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Novel feature selection method via kernel 
tensor decomposition for improved multi‑omics 
data analysis
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Abstract 

Background:  Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, 
comprising approximately 102–105 features. In particular, appropriate methods to weight individual omics datasets are 
unclear, and the approach adopted has substantial consequences for feature selection. In this study, we extended a 
recently proposed kernel tensor decomposition (KTD)-based unsupervised feature extraction (FE) method to inte‑
grate multi-omics datasets obtained from common samples in a weight-free manner.

Method:  KTD-based unsupervised FE was reformatted as the collection of kernelized tensors sharing common sam‑
ples, which was applied to synthetic and real datasets.

Results:  The proposed advanced KTD-based unsupervised FE method showed comparative performance to that of 
the previously proposed KTD method, as well as tensor decomposition-based unsupervised FE, but required reduced 
memory and central processing unit time. Moreover, this advanced KTD method, specifically designed for multi-omics 
analysis, attributes P values to features, which is rare for existing multi-omics–oriented methods.

Conclusions:  The sample R code is available at https://​github.​com/​tagtag/​MultiR/.
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Background
Feature selection with multi-omics datasets has been a 
long-standing challenge for bioinformatics. Among the 
numerous proposed methods adapted to multi-omics 
data analysis [1, 2], only few are capable of performing 
feature selection. Most of these methods fail to imple-
ment feature selection because multi-omics data analysis 
has a strong tendency to involve a small number ( = n ) of 
samples with a large number ( = p ) of features, commonly 
referred to as the large p small n problem [3], posing dif-
ficulty for accurate feature selection. Features should 
have a sufficiently small P value to be selected under the 

null hypothesis. Since the raw P values must be heavily 
corrected for multiple comparisons when dealing with 
multi-omics datasets, P values become larger and inevi-
tably less significant; thus, attributing significant P values 
to individual features, even after correction, is difficult. 
However, since the number of samples (i.e., conditions) 
is less than that of features (i.e., variables), labels or val-
ues attributed to samples can be accurately predicted by 
any model (when the number of conditions is less than 
the number of variables, either the labels or values attrib-
uted to samples may be predicted, even if the variables 
are purely random numbers).

In multi-omics analysis, it is difficult to obtain large 
sample sizes since multiple observations, each of which 
corresponds to individual omics approaches, must be 
performed. In this sense, the required cost and time 
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are multiplied in proportion to the number of omics 
approaches considered. This often results in a smaller 
number of samples to which multi-omics measure-
ments are performed when only limited experimental 
resources are available.

Principal component analysis (PCA) and tensor 
decomposition (TD)-based unsupervised feature 
extraction (FE) [4] have been proposed to be applied 
to feature selection for addressing the large p small n 
problem. Thus, these approaches are also suitable for 
feature selection in multi-omics analysis. Recently, 
the TD-based method was extended to kernel TD 
(KTD)-based unsupervised FE [5], which was applied 
to integrated analysis of N 6-methyladenosine (m6 A) 
and gene expression data [6]. These methods attrib-
ute P values to features, which is critical since this 
enables evaluation of the significance of the selected 
features, which is rarely possible using other methods 
applicable to multi-omics datasets [1, 2]. In spite of 
this advantage, there are limitations of PCA, TD, and 
KTD-based unsupervised FE when applied to multi-
omics data analysis. PCA is inferior to TD when aim-
ing for an integrated analysis of multiomics data. PCA 
failed to identify genes whose expression and meth-
ylation levels are altered simultaneously, but TD could 
[7]. Although KTD and TD successfully integrated 
two omics data, they could not achieve the following 
two points, 

1	 Reduction of required memory and long CPU time
2	 Integration of more than two types of omics data

simultaneously (see Discussions below). We here 
described a modification of the KTD-based unsuper-
vised FE method to be more suitable for multi-omics 
data analysis. Although only a small modification was 
implemented, it nevertheless resulted in more flexibil-
ity for multi-omics data analysis, which was verified 
using synthetic and real data.

