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G E O C H E M I S T R Y

Lithium isotopic constraints on the evolution of 
continental clay mineral factory and marine 
oxygenation in the earliest Paleozoic Era
Guang- Yi Wei1,2*, Mingyu Zhao3,2*, Erik A. Sperling4, Robert R. Gaines5, Boriana Kalderon- Asael2, 
Jun Shen6, Chao Li7,8,9, Feifei Zhang1, Gaojun Li1, Chuanming Zhou10, Chunfang Cai3,  
Daizhao Chen3, Ke- Qing Xiao11,12, Lei Jiang3, Hong- Fei Ling1, Noah J. Planavsky2, Lidya G. Tarhan2

The evolution of oxygen cycles on Earth’s surface has been regulated by the balance between molecular oxygen 
production and consumption. The Neoproterozoic–Paleozoic transition likely marks the second rise in atmospher-
ic and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disput-
ed how marine organic carbon production and burial respond to global environmental changes and whether 
these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and ele-
mental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million 
years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, 
likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeo-
chemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have 
notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earli-
est Paleozoic oceans.

INTRODUCTION
Although photosynthetic production of oxygen emerged early in 
Earth’s history [~3.0 billion years ago (Ga)], increases in atmospheric 
and marine reservoirs of oxygen, linked to fundamental shifts in the 
source- sink balance of molecular oxygen, were substantially delayed 
(1–3). The stepwise oxygenation of Earth’s surface environments fol-
lowing the emergence of oxygenic photosynthesis, such as the Great 
Oxidation Event (GOE), occurring around 2.4 to 2.1 Ga, and the 
Neoproterozoic Oxygenation Event (NOE), spanning ~0.8 Ga to 0.55 
Ga, was ultimately caused by elevated production or reduced con-
sumption of molecular oxygen (4, 5). Before the rise of land plants, 
the transfer and burial of photosynthetically produced marine or-
ganic carbon (OC) from the surface ocean to seafloor sediments (i.e., 
the marine biological carbon pump) likely served as the primary 
source of molecular oxygen to the Earth’s surface over million- year 

timescales (6). Secular changes in OC production and burial are 
closely related to shifts in biological evolution, global tectonics, and 
biogeochemical cycles (2, 5, 7). Increases in the availability of nutri-
ents (e.g., phosphorus) and the emergence of new clades of primary 
producers in the oceans are assumed to have intensified the biologi-
cal pump and OC burial over time and thus to have driven the rise of 
atmospheric and oceanic O2 levels (7–9). In today’s oceans, only a 
small fraction of OC reaching the seafloor (<0.03 to 13%) will ulti-
mately be buried, while a far larger portion is broken down by micro-
bial respiration (10, 11). Therefore, factors regulating OC burial 
efficiency in marine sediments may have played a critical role in 
shaping global redox landscapes throughout Earth’s history. The late 
Neoproterozoic to early Paleozoic is considered to mark a second 
major increase in atmospheric O2 levels (4, 12), although the overall 
extent of global atmospheric and oceanic oxygenation during this 
interval may still have been limited relative to the modern Earth 
(13–16). However, the identification of drivers of secular shifts in OC 
burial and the oxygenation of the oceans and atmosphere remains 
contentious from the late Neoproterozoic to the early Paleozoic 
(2, 17–21).

Myriad factors are proposed to influence OC burial efficiency in 
marine sediments, including sedimentation rates, seawater chemistry, 
temperature, the biochemical reactivity of organic particles, and min-
eral protection (i.e., interactions between OC and mineral matrices, 
protecting OC from oxidation by means of sorption or inhibition of 
microbial decay) (11, 21–24). Mineral protection, in particular, plays a 
strong role in shaping the fate of OC in modern seafloor sediments 
(25–28), particularly via binding with clays (29–31). Therefore, asso-
ciations between seafloor mineral assemblages and OC burial may be 
closely related to the geological oxygen cycle and to past oceanic redox 
states (19, 32, 33). Previous studies have proposed that enhanced oro-
genesis related to Gondwana amalgamation and subsequently acceler-
ated chemical weathering could have enhanced the marine burial of 
OC in the late Neoproterozoic (19, 34). However, empirical evidence 
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for this feedback and clear links between shifts in the continental clay 
factory and global oxygenation have hitherto been limited.

