serotonin transporter (SERT) or activate serotonin receptors. The important receptor in the human pulmonary arterial

smooth muscle cell (PASMC) is the 5-HT1B receptor, regulated by microRNA96 (miR96) such that it is upregulated (by decreased miR96

expression) in female PAH patient PASMCs. 5-HT1B activation and SERT activity cooperate to induce PASMC contraction and proliferation via

increased ROS and activation of downstream signaling pathways such as MAPK and rho-kinase (ROCK). These can also facilitate nuclear growth

factors such as GATA-4. Increased serotonin can facilitate a pulmonary hypertensive phenotype in BMPR2-/þ mice via decreased BMPR2

signaling.
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Transglutaminase 2 (TG2) is a multifunctional enzyme
that cross-links proteins with monoamines such as serotonin
via a transglutamidation reaction (serotonylation), and is
associated with pathophysiologic vascular responses.23,24

Through these mechanisms, serotonin can induce PASMC
proliferation and contraction. RhoA serotonylation, follow-
ing SERT-mediated cellular internalization of serotonin has
been described in platelets.25 RhoA and Rho kinase activ-
ities are increased in idiopathic PAH (iPAH), in association
with enhanced RhoA serotonylation and this may involve
platelet activation.26 Serotonin-induced fibrosis may also
play a role in PAH. Serotonin can activate pulmonary arter-
ial fibroblasts and promote adventitia fibrosis through sig-
naling of the TGFb1/Smad3 pathway27 and, in PASMCs,
through NADPH oxidase (Nox)1.28 An interplay between
PDGF and serotonin pathways within PAH has also been
demonstrated to explain TPH1-dependent imatinib efficacy
in collagen-mediated mechanisms of fibrosis.29 Serotonin
also activates immune responses and inflammation in
many peripheral diseases30 and these effects may also play
a role in the development of PAH.

In order to consider if the serotonin system may provide
a therapeutic target for PAH, we need to consider its acti-
vation of receptors, the SERT, and its synthesis via TPH.

Serotonin receptors in the
pulmonary circulation

There are three major subtypes of 5-HT receptors: 5-HT1;
5-HT2; and 5-HT3; which exist in flies, molluscs, round
worms, rodents, rabbits, cats, dogs, and humans.31 The
International Union of Pharmacology classification of
5-HT receptors further divides these into 5-HT1A, 5-HT1B,
etc.32 Other 5-HT receptors are suggested by their cDNAs
but still need to be confirmed.

5-HT2A receptors predominate in systemic arterial
medial tissue and are expressed in the normal PASM of
species such as rats and mice but it is the 5-HT1B receptor
that normally mediates pulmonary arterial responses to
serotonin in larger animals and man.14,33–37 Antagonism
of the 5-HT2B receptor has been shown to have therapeutic
effects in rodent models of PH38–40 and in mice, activation of
5-HT2B receptors on bone marrow lineage progenitors is
critical for the development of experimental PH.41 A role
for the 5-HT2B receptor in human PAH has yet, however,
to be established. Indeed, a mutation in the 5-HT2B recep-
tor has been demonstrated in a patient with PAH42 and the
selectivity of potential 5-HT2B antagonists for 5-HT2B
versus 5-HT1B receptors are unclear. It is still unclear if
the 5-HT2B receptor will prove to be a good target for
human PAH.

The 5-HT1B receptor

In 1993, adverse reactions in patients taking the 5-HT1B/D
agonist sumatriptan for migraine led to the discovery that

this was due to pulmonary vasoconstriction via the 5-HT1B
receptor.34,35 The 5-HT1B receptors are negatively linked to
adenylate cyclase and suppress forskolin-stimulated cyclic
AMP accumulation, stimulating increases in [Ca2þ]i,43

thus causing vasoconstriction. What is very relevant to the
influence of the 5-HT1B receptor in the pulmonary artery is
that it can amplify the accumulation of [3H] inositol phos-
phates elicited by a Gq-protein coupled receptor.43 In add-
ition, removal of the vascular endothelium, inhibition of
nitric oxide synthesis, and small increases in vascular tone
synergize such that they hugely amplify the effects of
5-HT1B activation in pulmonary arteries.13,36,44–46 As pul-
monary arterial endothelial dysfunction, nitric oxide synthe-
sis and increased vascular tone are all contributing factors in
PAH, this increases the relevance of the 5-HT1B receptor in
this disease. Pulmonary arterial responses to the 5-HT1B
receptor are amplified in experimental PH13,45 and ablation
or antagonism of the receptor can reverse experimental
PH.47 Curiously, Raynaud’s phenomenon is correlated
with increased pulmonary arterial pressures in patients
with lupus.48 This may be driven by the 5-HT1B receptor
and variants in the 5-HT1B gene have been shown to be
associated with Raynaud’s.