Before explaining the results, we briefly discuss the 
relationship between feature selection and feature 
extraction, both of which are employed when we are 
forced to deal with the large p small n problem. The 
former, feature selection, is more straightforward than 
the latter; it reduces the number of features less than 
the number of samples. On the other hand, feature 
extraction is more indirect, since it generates a lim-
ited number of new features from the original large 
number of features. In this study, we have employed 
a mixed strategy of these two. We first generated new 
features using feature extraction and selected features 
using the generated features.

Methods
Extended KTD‑based unsupervised FE method
Suppose that we have K multi-omics datasets with Nk 
features formatted as tensors sharing sample indices 
j1, . . . , jm as:

js, (1 ≤ js ≤ Ms) refers to the js th measurement in the 
sth experimental type. Ms, (1 ≤ s ≤ m) is the number 
of measurements in the sth experimental type. Typical 
examples of m experimental conditions include human 
subjects, tissues, and time points. For example, if the 
measurements are performed for M2 tissue types from 
M1 individuals at M3 time points, the total number of 
samples is M1 ×M2 ×M3 . ik , (1 ≤ ik ≤ Nk) refers to the 
ik th feature of the kth omics dataset. When K types of 
omics data are measured for each sample, k ∈ [1,K ].
xik j1j2···jm can be kernelized as

where Kk is an arbitrary kernel applied to xik j1j2···jm . 
Higher-order singular-value decomposition (HOSVD) 
[4] is then applied to xj1···jmj′1···j′mk , resulting in Eq. (4),

where ℓs, (1 ≤ s ≤ 2m) refers to the ℓs th singular-value 
vectors attributed to the sth experiment type for 
1 ≤ s ≤ m and the (s − 2m) th experiment type for 
m+ 1 ≤ s ≤ 2m , respectively. ℓ2m+1 refers to the ℓ2m+1 th 
singular-value vector attributed to the omics datasets, k. 
uℓsjs ∈ R

Ms×Ms and uℓ2m+1k ∈ R
K×K  are singular-value 

matrices, which are also orthogonal matrices, 
∑Ms

js=1
uℓsjs uℓ′sjs

= δℓsℓ′s , 
∑Ms

ℓs=1
uℓsjs uℓsj′s

= δjs j′s , 
∑

K

k=1
uℓ2m+1k

uℓ′
2m+1

k = δℓ2m+1ℓ
′
2m+1

 , and 
∑K

ℓ2m+1=1 uℓ2m+1kuℓ2m+1k ′ = δkk ′ 
where δℓsℓ′s , δjsj′s , δℓ2m+1ℓ

′
2m+1

, δkk ′ are Kronecker’s delta. 
Because of symmetry, uℓs+mjs = uℓsjs.
G(ℓ1, . . . , ℓm, ℓm+1, . . . , ℓ2m, ℓ2m+1) ∈ R

M1×···×Mm×M1×···×Mm×K 
is a core tensor that represents the weight of individual 
terms composed of the products of singular-value vec-
tors. Here, one should note that uℓ2m+1k represents the 
balance (weight) between multi-omics datasets, which 

(1)xik j1j2···jm ∈ R
Nk×M1×M2×···×Mm .

(2)xkj1···jmj′1···j′m
= Kk(xik j1j2···jm , xik j′1j

′
2
···j′m

)

(3)∈RK×M1×···×Mm×M1×···×Mm ,

(4)

xkj1···jmj′1···j′m
=

M1
∑

ℓ1=1

· · ·

Mm
∑

ℓm=1

M1
∑

ℓm+1=1

· · ·

Mm
∑

ℓ2m=1

K
∑

ℓ2m+1=1

G(ℓ1, . . . , ℓm, ℓm+1, . . . , ℓ2m, ℓ2m+1)

×

(

m
∏

s=1

uℓsjs

)(

m
∏

s′=1

uℓm+s′ j
′
s′

)

uℓ2m+1k ,
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usually must be pre-defined manually in the case of a 
conventional supervised learning approach for FE.