Here, we report a large (n = 550) dataset of lithium isotope (δ7Li) 
and K/Al ratios from marine fine- grained siliciclastic rocks (i.e., 
mudstones) from Canada, the United States, Namibia, the Tarim 
Basin (NW China), and South China, spanning the upper Neopro-
terozoic to the middle Cambrian [~660 million years ago (Ma) to 
500 Ma] (fig. S1). We assess these data with the aim of reconstruct-
ing secular trends in the distribution of marine sedimentary clay 
and continental silicate weathering patterns over this critical time 
interval. These data reveal substantial increases in the production of 
continental clay, concurrent with increases in the OC and uranium 
content of fine- grained siliciclastic rocks, beginning in the early 
Cambrian (~525 Ma). We interpret these results to be a signal for 
intensified continental silicate weathering and continental clay de-
livery to the continental shelves during the early Cambrian, which 
would have promoted the burial and preservation of OC in marine 
sediments and thus facilitated increases in oxygen accumulation in 
the earliest Paleozoic oceans.

Lithium isotope of marine mudstones as a tracer for 
continental clay formation
Fined- grained marine siliciclastic rocks generally consist of a 
combination of products from continental physical erosion (un-
weathered rock fragments and primary minerals), continental 
chemical weathering (continentally formed clays), along with ma-
rine reverse weathering (authigenic clays precipitated into seafloor 
sediments) (35). Siliciclastic sediments on continental shelves 
are dominated by- products of continental physical and chemical 
weathering due to high detrital sedimentation rates (36, 37), with 
substantial local variation in the relative proportions of clay min-
erals to unweathered rock fragments and primary minerals (e.g., 
mica, feldspar, and quartz) controlled by tectonics-  and climate- 
mediated differences in weatherability in source areas (38, 39). 
Continental detrital materials (e.g., mica, feldspar, and smectite) 
can also be transformed into new clay minerals during deposition-
al and early diagenetic processes on the continental shelf, and 
some clay minerals (e.g., chlorites) can be derived through either 
continental weathering or marine authigenesis (40–43). In addi-
tion, due to elevated rates of reverse weathering (37), the accumu-
lation of authigenic clays in Neoproterozoic and early Paleozoic 
marine sediments may have been greater than in the modern 
ocean, potentially diluting continental weathering products and 
further hampering their identification in marine mudstones. Dis-
tinguishing between marine authigenic clays, continental clays, 
and unweathered primary silicates within ancient sedimentary 
successions through conventional petrographic and mineralogical 
analyses has proven challenging. Lithium isotopes represent a 
promising tool to explore the extent of continental clay contribu-
tion to marine siliciclastic sediments, as clay minerals preferen-
tially incorporate the lighter Li isotope (6Li) relative to upper 
crustal materials (44–47). Continentally formed clays and marine 
authigenic clays can also exhibit distinct δ7Li signatures as a result 
of large expected δ7Li differences between their precipitating fluids 
(48–49). Under steady- state conditions with respect to the global 
marine Li cycle, seawater δ7Li reflects a balance between all input 
and removal fluxes and their isotopes. Therefore, δ7Li values of 
marine authigenic clays, which were likely the predominant sink 
for seawater Li during the Precambrian (50), are likely to be 

