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Abstract: Early research has suggested a rather straightforward relation between phosphate expo-
sure, increased serum FGF23 (Fibroblast Growth Factor 23) concentrations and clinical endpoints.
Unsurprisingly, however, subsequent studies have revealed a much more complex interplay between
autocrine and paracrine factors locally in bone like PHEX and DMP1, concentrations of minerals
in particular calcium and phosphate, calciprotein particles, and endocrine systems like parathyroid
hormone PTH and the vitamin D system. In addition to these physiological regulators, an expanding
list of disease states are shown to influence FGF23 levels, usually increasing it, and as such increase
the burden of disease. While some of these physiological or pathological factors, like inflammatory
cytokines, may partially confound the association of FGF23 and clinical endpoints, others are in the
same causal path, are targetable and hence hold the promise of future treatment options to alleviate
FGF23-driven toxicity, for instance in chronic kidney disease, the FGF23-associated disease with the
highest prevalence by far. These factors will be reviewed here and their relative importance described,
thereby possibly opening potential means for future therapeutic strategies.

Keywords: FGF23 (Fibroblast Growth Factor 23); regulation; mineral metabolism; PTH; DMP1;
phosphate; calcium; vitamin D

1. Introduction

Fibroblast Growth Factor 23 (FGF23) has emerged as an important biomarker in chronic
kidney disease (CKD) [1]. Accumulating evidence suggests that it not only is a risk predictor
for cardiovascular disease, in particular heart disease and heart failure, but also a uremic
toxin itself, directly causing disease [2]. For both properties, being either an independent
risk predictor or a direct toxin, in-depth knowledge of its regulation is of paramount
importance. In the setting of FGF23 as an independent risk factor, but not directly inflicting
harm, its association with clinical endpoints is confounded by hitherto hidden mechanisms
that are in the causal path to these endpoints. Exploring these regulators of FGF23 may
thus reveal novel targets of treatment and hold the promise of improving outcomes for
patients with kidney disease. In turn, if FGF23 itself is the causative molecule, intervening
in its regulators may also modify FGF23-driven morbidity.

Besides being a prominent hormone in CKD, the discovery of FGF23 solved the quest
for a humoral factor explaining several inheritable diseases characterized by renal wasting,
which by then could be explained by mutations of FGF23 itself or factors involved in its
regulation [3].

FGF23 is a hormone, secreted by osteocytes, and has a central physiological role
in phosphate homeostasis. It promotes phosphaturia and inhibits the activation of vita-
min D, thereby limiting vitamin-D mediated phosphate absorption from the diet by the
transcellular uptake route of enterocytes in the gastro-intestinal tract. There are several
principal ways in which FGF23 concentrations can be regulated, and all of these appear
to play a role. These modes of regulation are production and secretion by the cells of
origin, ectopic production, and cleavage or breakdown at cells of origin or after release
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into the circulation. The currently available immunoassays measure either the full-length
and biologically active hormone, termed intact FGF23 (iFGF23), or both iFGF23 and its
c-terminal fragment, termed cFGF23. It should be noted that the term cFGF23 for this
assay is a confusing term, because it does not only measure the c-terminal fragment, the
latter originating after cleavage of the full-length polypeptide. This cleavage obviously also
generates an N-terminal fragment, but no commercially available assay detects this fraction.
Although intact FGF23 is assumed to be the physiological effector molecule, debate exists
on the role of the fragments, possibly having agonistic or antagonistic effects, the latter as a
competitive inhibitor [4].