Next, the uℓsjs values that are of interest from the bio-
logical point of view (e.g., distinct values between the two 
classes being compared) must be identified. Using these 
selected uℓsjs values, singular-value vectors are derived 
and assigned to ik s as

where ℓ = (ℓ1, . . . , ℓm).
Finally, P values are attributed to ik assuming that the 

uℓik values obey a multivariate Gaussian distribution (null 
hypothesis) as

where Pχ2 [> x] is a cumulative χ2 distribution in which 
the argument is larger than x and σℓ is the standard devia-
tion. Here, summation is taken over ℓs selected as being 
of interest. P values are then computed by the pchisq 
function in R [8].

The obtained Pik values are corrected using the Benja-
mini–Hochberg (BH) criterion [4] and the ik values asso-
ciated with the adjusted P values less than the established 
threshold (typically 0.01) are selected. Correction by the 
BH criterion is performed by the p.adjust function in 
R with the option of method=“BH”.

Synthetic dataset
A synthetic dataset was derived in the form of a tensor, 
xijk ∈ R

N×M×K  , as

where

and ǫijk ∈ (0, 1) is a uniform random real number that 
emulates the residuals. N is the number of variables, j is a 
variable that adds order to the jth sample, and k is the kth 
omics data. This synthetic dataset assumes that only the 
top N1 features among N features have dependency on 
i independent of k. xijk , (kN1 < i ≤ (k + 1)N1) also has 
dependence on j, but in an omics(k)-dependent manner. 
The dependence on j is a linear increase upon j.

One hundred ensembles of xijk were generated and the 
performances were averaged. First, a linear kernel was 
generated as

(5)uℓik =

M1
∑

j1=1

· · ·

Mm
∑

jm=1

xik j1j2···jm

(

m
∏

s=1

uℓsjs

)

,

(6)Pik = Pχ2



>
�

ℓ

�

uℓik
σℓ

�2


,

(7)xijk =

{

ǫijk + aj i ≤ N1, kN1 < i ≤ (k + 1)N1

ǫijk otherwise
,

(8)aj = 1+
(M − 1)j

M

Next, HOSVD was applied, resulting in

(for the dimensions of the datasets, N, M, and K, see the 
legend to Table 1). Since it was observed that u2j always 
had the largest correlation with aj and u1k was always 
constant, regardless of k, u2j and u1k were employed to 
compute

for attributing the P values

 with ℓ1 = 2 and ℓ2 = 1 . The Pi values were corrected 
using the BH criterion and the i values associated with 
adjusted Pi s less than 0.01 were selected.

To demonstrate the difficulty of this task, linear regres-
sion was used as an alternative method

where αik and βik are regression coefficients, and aj is 
defined in Eq. (8). Since xijk s with distinct k differ, distinct 
models were applied to each. After computing BH-cor-
rected P values, the is associated with adjusted P values 
less than 0.01 were selected.

When the least absolute shrinkage and selection opera-
tor (lasso) [9] was applied, the maximum number of fea-
tures selected were considered, although lasso can select 
at most as many as M features, which is less than the 
number of features coincident with aj , 2N1.

When random forest (rf ) [10] was applied to synthetic 
data sets, there were two ways to select features. First, 
features with nonzero importance, which is an evalua-
tion measure provided by rf, were selected. Next, in order 

(9)xkjj′ = Kk
(xijk , xij′k) =

N
∑

i=1

xijkxij′k ∈ R
K×M×M

.

(10)xkjj′ =

M
∑

ℓ1=1

M
∑

ℓ2=1

K
∑

ℓ3=1

G(ℓ1ℓ2ℓ3)uℓ1juℓ2j′uℓ3k .