roughly equal to the average δ7Li value of Li sources to the ocean 
(i.e., the weighted average of the δ7Li values of river waters and 
hydrothermal fluids) and potentially distinctly higher than those 
of continental clays and unweathered primary silicate minerals 
(51–53). Substantial continental clay formation during chemical 
weathering, on the other hand, can be distinguished by notably 
negative δ7Li values, associated with incongruent weathering of 
primary silicate minerals, given that the average δ7Li value of the 
upper continental crust (UCC) is roughly 0‰ (per mil) (38, 54, 
55). Today, rock provenance and silicate weathering intensity are 
likely the primary levers on the δ7Li values of riverine detrital ma-
terials delivered to the oceans (38, 55). Studies of modern river 
sediments suggest that modern continental denudation is canni-
balistic, and δ7Li signatures of detrital materials are fundamentally 
controlled by newly formed weathering products (enriched in the 
light Li isotope relative to bedrock) and unweathered rock frag-
ments (similar δ7Li to bedrock) (38). Both marine authigenic clays 
and unweathered primary silicate minerals yield higher δ7Li signa-
tures in siliciclastic sediments relative to continental clays, render-
ing more negative δ7Li signatures a reliable indicator for the 
dominance of continental clays in marine mudstones (38, 56). 
Complementary evidence comes from the abundance of potassi-
um relative to aluminum (K/Al) in marine mudstones, which also 
reflects the balance between continental weathering products and 
marine authigenic clays. The element K is preferentially lost to 
aqueous solutions relative to Al during chemical weathering of K- 
bearing primary silicate minerals (e.g., K- feldspar) (57), whereas 
marine clay authigenesis typically involves the incorporation of 
excess K from seawater or porewater into the clay mineral lattice 
(58). Together, clays derived from continental chemical weather-
ing are expected to record negative δ7Li and low K/Al values, 
whereas physically eroded rock fragments and primary silicate 
minerals tend to exhibit δ7Li and K/Al values similar to UCC. In 
contrast, marine authigenic clays are expected to exhibit substan-
tially higher K/Al and δ7Li values than continentally derived ma-
terials, due to uptake of K and isotopically heavy Li from seawater 
reservoir.

RESULTS
Long- term δ7Li records presented here for marine mudstones from 
multiple, geographically disparate regions, spanning the upper Neo-
proterozoic to middle Cambrian, exhibit a notable shift toward nega-
tive values at ~525 Ma (Fig. 1B). Most mudstones deposited before 
~525 Ma have δ7Li values ranging between those of modern UCC (~0 
to 1.2‰) and unweathered igneous rocks (~3 to 5‰) (38, 54). Thus, 
marine mudstones deposited during this period are likely dominated 
by weakly chemically weathered products, which is consistent with 
relatively elevated K/Al values recorded in the same suite of samples 
(Fig. 1A). In addition, relatively higher δ7Li and K/Al signals before 
~525 Ma could also reflect a high relative abundance of marine authi-
genic clays, particularly in light of extensive marine authigenic clay 
formation and low seawater δ7Li values previously inferred for Pre-
cambrian oceans (37, 50). By contrast, mudstones deposited after 
~525 Ma document negative δ7Li values (as low as −6‰) and lower 
K/Al (as low as 0.1), notably lower than those of modern UCC (Fig. 1). 
Such negative δ7Li and low K/Al records in marine mudstones are 
interpreted to reflect relatively high contributions from continentally 
derived incongruent weathering products (i.e., continental clays), 
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relative to unweathered rock fragments and marine authigenic clays 
(55, 57, 59).

DISCUSSION
Shift in Li isotopes of marine mudstones after the 
early Cambrian
The δ7Li values of marine mudstones in our dataset exhibit a pro-
nounced inflection in the early Cambrian (~525 Ma), as indicated by 
both the raw data and the bootstrap- resampled means used to assess 
the statistical significance of these results (Fig.  2A). Marine mud-
stones deposited before ~525 Ma exhibit higher δ7Li values, with the 
great majority of samples lying between 0 and 3‰. We interpret these 
samples to reflect predominance by a mixture of poorly weathered 
rock fragments, potentially with contributions from marine authi-
genic clays. By contrast, although heavier δ7Li values also persist, 
younger mudstones deposited after ~525 are marked by significant 
shift in distribution to a greater relative abundance of distinctively 
negative δ7Li values between −5 and −2‰ (Fig. 2A). Critically, trends 
in K/Al, to first order, correspond to those described for δ7Li (Fig. 2B). 
Therefore, we infer that mudstones deposited before 525 Ma and 
characterized by both elevated δ7Li and high K/Al values likely reflect 
the high relative abundance of poorly weathered continental detrital 
materials. In addition, following delivery to the continental shelves, 