2. The Role of Minerals as Regulators of FGF23
2.1. Phosphate

Given the key role of FGF23 to protect the organism against hyperphosphatemia, it
can be expected that phosphate increases FGF23 concentrations. Indeed, several studies
have shown that an increase in dietary intake of phosphate by both healthy volunteers and
people with CKD increased its concentrations, albeit with some delay of around 24 h [5–7] to
restore phosphate balance. In turn, phosphate restriction has the ability to lower FGF23, but,
different from PTH secretion from healthy parathyroid glands in a setting of hypercalcemia,
FGF23 has never been described to be fully suppressed following hypophosphatemia, for
instance when induced by mutations in the renal phosphate transporter NaPi2c which
gives rise to hereditary hypophosphatemic rickets with hypercalciuria (HHRH) [8,9]. Until
recently, the underlying molecular mechanism by which phosphate modulates FGF23 levels
has been elusive. It has been shown that phosphate transport into bone cells across the
inorganic phosphate transporter 1 (PiT-1) may be involved [10]. A recent study revealed
an additional remarkable mechanism [11]. Bone cells that produce FGF23 express its
receptor FGFR1 as well. It is now shown that phosphate itself can bind to this unliganded
receptor, leading to the upregulation of the Galnt3 gene, the protein-product of which leads
to O-glycosylation of full-length FGF23, as will be discussed below. The consequence of
this post-translational modification of the FGF23 molecule is that it escapes intracellular
cleavage, increasing the proportion of biologically active FGF23. This mechanism does
not suggest that phosphate induces FGF23 expression, even though a previous study
suggested it can in a cell line [12], but rather stabilises the hormone. This mode of action of
phosphate on FGF23 concentrations is in line with clinical studies in patients with CKD
that addressed the question of whether dietary phosphate restriction can lower FGF23. A
recent meta-analysis of these studies found more pronounced reduction of iFGF23 than
of cFGF23, the latter also measuring FGF23 fragments [13]. In normophosphatemic CKD
patients, short-term treatment with non-calcium containing phosphate binders did not
change FGF23 [14,15], while prolonged treatment induced a substantial decline [16]. The
use of calcium-containing binders did increase FGF23 [17].

2.2. Calcium

Interestingly, there appears to be a minimal concentration of calcium required for
phosphate to be able to increase FGF23 levels. In an animal model testing varying serum
concentration of calcium, it was shown that an increment of FGF23 by PTH was completely
abolished when ionized calcium concentrations were below 4 mg/dL [18]. The physiologi-
cal functionality of this phenomenon might be that this prevents the catabolism of vitamin
D by FGF23 in a setting of hypocalcemia. Moreover, in an animal model, calcium itself was
shown to be able to directly increase FGF23 transcription by acting on the promotor of the
Fgf23 gene [19,20]. These findings from experimental research are in line with most, but
not all, clinical observations. In a clinical trial among 30 early CKD patients, studying the
effects of adding calcium carbonate to calcitriol, it was shown that this induced an increase
of FGF23, which was paralleled by an increase in serum calcium concentration [21]. In
more advanced CKD, the non-calcium containing phosphate binder lanthanum carbonate
was able to lower FGF23 levels, while a calcium-containing binder could not [17]. However,
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in a short-term study, acute increments or decrements of serum calcium concentrations had
no effect on FGF23 [22].

2.3. Calciprotein Particles

Apart from the synergistic effects of combined higher levels of calcium and phosphate
on increasing FGF23, it is possible that this is mediated by the formation of calciprotein
particles (CPP) [23,24]. Even at physiological concentrations, human plasma is supersatu-
rated for calcium and phosphate, which would induce spontaneous hydroxyapatite crystal
formation [25]. These potentially damaging crystals, however, are prevented from being
formed and freely floating in the circulation by being scavenged into soluble amorphous
primary calciprotein particles CPP (CPP1), which are nanoparticles containing the serum
protein Fetuin-A as the main protein constituent. In a setting of increased availability of
these minerals, as is the case for phosphate in CKD, or suppressed hepatic production of
Fetuin A in a setting of chronic inflammation, the stage is set to overwhelm the capacity
of this defence system, leading to the formation of more toxic larger crystalline secondary
CPPs (CPP2) [26–28]. Like high exposure to phosphate, exposure to high calcium levels also
increases the amount of CPP, as was shown in a patient with renal sarcoidosis, and this was
paralleled by an increase in FGF23 [29]. The role of calcium on the formation of CPP was
also shown in a clinical study comparing calciumcarbonate with lanthanumcarbonate [30].
After switching to lanthanumcarbonate, the total amount of CPP declined substantially,
without major differences in serum concentration of calcium and phosphate between the
two phosphate binders.