(11)uℓ1ℓ2i =

M
∑

j1=1

3
∑

k=1

xijkuℓ1juℓ2k

(12)Pi = Pχ2

[

>

(

uℓ1ℓ2i

σℓ1ℓ2

)2
]

(13)xijk = αikaj + βik ,

Table 1  Confusion matrix when applying KTD-based unsupervised 
FE to a synthetic dataset ( N = 1000,N1 = 10,M = 10, K = 3)

Adjusted Pi ≤ 0.01 Adjusted 
Pi > 0.01

i ≤ N1 7.06 2.94

i > N1 0.04 989.96
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to reduce the number of selected features, the top most 
2N1 features having a larger absolute importance were 
selected.

Multi‑omics hepatitis B virus (HBV) vaccine dataset
The real multi-omics HPV vaccine datasets were based 
on 75 samples measured in 15 individuals at five subse-
quent time points (i.e., 0, 1, 3, 7, and 14 days) after HBV 
vaccine treatment. Gene expression was measured using 
RNA-sequencing technology and methylation profiles 
were measured using microarray technology. The pro-
teome was measured for whole blood cells (WBCs) as 
well as plasma. Since this multi-omics dataset is com-
posed of four types of omics data measured for 15 indi-
viduals at five time points, it is thus formatted as a tensor.

Gene expression and methylation profiles were 
retrieved from the gene expression omnibus (GEO) 
database using the GSE155198 and GSE161020 data-
sets, respectively. For gene expression profiles, the 
GSE155198_RAW.tar dataset was available in the 
Supplementary File section of GEO. Individual 
files that included count number of mapped reads 
toward genes were collected and integrated as a 
single file. Individual files are named according 
to the format “GSMXXXXXXX_GRnn_Vm.count.
txt.gz,” where XXXXXXX, nn, and m are integers; 
nn ∈ {01, 02, 03, 04, 05, 06, 07, 10, 11, 13, 15, 17, 18, 19} 
identifies the 15 individuals; and m ∈ {3, 4, 5, 6, 7} iden-
tifies the five time points. Files were loaded into R as 
a data frame using the read.csv command. Data 
frames were bound into a single data frame using the 
cbind command in R. For the methylation profiles, 
the GSE161020_series_matrix.txt.gz dataset, available 
in the GEO Series Matrix File(s) section, was used as 
is. The file was loaded into R as a data frame using the 
read.csv command. The first column of the data 
frame is an identifier in the form of cgyyyyyyyy, where 
yyyyyyyy is an integer. Since the methylation profile was 
measured with microarray technology, the identifier 
can be annotated with the reference to the microarray 
annotation file, GPL6480-9577.txt.gz, which is available 
under GEO ID GPL6480. Since the other 75 column 
names are in the form of GSMXXXXXXX, the columns 
were reordered with reference to the columns of the 
data frame generated from the gene expression profiles 
as described above. The proteome dataset was obtained 
from ProteomeXchange [11] using ID PXD020474. 
Two files (GR01,04,09,10,11,13,15,17,18,19.txt and 
GR02,03,05,06,07.txt) were downloaded and loaded 
as data frames into R using the read.csv command. 
The fourth column of the data frame includes the pro-
tein IDs, which were used as identifiers for subsequent 
analysis. These two data frames were merged with the 

row names of the union of the protein identifier. Miss-
ing observations were filled with zeros. Since the first 
and second rows have the format “GRnn” and “Visit m,” 
respectively, the columns can also be reordered with 
reference to the column names of the data frame gener-
ated by gene expression profiles as described above.
xik j1j2 ∈ R

Nk×5×15 ; that is, the number of values of the 
number of ik features of the kth feature type measured 
at the j1 th time point for j2 individuals. These values are 
standardized as 

∑Nk
ik=1

xik j1j2 = 0 and 
∑Nk

ik=1
x2ik j1j2 = Nk ; 

Nk = 687582 (k = 1 : methylation), 35829 (k = 2 : gene 
expression), 1588 (k = 3 : WBC proteome and k = 4 : 
plasma proteome). Figure  1 schematically illustrates the 
analysis method for the HBV vaccination datasets.