the newly formed continental clays may be susceptible to marine 
authigenesis and exchange with seawater (37, 41, 42), potentially di-
luting the preservation of primary continental signals in marine mud-
stones. Previous studies have proposed that rates of marine clay 
authigenesis may also have reduced across this interval (37, 50); how-
ever, decreases in the extent of marine authigenesis are unlikely to 
solely cause the notably negative δ7Li records in mudstones after ~525 
Ma without abundant continental clay contribution of isotopically 
light Li. Together, marine mudstones in our dataset with coupled neg-
ative δ7Li and low K/Al signatures can provide the most conservative 
estimate of substantial continental clay accumulation in marine sedi-
ments. Hence, we interpret samples in our dataset deposited after 
~525 Ma to represent pulses of increased continental clay influx to 
marine sediments.

We further evaluate the characteristics of the analyzed mudstones 
by examining the relationships between Na/Al, Li/Al, K/Al, and δ7Li 
values, based on a modern riverine framework for detrital materials 
(Fig. 2) (38). We normalize elemental abundances to Al concentra-
tions to mitigate possible effects of dilution by quartz and/or organic 
matter on the geochemical signals recovered. Compared to primary 
igneous rocks, marine sedimentary rocks are associated with high Li/
Al, low Na/Al, and low average δ7Li values (38). Accordingly, a simple 
mixture of eroded fragments of igneous and sedimentary rocks would 
result in clear correlations of Na/Al to Li/Al and of δ7Li to Li/Al be-
tween the two endmembers of igneous and sedimentary rocks (Fig. 2, 
C and D), as seen in modern river sediments (38, 60). However, the 
absence of clear correlations between endmembers of igneous rock 
and sedimentary rock observed for the studied mudstones suggests 
that the lower Cambrian δ7Li shift observed in our dataset was likely 
not induced by changes in the provenance (e.g., source lithology) of 
continental weathering products (Fig. 2, C and D). During chemical 
weathering of primary silicate minerals, Li, Na, and K are preferen-
tially lost relative to Al (58, 59), leading to lower Li/Al, Na/Al, and K/
Al values of continental weathering products relative to crustal pre-
cursor lithologies. By contrast, marine reverse weathering would re-
sult in additional K and Li accumulation in mudstones, scavenged 
from seawater or pore water (48, 58). Together, we interpret substan-
tial shifts toward negative δ7Li and low Na/Al, Li/Al, and K/Al values 
in marine mudstones, relative to average values of the modern UCC 
(Fig.  2, B to D), to reflect episodes of enhanced chemical silicate 
weathering and increased continental clay influx to the continen-
tal shelf.

Enhanced continental weathering and clay mineral factory 
after the early Cambrian
It has been widely argued that, before the proliferation of land plants, 
continental silicate weathering was predominantly driven by physi-
cal erosion during the Precambrian and early Paleozoic, with com-
paratively limited formation of continental clays (42, 61). Previous 
research has suggested that marine oxygenation since the Neopro-
terozoic may have been driven by increased OC burial efficiencies 
linked to gradual increases in the abundance of phyllosilicates in ma-
rine mudstones (19), though this framework has subsequently been 
reinterpreted to reflect enrichments of micaceous minerals (physical 
eroded products) rather than clays derived from continental chemi-
cal weathering (43). In this study, mineralogical analyses of typical 
marine mudstone samples, with either high or low δ7Li signatures, 
indicate no substantial changes in aluminosilicate mineralogy from 
the late Neoproterozoic to the Cambrian. In particular, we do not 
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observe notable increases in smectite or kaolinite—clay minerals 
which are commonly interpreted as products of intense chemical 
weathering (fig.  S2). This lack of an apparent trend in smectite or 
kaolinite abundance may reflect the postdepositional neomorphism 
of original clay minerals, highlighting the challenges in identifying 
long- term patterns in continental weathering and marine authigen-
esis from clay mineralogy alone (40, 41). In contrast, the geochemical 
data presented in this study provide independent constraints on the 
relative abundance of continental clays in marine mudstones. Re-
gardless of uncertainties surrounding original clay mineralogy, cou-
pled negative δ7Li and low K/Al values provide clear evidence for 
enrichments in continental clays in marine mudstones after the early 
Cambrian, linked to shifts in continental chemical weathering re-
gimes and potentially denudation rates. We further attribute in-
creased continental clay formation to the long- term evolution of 
continental igneous rock composition, global orogeny, and climate 
warming in the early- middle Cambrian (62–65). Following the break-
up of Rodinia and assembly of Gondwana, the emplacement of 
large volumes of felsic rock, the development of regionally high 