Recently, it was shown that hPASMCs from female PAH
patients over-express the 5-HT1B receptor and these medi-
ate serotonin-induced proliferation in these cells. The
increased 5-HT1B receptor expression may be a conse-
quence of decreased microRNA-96 expression in the
female patient PASMCs, mediated by estrogen, and this
may contribute to the development of PAH.49 Restoration
of miRNA-96 expression in pulmonary arteries in vivo via
administration of an miRNA-96 mimic reduced the devel-
opment of hypoxia-induced PH in the mouse.49 The 5-HT1B
receptor can mediate proliferation, vasoconstriction, and
fibrosis in the human pulmonary circulation14,16,35 and in
animal models of PH.13,36,45,50,51 Antagonism or knockout
of the 5-HT1B receptor can also ablate experimental
PH.47,52 The pulmonary vascular injury induced by
5-HT1B activation may be due to oxidative stress caused
by Nox1 activation combined with Nrf-2 dysfunction.52

Serotonin and oxidative stress

Increased bioavailability of reactive oxygen species (ROS;
superoxide anion and hydrogen peroxide) can lead to oxi-
dative stress which has been associate with experimental and
human PH by many groups over the years.53–59 Serotonin is
known to induce hydrogen peroxide by activating Nox or
monoamine oxidase (MAO)-A. Metabolism by MAO plays
an incremental, predominant role in biogenic amine turn-
over, which may lead to greater oxidative stress. Oxidation
of monoamine substrates, particularly by MAO-B, increases
the generation of ROS and this may play a role in chronic
neurodegenerative processes, particularly in the central ner-
vous system.41,60 Iproniazid (a MAO-A inhibitor) can block
serotonin-induced S100A4/Mts1 in hPASMCs,12 but a
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definitive role for MAO in the development of PH is as yet
unclear.

Hydrogen peroxide can phosphorylate ERK and/or acti-
vate Rho kinase facilitating ERK translocation. ERK can
thereby phosphorylate nuclear growth factors such as
GATA4.12,19,21,61 Cellular production of antioxidants are
frequently regulated by nuclear factor erythroid-related
factor 2 (Nrf2), which is a transcription factor that influ-
ences antioxidant genes such as superoxide dismutase, cata-
lase, and thioredoxin, all of which protect against oxidative
damage.62 We recently demonstrated that the pulmonary
vascular injury induced by 5-HT1B activation in
hPASMCs may be due to oxidative stress caused by Nox1
activation and subsequent ROS production combined with
Nrf-2 dysfunction.52 Indeed, the Nrf2 activator bardoxolone
is being considered for use in PAH.63 One of the most
important consequences of oxidative stress is oxidation of
proteins, particularly redox-sensitive PTPs, which regulate
phosphorylation of downstream proteins, including mito-
gen-activated protein kinases (MAPK), such as
p38MAPK, and we have shown that serotonin can increase
irreversible PTP oxidation in PAH-hPASMCs in a
5-HT1B-dependent fashion. Serotonin also induces
5-HT1B dependent Rho-kinase activation in these cells.52

E2, through ERa, can also increase Nox-derived ROS and
redox-sensitive growth in hPASMCs, with greater effects in
cells from PAH patients. These effects may be via conver-
sion of E2 to 16a-OHE1 by CYP1B1.28

The serotonin transporter

The serotonin transporter (SERT or 5-HTT) is a mono-
amine transporter protein that transports serotonin into
cells. This transport of serotonin by the SERT recycles it
in a sodium-dependent manner. The SERT may be over-
expressed via a SERT gene polymorphism in certain cohorts
of patients with PAH;64,65 however, analysis of other
cohorts of patients were unable to confirm this.66,67 The
hypothesis is that hPASMC proliferation is mediated via
SERT activity.64 In mice, ubiquitous over-expression of
SERT causes the development of PH in female mice.68 In
mice (both male and female), over-expression of SERT in
the smooth muscle also induces PH.69 There is attenuated
hypoxia-induced PH in SERT gene knockout mice.70

Inhibition of SERT protects against hypoxia-induced
PH.71 Further studies of SERT over-expressing mice
demonstrated that the PH phenotype was only observed in
females aged 5–6 months and was related to estrogen and
associated with over-expression of CYP1B1, an enzyme
important in the metabolism of estrogen.72,73