A linear kernel was employed as follows:

Then, a tensor was added:

where 4 stands for four omics data, 5 stands for five time 
points and 15 stands for fifteen individuals. Applying 
HOSVD to xkj1j2j′1j′2 results in

where G ∈ R
5×15×5×15×4 , uℓ1 j1 ,uℓ3 j′1 ∈ R

5×5 , uℓ2 j4 ,uℓ4 j′2 ∈ R
15×15 , 

and uℓ5k ∈ R
4×4 . Since xkj1j2 j′1 j

′
2
= xkj′

1
j2 j1 j

′
2

 and xkj1j2j′1j
′
2

xkj1j2j′1j
′
2
= xkj1j′2j

′
1
j2 because of symmetry, G(ℓ1ℓ2ℓ3ℓ4ℓ5) =

= G(ℓ1ℓ4ℓ3ℓ2ℓ5) = G(ℓ3ℓ2ℓ1ℓ4ℓ5) , {uℓ1j1} = {uℓ3j′1
} , and 

{uℓ2j2} = {uℓ4 j′2
}.

The singular-value vectors of interest were as follows:

•	 uℓ1j1 and uℓ3j′1 should be significantly dependent on 
time points corresponding to j1 and j′1.

•	 uℓ2j2 and uℓ4 j′2 should be independent of individuals 
corresponding to j2 and j′2.

•	 uℓ5k should be common between distinct omics 
measurements.

As a result, ℓ1 = ℓ3 = 2, ℓ2 = ℓ4 = 1, ℓ5 = 1 satisfies the 
required conditions (Fig. 2). Then,

(14)Kk(xik j1j2 , xik j′1j
′
2
) =

Nk
∑

ik=1

xik j1j2xik j′1j
′
2
.

(15)xkj1j2j′1j
′
2
= Kk(xik j1j2 , xik j′1j

′
2
) ∈ R

4×5×15×5×15

(16)
xkj1j2j′1j

′
2
=

5
∑

ℓ1=1

15
∑

ℓ2=1

5
∑

ℓ3=1

15
∑

ℓ4=1

4
∑

ℓ5=1

G(ℓ1ℓ2ℓ3ℓ4ℓ5)uℓ1j1uℓ2j2uℓ3j′1
uℓ4 j′2

uℓ5k ,

(17)u21ik =

5
∑

j1=1

15
∑

j2=1

xik j1j2u2j1u1j2
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is computed and

The computed Pik values were corrected using the BH 
criterion and ik s associated with either Pik < 0.01 (for 
gene expression and methylation) or with Pik < 0.05 (for 
the two proteomes) were successfully selected (the full 

(18)Pik = Pχ2

[

>

(

u21ik
σ21

)2
]

.

lists of selected features are available in Additional file 2, 
3, 4, 5: Data S1–S4).

Kidney cancer multi‑omics datasets
Full description of the compilation of the kidney cancer 
multi-omics datasets is available in the related study [12]. 
In brief, there were two sets of multi-omics kidney can-
cer data, each of which was composed of messenger RNA 
(mRNA) and microRNA (miRNA) expression profiles. 