continental topography, and increases in CO2 outgassing rates have 
been proposed to have occurred in the early Cambrian (34, 63–65). 
The shift in UCC composition during this interval is also reflected by 
elevated radiogenic Sr isotopes of average continental igneous rocks 
(66) along with decreases in the radiogenic Nd isotope value of ma-
rine sediments (67). Aligned with global climatic and environmental 
changes, a shift to more felsic weatherable terranes, characterized by 
higher Al/(Mg + Ca) ratios, may have preferentially induced more 
clay formation relative to the products of mafic rock weathering (68–
71). This effect may have been further enhanced by the extreme 
greenhouse climate (62, 63) and high rates of CO2 outgassing and 
orogenesis (34, 63) inferred for the early Cambrian, which may have 
facilitated the development of floodplains and foreland basins adja-
cent to mountains, along with a more active hydrological cycle (72, 
73). Together, shifts in global tectonic activity and climate during the 
early Cambrian likely played a critical role in intensifying silicate 
weathering and continental clay formation before the rise of land 
plants. Negative δ7Li signals have also been documented by mud-
stones deposited during the Cryogenian interglacial interval (Fig. 1B) 
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and are interpreted to reflect transient increases in silicate weather-
ing intensity due to an increased supply of fresh silicate minerals, a 
warming climate, and active hydrological conditions during postgla-
cial intervals (74). However, this inferred Cryogenian intensification 
of silicate weathering was ultimately a short- lived response to post-
glacial perturbation, rather than signaling a secular shift in continen-
tal weathering regime (74).

Effects of the continental clay mineral factory on global 
marine redox evolution
Compared to the Neoproterozoic, the early- middle Cambrian may 
have been marked by an overall decrease in the area of anoxic seafloor 
although, globally, marine and atmospheric oxygen levels still re-
mained low (14, 15, 75, 76). Despite long- standing debates regarding 
the underlying mechanisms, increased OC burial fluxes were likely 
the most critical factor in triggering an increase in the baseline of at-
mospheric and marine oxygen levels between the Proterozoic and the 
middle Paleozoic (2, 8, 17). Although subsequent work has ques-
tioned whether commonly invoked mechanisms, such as the evolu-
tion of complex eukaryotes (17), could have feasibly driven a shift in 
marine export productivity (21), other studies have suggested that el-
evated continental denudation and marine sedimentation rates driv-
en by intensified orogenesis, potentially amplified by increased rates 
of continental clay influx to continental shelves, could have enhanced 
OC burial efficiencies and facilitated increases in atmospheric and 
marine oxygen levels during the early Phanerozoic (19, 34). However, 
the extent to which changes in continental weathering, nutrient sup-
ply, OC burial, and marine redox state are correlated remains poorly 
constrained. We therefore further compare our Li isotope data to 
marine mudstone records of phosphorus (P), total OC (TOC), and 
uranium (U) contents from the Sedimentary Geochemistry and Pa-
leoenvironments Project (SGP) database (77). Assessment of SGP 
compilations, drawing on more than 6000 independent sedimentary 
records, allows us to approximate global- scale patterns in average nu-
trient availability, OC burial, and marine oxygenation from the late 
Neoproterozoic to the Cambrian (Fig. 3, B to D) (12). Although we 
have not analyzed these data in a multivariate framework or account-
ed for sampling biases, the first- order pattern shows systematic in-
creases in the TOC and U contents of marine mudstones across this 
interval, suggesting that enhanced OC burial in marine sediments 
and decreased global anoxic seafloor area (12, 16, 18, 78, 79) appear to 
be coincident with shifts in δ7Li toward more negative values (Fig. 3). 
The transition of primary- producer communities from predominant-
ly cyanobacteria to eukaryotic algae and increased seawater nutrient 
(e.g., P) levels have been proposed to have enhanced marine produc-
tivity and fostered a more efficient biological pump since the Neopro-
terozoic. However, the initial rise of eukaryotic algae and marine P 
availability occurred in the early Neoproterozoic (8, 20), substantially 
earlier than the increase in TOC and U contents in the SGP compila-
tions (Fig. 3). On the basis of comparisons of our newly analyzed and 
compiled sedimentary δ7Li, TOC, U, and P data, we suggest that 
intensified OC burial across this interval may instead have been pri-
marily controlled by increased influx of continental clay to marine 
sediments in continental shelf settings (Fig. 3). New P compilations 
in this study also show appreciable peaks after ~525 Ma (Fig.  3B), 
potentially indicative of an increased marine P reservoir. In addi-
tion to possible post- Ediacaran reorganization of the marine P cycle 
(80), enhanced continental weathering, as identified by sedimentary 
δ7Li records in this study, as well as increases in average crustal P 