A recent clinical observational study demonstrated an association between the amount
of CPPs and FGF23, suggesting an induction in the phosphaturic hormone by CPP’s [31].
Indeed, a recent in vitro study found that CPPs are capable of increasing FGF23 expression
in osteoblast-like cells [32]. Remarkably, this effect was restricted to the smaller sized CPP1.
It is therefore conceivable that an increased amount of CPP’s formed triggers FGF23, which
in turn induces phosphaturia and declines levels of active vitamin D. FGF23 thereby slows
the formation of CPP’s by lowering the concentrations of the minerals that form its mineral
content. This concept is supported by the ability of CPP to exit the circulation, enter the
bone marrow and reach FGF23-producing bone cells [32].

2.4. Magnesium

Given its resemblance to calcium as a bivalent cation, and its beneficial effects on the
formation of CPP [33–35], it is likely that magnesium is also involved in the regulation
of FGF23. Data, however, are scarce. In an animal study of cats with chronic kidney
disease, a negative association between serum magnesium concentration and FGF23 was
found, which was independent of calcium, phosphate, and PTH [36]. In an observational
study among young healthy men, it was shown that a lower dietary intake of magnesium
was associated with higher FGF23 [37]. When rats were exposed to a short-term (7 day)
magnesium deficient diet, FGF23 levels were higher compared to a normal diet at all time
points following the interventions which reached statistical significance after one week [38].
However, clinical trials demonstrating a beneficial effect on clinically relevant endpoints of
magnesium supplements are lacking [39].

The role of minerals and calciprotein particles are summarized in Figure 1.
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Figure 1. Effects of minerals on FGF23.

3. Hormonal Regulation of FGF23
3.1. Parathyroid Hormone

PTH was shown to be a relevant regulator of FGF23 by directly increasing its ex-
pression in bone in an experimental model of CKD [40]. Moreover, in that same study,
parathyroidectomy before the onset of CKD completely abolished the FGF23 increment,
even in a subsequent setting of hyperphosphatemia. This is probably mediated by the
receptor PTH1R for PTH on bone cells, the same receptor that is involved in regulating
bone turnover, and with Nuclear Receptor Related-1 protein (Nurr1) an intermediate intra-
cellular molecule [41]. Another established action of PTH on bone cells is the suppression
of the gene encoding for sclerostin (Sost). Sclerostin acts as local inhibitor of the Wnt
pathway by sclerostin, thereby suppressing FGF23 [42–44]. PTH therefore unleashes FGF23
by suppressing sclerostin. Clinical studies suggest a biphasic response to PTH. In a short
term (3 h) 1–34 PTH infusion in healthy young persons, FGF23 declined, most likely driven
by PTH-induced renal phosphate loss [45]. During this period 1,25 dihydroxyvitamin
D3 (1,25D) started to rise, which expectedly would induce increased dietary phosphate
uptake. This, and the potential direct effects of PTH on bone cells may be the dominating
effect following more prolonged exposure, giving rise to FGF23 increments. This indeed
was suggested by a two days PTH infusion study that led to increased cFGF23 in healthy
persons and people treated by dialysis regardless of bone turnover status [46]. Like for
many other aspects, however, the role of PTH is complex, because if endogenous levels
rise as a consequence of a decline of serum calcium by sodium citrate infusion, FGF23
did not increase [22]. Obviously, the stimulating effects of PTH on FGF23 may have been
nullified by the low levels of calcium. There seems to be a logical physiological basis for
the induction of FGF23 by PTH. The key purpose of PTH is to restore hypocalcemia and it
does so in part by liberating calcium form bone. This is paralleled by release of phosphate,
which is, besides by phosphaturic effects of PTH itself, excreted by the kidneys under the
influence of FGF23.

Observations of persons with dialysis-dependent end-stage kidney disease treated
with calcimimetics appear to be in line with the notion that lowering PTH is accompanied
by declining FGF23 [47,48]. Remarkably, however, in both of these clinical studies, using the
oral cinacalcet or the intravenous etelcalcetide, the decline of FGF23 followed reductions of
phosphate and calcium, instead of PTH reductions.