Fig. 1  Schematic representation of HBV vaccination data analysis. Analysis starts from the center, moves to the right, comes back to the center, and 
then moves to the left. The cyan rectangle annotated as “methylation” is xi1 j1 j2 , the yellow rectangle annotated as “gene” is xi2 j1 j2 , the green rectangle 
annotated as “WBC” is xi3 j1 j2 , and the magenta rectangle annotated as “Plasma” is xi4 j1 j2 . The four tilted cubes to the right of these four rectangles 
are xkj1 j2 j′1 j′2 , whose correspondence with xik j1 j2 is indicated by the same color. The tilted cubes colored by layers to the right of the four tilted cubes 
represent the bundle of xkj1 j2 j′1 j′2 . The right-most figure with a blue cube annotated as “G” at the center corresponds to TD shown in Eq. (16). The 
four colored rectangles to the left of the four colored and annotated rectangles represent the singular-value vectors computed by Eq. (17). Genes 
are selected from these singular-value vectors using P values computed by Eq. (18). For methylation, transcription factors (TFs) are further selected 
by Enricher using the selected genes (Table 3). The selected genes and TFs are then uploaded to Enrichr to validate the biological reliability (the 
left-most figure with color gradation)
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Fig. 2  Left: u2j1 , middle: u1j1 , right: u1k when HOSVD is applied to a linear kernel computed using HBV vaccine data. The Pearson correlation 
coefficient between j1 and u2j1 is −0.94 ( P = 0.02)
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The first dataset was obtained from The Cancer Genome 
Atlas (TCGA) and included 253 kidney tumors and 71 nor-
mal kidneys. The second dataset was obtained from GEO 
(GSE16441), and included 17 patients and 17 healthy con-
trols. The method by which these two datasets were pre-
processed is described in [12]. The dataset was formatted 
as xik j ∈ R

Nk×M , which represents The ik expression levels 
of j subjects ( k = 1 for mRNA and k = 2 for miRNA).

A linear kernel was employed as

For the first dataset (i.e., TCGA data), M = 324 , whereas 
for the second dataset (i.e., GEO data), M = 37 . Then, a 
tensor was added

Applying HOSVD to xkjj′ results in

(19)Kk(xik j , xik j′) =

Nk
∑

ik=1

xik jxik j′ ∈ R
K×M×M

.

(20)xkjj′ = Kk(xik j , xik j′) ∈ R
2×M×M

.

where G ∈ R
M×M×2 , uℓ1j ,uℓ2j′ ∈ R

M×M , and 
uℓ3k ∈ R

2×2 . Since xkjj′ = xkj′j because of symmetry, 
G(ℓ1ℓ2ℓ3) = G(ℓ1ℓ3ℓ3) , {uℓ1j} = {uℓ2j′ } . Then, singu-
lar-value vectors were identified such that uℓ1j and uℓ2j′ 
were significantly distinct between healthy controls and 
patients. As a result, ℓ1 = ℓ2 = 2 satisfies the required 
conditions (Fig. 3). Then,

is computed and

The computed Pik values were corrected using the BH 
criterion and ik s associated with  adjusted were success-
fully selected.

Results
Synthetic dataset
Table 1 shows the confusion matrix obtained by the pro-
posed KTD-based unsupervised FE. Among the 10 fea-
tures associated with ai , approximately seven features 
were correctly selected, whereas false positives were 
almost zero. Thus, KTD-based unsupervised FE success-
fully selected features correlated with aj.

Table 2 shows the confusion matrix obtained by linear 
regression-based FE. Essentially, no features correlated 
with aj were selected. Thus, regression analysis did not 
select any features correlated with aj.

(21)xkjj′ =

2
∑

k=1

G(ℓ1ℓ2ℓ3)uℓ1juℓ2j′uℓ3k ,

(22)u2ik =

M
∑

j=1

xik ju2j

(23)Pik = Pχ2

[

>

(

u2ik
σ2

)2
]

.
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Fig. 3  Boxplot of u2j when HOSVD is applied to a linear kernel 
computed using kidney cancer data. Left: TCGA, P = 8.49× 10

−47 , 
right: GEO, P = 4.07× 10

−17 . P values are based on the t test applied 
to u2j . T: tumors, N: normal kidney samples

Table 2  Confusion matrix when linear regression, lasso and rf were applied to the synthetic dataset ( N = 1000,N1 = 10,M = 10, K = 3)

For cases when rf was employed, the results when the top most 2N1 features with larger absolute importance were selected have also been shown in parentheses

Linear regression Lasso Rf

Adjusted Adjusted

Pi ≤ 0.01 Pi > 0.01 Selected not selected Selected Not selected

k = 1

i ≤ 2N1 0.07 19.93 4.62 15.383 17.55 (5.82) 2.45 (14.18)

i > 2N1 0.03 979.97 2.12 977.88 495.43 (14.18) 484.57 (965.82)

k = 2

i ≤ N1 , 2N1 < i ≤ 3N1 0.07 19.93 4.70 15.30 17.69 (5.67) 2.31 (14.33)