Dexfenfluramine is an indirect serotinergic agonist, in
that it can enter cells via the SERT and induce release of
serotonin. As such, it can compete with serotonin for the
SERT. There may be therefore be synergistic effects between
dexfenfluramine and SERT in inducing pulmonary vascular
remodeling in hypoxic mice. On its own, dexfenfuramine

can inhibit hypoxia-induced pulmonary vascular remodeling
via SERT activity.74 It is unlikely that SERT inhibitors
(SSRIs) would be effective in PAH as they actually increase
pulmonary vascular contraction due to causing extra-cellu-
lar accumulation of serotonin and subsequent 5-HT1B
receptor activation.75 Indeed, the use of antidepressants
has been associated with a non-causal but significantly
increased risk of iPAH.76 In addition, in a large population
of patients with PAH, SSRI use was associated with
increased mortality and a greater risk of clinical worsen-
ing.77 There are several studies, however, that suggest that
the 5-HT1B receptor and SERT cooperate in both the con-
tractile and proliferative effects of serotonin in the pulmon-
ary circulation.12,50,51,75 The fawn-hooded rat has been
studied as a model of human PAH because it has altered
serotonergic function, an inherited platelet pool storage
defect to serotonin, increased circulating levels of serotonin,
and increased pulmonary vascular responsiveness to seroto-
nin.78–80 Indeed, SERT inhibitors may increase pulmon-
ary vasoconstriction in this rat model of PAH and this
can be inhibited by simultaneous 5-HT1B receptor
antagonism.75

Heightened expression of the S100 calcium-binding pro-
tein, S100A4/Mts1, is observed in pulmonary vascular dis-
ease and there is a mechanistic link between the serotonin
pathway and S100A4/Mts1 in hPASMCs where the 5-HT1B
receptor and SERT are co-dependent in regulating S100A4/
Mts1.12 A combined 5-HT1B receptor antagonist and SERT
inhibitor was more effective than a SERT inhibitor alone
at reversing serotonin-induced proliferation in IPAH
hPASMCs.51 There is also synergy between 5-HT1B recep-
tor and serotonin transporter inhibitors against serotonin-
induced vasoconstriction in mouse and rat pulmonary
arteries.51,75 Evidence therefore suggests that targeting
both the serotonin transporter and the 5-HT1B receptor
may be a novel therapeutic approach to PAH.

TPH1

Tryptophan hydroxylase (TPH) catalyzes the rate limiting
step in serotonin synthesis. TPH1 is expressed in the gut,
pineal gland, spleen, and thymus and is responsible for the
synthesis of peripheral serotonin while TPH2 is predomin-
antly expressed in the brain stem and is responsible for the
synthesis of central serotonin.81,82 In the periphery, sero-
tonin has effects on the immune system, the gastrointestinal
tract, hemostasis, melatonin synthesis, vasoconstriction, and
cellular proliferation. In the central nervous system, it has
effects on anxiety, nerve activity, mood, food intake, aggres-
sion, and sleep. In both patients with PH and in animal
models of PH, pulmonary endothelial TPH1 expression is
increased.9,11 There is growing evidence that genetic abla-
tion of TPH1 or pharmacological inhibition can protect
against or reverse experimental PH including in the hypoxic,
monocrotaline, dexfenfluramine, and sugen/hypoxic animal
models.11,29,74,83–86 This has led to recent interest in the use
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of TPH1 inhibitors for the treatment of PAH patients.
Post hoc subgroup analysis has suggested that PAH patients
with greater hemodynamic impairment had reduced sero-
tonin plasma levels following imatinib treatment, compared
with placebo. This study suggested that imatinib may down-
regulate TPH1 via inhibition of PDGFb signaling.29 To
date, drug design for TPH1 selectivity has been dependent
on developing unselective TPH inhibitors that do not cross
the blood–brain barrier.87 However, biochemical and bio-
physical characterization of a novel allosteric site on TPH1
through which selectivity over TPH2 and related aromatic
amino acid hydroxylases can be achieved has recently been
described.88 This should enable the development of TPH1
selective drugs.

Serotonin and BMPR2

The primary genetic defect of heritable PAH (hPAH) is a
mutation in the gene encoding BMPR2 (present in at least
70–80% of cases of hPAH and >25% of iPAH). hPAH
transmits as an autosomal dominant trait that exhibits gen-
etic anticipation but also markedly reduced penetrance.89–91