3.2. Vitamin D

There is strong evidence that 1,25D directly induces Fgf23 gene transcription. Mice
injected with the active form of vitamin D had increased levels of FGF23 mRNA, exclusively
in bone, which was accompanied by a rise in serum FGF23 levels [49]. In that same study,
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rat-derived UMR-106 osteoblast-like cells had a 1000-fold increase of FGF23 mRNA 4 h
after exposure to 1,25D. In another study with a focus on exploring the Fgf23 gene promotor
region, this role of 1,25D was confirmed [50]. Collins and co-workers observed three
patients that received a high dose of calcitriol after parathyroidectomy after surgery and
observed steep increments of FGF23 [51]. Many clinical trials have been performed in
which either active or nutritional vitamin D was the key intervention. In several of these
trials, FGF23 levels were part of the follow-up parameters. The results of these observations
have been summarized in two meta-analyses. In the first of these it was found that in
patients that were deficient in vitamin D at baseline, the intervention induced a statistically
significant increase of iFGF23 [52]. There was also an increase of cFGF23, but this did not
reach statistical significance. A very recent meta-analysis could not confirm this effect of
vitamin D, but in this meta-analysis, trials were included where participants did not have
vitamin D deficiency at baseline, which may explain the discrepancy with the previous
analysis [53]. In a study among children treated by dialysis, active vitamin D compounds
(calcitriol or doxercalciferol) induced a substantial increase in FGF23 [54]. Collectively,
these studies strongly suggest that vitamin D, especially active vitamin D, induces FGF23.

A summary of the roles of PTH and vitamin D is provided in Figure 2.
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4. Local Regulators of FGF23 in Bone
4.1. Factors Involved in FGF23 Expression

Dentin Matrix Protein 1 (DMP1) and PHosphate regulating gene with homologies
to Endopeptidases on the X chromosome (PHEX) both are suppressors of FGF23 gene
expression that appear to act in concert locally in bone for that function [55–57]. PHEX
is also believed to promote FGF23 cleavage, which then would induce a lower iFGF23
over cFGF23 ratio. Mutations in either PHEX (XLH, X-linked hypophosphatemic rickets)
and DMP1 (ARHR, autosomal recessive hypophosphatemic rickets) cause renal phosphate
wasting and its clinical sequelae by primary elevations of FGF23. There are no descriptions
in the literature of acquired malfunction or suppression of the PHEX protein, with the
possible exception of a report on a patient with leprosy [58]. For DMP1, however, diseases
that induce acquired suppression appear to exist. In a mice model of CKD, it was shown
that renal failure lowered osteocyte DMP1 expression, followed by FGF23 increases, while
supplementation of DMP1 partially restored FGF23 towards the normal lower range [59].
The extent to which this is of relevance in clinical CKD remains to be established, but it
has been shown that lower circulating levels of DMP1 are associated with cardiovascular
event [60], and this finding may be mediated by increases of FGF23. In addition, uremia
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induced suppression of DMP1, and hence increments of FGF23 may explain the clinical
observation that in more early stages of CKD, FGF23 and phosphate levels appear to
diverge, pointing to another inducer of FGF23 than phosphate itself, namely suppressed
DMP1 [61]. α-Klotho is intricately involved in phosphate homeostasis and the biological
activity of FGF23 [1]. Its colocalization with FGFR1 is mandatory for signal transduction
of FGF23 across the cell membrane to exert its actions in the proximal tubules, to induce
phosphaturia. Recent research has now revealed that the circulating form of α-klotho,
generated after cleavage of its large ectodomain [62], is involved in the expression and
excretion of FGF23 from osteocytes. This hitherto unknown role of α-klotho was postulated
after analysis of a 13-months old girl with unexplained elevation of FGF23 leading to
hypophosphatemic rickets [63]. She was found to have a translocation nearby the α-klotho
gene. This phenotype could be mimicked in an animal model by using an adenovector-
induced increased expression of α-klotho, leading to high levels of circulating α-klotho,
accompanied by a very steep rise of FGF23 and hypophosphatemia [64]. A recent study
employed targeted deletion of the α-klotho gene from long bones and found that this led to
attenuated increase of FGF23 after induction of CKD, both at osteocyte expression level
and its circulating concentration [65]. This strongly suggests that α-klotho is required in
an autocrine fashion for FGF23 expression from osteocytes. Both studies revealed that the
presence of FGFR1 on osteocytes is required.