Other than above 0.01 979.99 2.27 977.73 494.70 (14.33) 485.30 (965.67)

k = 3

i ≤ N1, 3N1 < i ≤ 4N1 0.09 19.91 4.55 15.45 17.71(5.46) 2.29 (14.54)

Other than above 0.01 979.99 2.12 977.78 496.68 (14.54) 483.32 (965.46)
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These results demonstrated that an apparently simple 
and easy problem became difficult when it is a large p 
small n problem, whereas KTD-based unsupervised FE 
was able to handle this problem to some extent. These 
advantages have also been observed in PCA- and TD-
based unsupervised FE [4].

Although the methods that did not attribute P val-
ues to features were not of interest, since the capability 
of attributing P values to features is a great advantage 
of KTD-based unsupervised FE, as emphasized in the 
Background, lasso was employed as another method for 
comparison. Although lasso regression does not attrib-
ute P values to features, the model was fitted to feature 
selection in a large p small n problem to demonstrate 
the difficulty of feature selection in the synthetic data-
set. Table 2 shows the confusion matrix, which is clearly 
inferior to that shown in Table  1. Although the KTD-
based unsupervised FE approach correctly selected at 
least 7 out of 10 features (70 %), which was correlated 
with aj with essentially no false positives, lasso selected 
at most 5 out of 20 features (only 25 %), which was cor-
related with aj with two false positives (approximately 
half of the true positives). In addition to lasso, we also 
tested rf as an alternative method that cannot attrib-
ute P values (Table  2). First, we have selected features 
with nonzero importance; although most of (c.a. 17) 
features among the 20 features coincident with aj are 
selected, almost half of features not coincident with aj 
are also wrongly selected. Thus, rf is clearly inferior to 
KTD-based unsupervised FE. One might wonder if the 
top 20 features with a larger absolute importance are 
selected. Only five out of 20 features are selected. Thus, 
rf is still inferior to TD-based unsupervised FE even if 
limited and most important features are selected. This 
suggested that even if methods that could not attribute 
P values to features can be considered, they would not 
outperform the KTD-based unsupervised FE method. 

Thus, subsequently, we only focused only methods that 
attributed P values to features.

HBV vaccine dataset
To validate genes selected by KTD-based unsupervised 
FE, the selected genes were uploaded to Enrcihr [13]. 
Initially, 1335 genes associated with 2077 methylation 
probes selected by KTD-based unsupervised FE were 
uploaded. Many transcription factors (TFs) were sig-
nificantly predicted to target these 1335 genes (Table 3). 
These 21 TFs were then uploaded to Enrichr again; Addi-
tional file  1: Table  S1 shows the top 10 Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways in the 
“KEGG 2019 HUMAN” Enrichr category (the full list is 
available in Additional file  2: Data S1). It was clear that 
these data included many biologically reasonable KEGG 
pathways (for details, see the Discussion section below).

Eight genes associated with 11 probes were identi-
fied as differentially expressed genes (DEGs) when gene 
expression profiles were considered (Table  4), which 
were uploaded to Enrichr. Conversion of probe names 
to gene symbols was performed by the ID converter tool 
of DAVID [14]. Additional file 1: Table S2 shows the top 
10 GEO profiles enriched in the Enrichr “Disease Per-
turbations from GEO up/down” category (the full list is 
available in Additional file  3: Data S2). Although many 
neurodegenerative profiles not apparently related to the 
HBV vaccine are listed, the rationalization for their inclu-
sion is provided in the Discussion section.