concentrations (81), could have contributed to elevated marine P 
availability in the early Cambrian.

Building on our geochemical data, we further used a global bio-
geochemical multiple- box model (33) to evaluate the effects of en-
hanced silicate weathering and continental clay formation on global 
carbon, oxygen, and nutrient cycling, with additional parameteriza-
tion to represent the protection of OC by continental clay minerals 
(see the Supplementary Materials for detailed model description). 
The initial continental clay influx to continental shelf sediments was 
assumed to be 25% of modern values, a value selected to represent low 
chemical weathering intensity and limited continental clay formation 
during the Proterozoic (19, 42). We then simulated shifts in atmo-
spheric pO2, dissolved O2 concentration in the deep ocean, and the 
efficiency of OC burial on the continental shelf accompanied by grad-
ual increases in continental clay influx to continental shelf sediments 
(Fig. 4). The terrestrial OC burial flux was set to zero in these simula-
tions with the assumption of extremely limited terrestrial export pro-
ductivity before the rise of land plants. Given estimated pO2 levels of 
5 to 40% PAL (present atmospheric level) for the late Neoproterozoic 
atmosphere (82), our model results suggest that gradually accelerated 
continental clay delivery to continental shelves could lead to notable 
increases in OC burial efficiency. This shift in OC burial efficiency, in 
turn, could have led to relatively substantial (albeit still low in absolute 
magnitude, compared to the modern Earth system) increases in at-
mospheric and marine oxygen levels. For instance, a twofold increase 
in the burial flux of continental clays in marine sediments following 
the early Cambrian, as also estimated in (19), could have resulted in 
a ~50% increase in atmospheric pO2 and an approximately eightfold 
increase in the dissolved O2 concentrations of the intermediate- depth 
and deep ocean (>100- m depth in the model) (Fig. 4). Future work 
will hopefully further resolve remaining uncertainties regarding the 
scope of clay- OC interactions. However, these data indicate that 
changes in continental clay formation and delivery can potentially 
serve as important levers on the global oxygen cycle. In sum, the syn-
thesis of our Li isotope data and the results of this numerical model-
ing exercise indicate that amplified delivery of continental clays to 
coastal and shallow- marine settings may have facilitated increases in 
atmospheric and global ocean levels after the early Cambrian (14, 15, 
75, 82). Although early Paleozoic oxygen levels were likely character-
ized by lower and more variable oxygen levels than those of the mod-
ern Earth (Fig.  3) (13, 14, 16, 82), increases in continental clay 
production and delivery may have decreased sedimentary dissolved 
oxygen consumption, leading to a progressive expansion of oxygen-
ated seawater during the early radiation of animals.