4.2. Post-Translational Modification of FGF23 in Bone

Following the translation of FGF23, the full-length polypeptide can be cleaved intracel-
lularly before being secreted, thereby preventing the biologically active compound to enter
the circulation. This cleavage occurs between the arginine residues at positions 176 and
179, and mutations at either of the arginine residues renders FGF23 resistant to proteolytic
cleavage, giving rise to autosomal dominant hypophosphatemic rickets (ADHR) [66]. This
cleavage is assumed to occur at the Golgi-apparatus by one of seven serine-proteases
belonging to the family of subtilisin-like preprotein convertases (SPC), which act by cleav-
ing polypeptides from preproteins to its mature polypeptide backbone. The most likely
SPC is furin because its knock-out completely prevented FGF23 cleavage [67]. Prior to
being exposed to these proteases, in particular furin, FGF23 can be O-glycosylated by
N-acetylgalactosaminyltransferase 3 (GalNT3) at threonine residue position 178, which
induces resistance to proteolytic cleavage of FGF23. As indicated above, exposure to
phosphate may increase this O-glycosylation and thereby increase the relative amount of
full-length FGF23, the active form, as a feedback mechanism to restore phosphate to lower
concentrations. In turn, FGF23 can also be phosphorylated at a serine residue at position180
by a kinase termed Fam20c, which prohibits O-glycosylation by GalNT3, which ultimately
makes FGF23 more prone for proteolytic cleavage [67].

5. Clinical Conditions and Their Impact of FGF23
5.1. Anemia and Iron Deficiency

Patients with ADHR, one of the inherited forms of renal phosphate wasting due to
inappropriate elevations of FGF23, can present rather late (from puberty or not even before
their mid-forties), and frequently do not present with typical features such as short stature
or bowed deformations of the lower extremity [68]. While these patients have limited or
absent capacity to cleave FGF23, it is assumed that as long as the baseline transcription
of FGF23 is rather low, circulating iFGF23 can remain relatively normal for years without
severe phosphate losses. Iron deficiency in these patients was associated with increased
iFGF23 levels [69] and in a small open label trial oral iron supplementation substantially
lowered FGF23 level in patients with ADHR [70]. These clinical observations are in line with
animal research on models of ADHR [71]. In that experimental study it was additionally
shown that exposure of osteoblastic cells (UMR-106) to low iron condition increased mRNA
of FGF23 up to 20-fold. The mechanisms involved were mitogen-activated protein kinase
(MAPK) dependent. In addition, iron-deficiency also induced increments of Hypoxia
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Inducible Factor 1α (HIF1α), and HIF1α itself could also boost FGF23 expression. Indeed, it
was shown that a HIF1α binding site exists in the promotor region of the Fgf23 gene [72].
In addition HIF1α prevents the cleavage of FGF23 [73]. Collectively, these findings would
lead to higher circulation levels of iFGF23 in a setting of increased expression of HIF1α by
either iron deficiency or hypoxia. However, in a study using the HIF1α stabiliser molidustat
in an animal model of CKD and in additional in vitro experiments, it was shown that
improved iron availability to osteocytes by the compound abolished the increased FGF23
expression [74]. This same study also revealed that EPO increased FGF23 [74], and this
finding was previously shown in both patients and animal models [75]. This latter study
demonstrated that this effect was sustained after bone marrow ablation, where upregulation
of the Fgf23 gene persisted, strongly suggesting a direct effect on these cells in cortical bone.
Also in human studies, either EPO levels or exogenous doses were associated with FGF23,
in particular total FGF23, while the effects on iFGF23 were indeterminant [76]. The role of
hepcidin, a liver-derived acute phase protein that induces functional iron deficiency, as an
intermediate metabolite in anemia, and iron-deficiency associated FGF23 upregulation is
not yet well established.