Females with BMPR2 mutations have a higher disease pene-
trance and are about 2.5-fold more likely to develop hPAH
than males.91 The cause of the reduced penetrance is likely
to be related to a ‘‘second hit’’ caused by environmental
and/or genetic modifiers. BMPR2 is a member of the trans-
forming growth factor beta (TGF-b) superfamily. Signaling
by BMP-receptors involves heterodimerization of two trans-
membrane serine/threonine kinases: the constitutively active
type 2-receptor, BMPR2, and a corresponding type 1-recep-
tor, BMPR1A or BMPR1B. Activated BMPR1-receptors
phosphorylate a set of BMP restricted Smad proteins,
(Smad1, 5, and 8), which then complex with the common
partner Smad, Smad4 (Co-Smad), and translocate into
the nucleus to regulate transcription of target genes.
Inhibitor of DNA binding (Id) family of protein (Id1–4)
are transcriptional targets of BMP signaling and bind with
high affinity to the E protein family of basic-loop-helix
family of transcription factors and inhibit their binding to
target DNA, regulating gene expression and cellular differ-
entiation. Dysfunctional Smad signaling leads to abnormal
cell proliferation associated with pulmonary vascular
disease.92

Synergy between serotonin and BMPR2

We have previously shown that serotonin uncovers a PH
phenotype in BMPR2þ/� mice suggesting that serotonin
may be a required second hit facilitating the pathogenic
effects of BMPR2 happloinsufficiency.22 On its own, infused
serotonin did not induce a PH phenotype. This suggests that
it is a local, pulmonary endothelial released serotonin acting
directly on PASMCs with a BMPR2 dysfunction that drives
the pathogenesis of PH. This is consistent with fact
that elevated circulating serotonin levels on their own

(for example, as observed in carcinoids syndrome) rarely
cause PAH. We also examined miRNA-96 expression in
PASMCs from female BMPR2 (R899Xþ/�) mice; we
demonstrated that the proliferative response to serotonin
increased, associated with increased 5-HT1BR expression
and a decrease in miRNA-96.

Sex, serotonin, and BMPR2

It is only the female BMPR2 (R899Xþ/�) mice (unpub-
lished) and Smad1-/- mice93 that spontaneously develop
PAH. In the BMPR2 (R899Xþ/�) mice, this is via
5-HT1B-mediated effects regulated by estrogen via inhib-
ition of miRNA-96.49 We have also previously shown that
inhibition of endogenous synthesis of E2 with the aromatase
inhibitor anastrozole, reverses hypoxic- and sugen/hypoxic-
induced PH in rats but only in female rats. The female
rodent lung displays increased aromatase and decreased
BMPR2 and Id1 expression compared with the male lung.
Anastrozole treatment reversed the impaired BMPR2 path-
way in females only.94 We have also demonstrated that
E2-driven suppression of BMPR2 signaling in non-PAH
hPASMCs derived from women contributes to a pro-prolif-
erative phenotype in hPASMCs that may predispose women
to PAH.93 E2 also increases expression of TPH1 and the
5-HT1BR in hPASMCs.73 In humans, any treatment that
targets endogenous E2 will, however, be as effective in males
as females because endogenous PASM expression of aroma-
tase is observed in female PAH patients pre and post meno-
pause and in male patients also.94 Plasma E2 levels are also
elevated in male iPAH patients.95

Measuring serotonin

There are several ways of measuring serotonin in the blood
and urine, including HPLC (electrochemical and fluoromet-
ric), radioenzymatic assay, immunoassay (e.g. ELISA),
spectrophotofluorometric, GC-MS, and liquid chromato-
graphy-tandem mass spectrometry. Measuring free sero-
tonin levels in the plasma is, however, problematic and the
actual concentration reported can be in the range of
0.6–180 nmol/L depending on the methods used.96 There
are many other factors that need considered when evaluat-
ing serotonin concentrations. Serotonin- or tryptophan-rich
foods such as dates, grapefruit, cantaloupe, avocados, bana-
nas, plums, eggplant, plantain, walnuts, pineapple, toma-
toes, hickory nuts, kiwi, or honeydew melon can increase
urinary serotonin and urinary 5-HIAA levels markedly.
Drugs such as lithium, MAO inhibitors, methyldopa, and
morphine all elevate urine and serum serotonin. SSRIs can
lead to depletion of platelet serotonin levels and result in
false-negative urine, serum, and blood serotonin tests.
Heavy nicotine consumption via heavy smoking can also
result in false elevations of urinary serotonin levels as
there can be cross-reactivity of the major nicotine metabolite
cotinine with serotonin in some assays.
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Summary

PAH is a very complex disease and many factors are
involved in its pathophysiology. There is a wealth of evi-
dence in support of the ‘‘serotonin hypothesis of PAH’’
and that serotonin is one factor contributing to the devel-
opment of PAH. In light of this, it is hoped that future
direction sees the development of inhibitors of either sero-
tonin synthesis (TPH1 inhibitors) or the 5-HT1B receptor
which may prove to be therapeutically effective in PAH.
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