MATERIALS AND METHODS
Sampling
In this study, the Li isotope and K/Al data are largely based on 
classic stratotype sections with well- established biostratigraphic, che-
mostratigraphic, and chronostratigraphic frameworks. The sampling 
intervals are illustrated in fig.  S1, mainly consisting of mudstones, 
shales, and silty shales from the following: (i) South China: Cryoge-
nian Datangpo Formation; Ediacaran Doushantuo Formation (Mem-
ber II and Miaohe Member) and Lantian Formation (Member II); 
lower Cambrian Liuchapo Formation, Yanjiahe Formation, Shuijing-
tuo Formation, Jiumenchong Formation, Niutitang Formation, and 
Zhalagou Formation; middle Cambrian Shipa Formation, Balang 
Formation, Duliujiang Formation, and Kaili Formation. (ii) Canada: 
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lower Cambrian Ingta Formation, Mural Formation, and Mahto For-
mation; middle Cambrian Burgess Shale. (iii) United States: lower 
Cambrian Parker Slate, middle Cambrian Pioche Formation, Wheeler 
Formation, Marjum Formation, and Langston Formation. (iv) Na-
mibia: uppermost Ediacaran to lowermost Cambrian Spitskopf For-
mation (Feldschuhhorn Member) and Nomtsas Formation. (v) Tarim 
basin, North China: lower Cambrian Yuertusi Formation. Detailed 

information for sample sites, ages, and stratigraphic correlations is 
presented in section S1 of the Supplementary Materials.

Elemental and isotopic analyses
For trace element and isotope analyses, sample powders were first 
rinsed using 1 M acetic acid to remove carbonate components from 
bulk mudstones. The residuals were fully digested with distilled acids 
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of HF, HNO3, and HCl. Major and trace elements of the samples were 
analyzed with a Thermo Scientific Element XR ICP- MS (Inductively 
Coupled Plasma Mass Spectrometer) at the Yale Metal Geochemistry 
Center (YMGC), Yale University, and the Metal Isotope Geochemis-
try Lab in the Centre for Research and Education on Biological Evo-
lution and Environment (CREBEE), Nanjing University. Lithium 
isotopes were analyzed with a Thermo Scientific Neptune Plus/XT 
MC- ICP- MS (Multicollector- Inductively Coupled Plasma Mass Spec-
trometer) combined with an ESI Apex- IR desolvating system at 
YMGC and CREBEE. Each sample, containing 50 ng of Li, was puri-
fied using AG50W- X12 (200 to 400 mesh) cation resin with 0.2 M 
HCl. Detailed descriptions of sample preparation, analytical methods, 
and accuracy follow that of previous studies (74) and are presented in 
the Supplementary Materials.

The global biogeochemical model
Our biogeochemical model is modified from a six- box global biogeo-
chemical model, which includes representation of the carbon, oxygen, 
sulfur, iron, and phosphorus cycles (33). The main modification from 
the previous model is that we have linked OC burial efficiencies not 
only to iron minerals but also to clay burial fluxes. We have assumed 
a fixed fraction of OC burial associated with Fe oxides (OC/Fe ratio of 
4), following previous studies (33, 83). The initial clay sedimentation 
flux was set to be 25% of that of modern continental shelf settings (19, 
84), to reflect low continental clay fluxes to marine sediments during 
the Proterozoic. Terrestrial export productivity was set to 0 in these 
simulations, under the assumption that limited OC burial occurred 
on land before the rise of land plants. Initial atmospheric O2 levels 
were set at 5 to 40% PAL, based on previous estimates generated by 
well- established numerical models (82, 85). Detailed descriptions of 
the model parameters and sensitivity tests are presented in the Sup-
plementary Materials.

Supplementary Materials
This PDF file includes:
Supplementary text S1 to S3
Figs. S1 to S5
legends for data S1 and S2
References

Other Supplementary Material for this manuscript includes the following:
data S1 and S2
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