5.2. Inflammation

Several reports point to the role of inflammatory mediators on bone cells leading
to increased expression and secretion of FGF23 [73,77]. In turn, FGF23 can upregulate
inflammatory mediators from hepatocytes [77]. Especially in the setting of advanced
CKD with remarkably high concentrations of FGF23, this may initiate a pro-inflammatory
vicious circle, further driving FGF23. Indeed, several pro-inflammatory cytokines such as
tumor necrosis factor (TNF), Interleukin-1β (IL-1β), TNF-like weak inducers of apoptosis
(TWEAK) and also bacterial lipopolysaccahrides (LPS) have been shown to stimulate both
Fgf23 gene expression and protein excretion in a cell model of osteocytes [78]. In another
study, LPS injections increased FGF23 despite a low phosphate diet [79]. Interestingly, the
exposure to LPS also caused renal FGF23 resistance by suppression of kidney α-klotho,
thereby dismantling the FGF23 receptor.

Using several animal models of CKD, or TNF injections in mice with normal kidney
function, it was found that TNF increased FGF23 while anti-TNF prevented this [80].
Importantly, the source of FGF23 in that study was the kidney itself, possibly driven by
the highest local concentrations of TNF in that organ. This role of TNF is in line with the
identification of a TNF responsive FGF23 enhancer, suggesting the direct upregulation
of FGF23 by this inflammatory cytokine [81], although it has also been suggested that
increases of NF-κB are required.

5.3. Chronic Kidney Disease

An extensive review of the impact of chronic kidney disease on FGF23 is beyond
the scope of this review and has been extensively reviewed recently [1,82]. Besides the
propensity to accumulate phosphate as a driver for FGF23 increases, in addition to hy-
perparathyroidism, DMP1 suppression, as outlined above, chronic inflammation, iron
deficiency, and FGF23 resistance due to α-klotho deficiency have all been implicated in the
exponential rise of FGF23 as CKD progresses. Importantly, experimental studies found
that FGF23 cleavage in CKD is impaired as it is in ADHR [73,83]. This feature of CKD, the
precise molecular mechanisms of which is currently unknown, fits with the observation
that in end stage kidney disease, most circulating FGF23 is intact [84]. Interestingly, it was
recently shown that in a model of acute kidney injury, the kidneys themselves produce
glycerol-3-phosphate (G3P), which directly stimulates FGF23 production, exclusively in
bone [85]. It is likely that besides novel regulators like G3P, the impact of CKD on many, if
not all, of the mechanisms involved, as described above, is huge, and collectively creates
a perfect storm for essentially unopposed upregulation of FGF23. In addition, it seems
plausible that in the setting of CKD, the cleavage of FGF23 is attenuated or its capacity
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overwhelmed, leading to extremely high levels of biologically active FGF23 in end stage
kidney disease, most likely contributing to uremic toxicity.

6. Conclusions

The physiological regulation of bone-derived FGF23 is complex, and is regulated at
levels of gene transcription, post-translational modifications, cleavage and cellular release.
In addition, remote biological activity is variable by dynamic affinity of its receptor due to
changing α-klotho abundance, possibly competitive inhibition by FGF23-fragments, and
also varying expression of the FGF receptors themselves [86]. Moreover, ectopic FGF23
production has been described too, as outlined for the kidney as described above, but
cardiac production has also been described [87,88]. The machinery involved in regulating
the metabolism of FGF23 involves an intricate interplay between minerals, calciprotein
particles, the endocrine system and local regulators in the vicinity of osteoblasts and
osteocytes in an autocrine or paracrine fashion. Since FGF23 is most likely involved in
the pathogenesis of an expanding list of diseases, in-depth knowledge of these regulatory
pathways is the first step in ultimately targeting these molecular mechanisms that are in
the path to clinical events. The exploration of these pathways is far from being finalized,
and designing safe and effective interventions are only at the beginning.
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