Finally, two set of proteins identified as DEGs in WBC 
and plasma profiles (Table  4) were uploaded to Enri-
chr. Additional file 1: Tables S3 and S4 show the top 10 
enriched GEO profiles identified in the Enrichr “Disease 
Perturbations from GEO up/down” category when pro-
teins for the WBC and plasma sections in Table  5 were 
uploaded to Enrichr (the full list is available in Addi-
tional file 3, 4: Data S3 and S4). Other than the enriched 

Table 3  TFs enriched in the “ChEA 2016” Enrichr category (adjusted P values < 0.05 ) when 1335 genes associated with 2077 
methylation probes selected by KTD-based unsupervised FE were considered (the full list is available in Additional file 2: Data S1)

TFs ZNF217, TCF4, STAT3, SMARCD1, WT1, FOXA2, PAX3-FKHR, SMAD4, SMAD3, SOX9, TFAP2C, YAP1, AR, SOX2, CTNNB1, VDR, PIAS1, TEAD4, MITF, 
HNF4A, SUZ12

Table 4  Eight genes associated with 11 probes identified as DEGs when gene expression profiles were considered. Proteins identified 
as DEGs when gene expression profiles in the proteome were considered

Gene symbols S100A9, CD74, hba1, ACTB, HBB, HBA2, MALAT1, COX1

WBC HIST1H2BJ, HIST2H2BF, HIST1H2BG, HIST1H2BB, HIST1H2BD, ACTG1, HIST1H2BL, HIST1H2BN, PFN1, HIST1H2BK, HIST3H2BB, 
ACTB, HBB, HBA2, HIST1H2BA, HIST1H2BI, HIST1H2BC, HIST1H2BO, HIST2H2BE, HIST1H2BM, HBA1, HIST1H2BF, HIST1H2BE, 
HIST1H2BH

Plasma FGA, HP, GSN, ALB, FGG, IGLL5, APOA1, SERPINA1, ORM1, TF, GC, CP, C4A, CSF3R, A2M, HPX, HRG, A1BG, CFH, APOB, C3, CLEC14A
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reasonable hepatitis-related GEO profiles, some neu-
rodegenerative disease-related GEO profiles were also 
enriched, as shown in Additional file 1: Table S3, which 
are further explored in the Discussion section.

Since there are many enriched biological processes and 
pathways listed in Additional file  1: Tables S1–S4, the 
genes and proteins selected in this section may not be 
artifacts, but likely have a true biological basis.

Kidney cancer
hsa-mir-200c and hsa-mir-141 were selected from 
TCGA, and hsa-miR-141, hsa-miR-210, and hsa-miR-
200c were selected from GEO. Thus, these miRNAs are 
highly coincident with each other, even more so than 
reported in previous works [5, 12] where TD- as well as 
KTD-based unsupervised FE was applied to TCGA and 
GEO datasets. For mRNA, there were five common genes 
selected between the TCGA and GEO datasets (Table 6, 
P = 6.7× 10−5 , odds ratio: 13.13).

Discussion
There are several advantages in the proposed implemen-
tation of KTD-based unsupervised FE compared with 
previously proposed versions of KTD-based unsuper-
vised FE [5], as well as TD-based unsupervised FE [4] 
in the context of application to the integration of multi-
omics datasets. For example, 

1	 The present implementation can reduce the required 
computational memory. As a result, required compu-
tational time can be reduced as well.

2	 The present implementation can integrate more than 
two omics data in a straight manner.

Although the point was achieved in KTD-based unsuper-
vised FE [5], too, the primary advantage of the proposed 

method is to achieve the above two simultaneously, as 
discussed below. As for point 1, when the original imple-
mentation of TD-based unsupervised FE [4] is applied to 
the integration of multi-omics data, (e.g., xij ∈ R

N×M and 
xhj ∈ R

H×M , which corresponds to the ith or hth omics 
data of the jth sample), HOSVD is applied to

Since H ,N ≫ M , this was not an effective implementa-
tion. When KTD-based unsupervised FE [5] is applied, 
HOSVD is applied to

This drastically reduced the required memory and central 
processing unit (CPU) time. As for point 2, nevertheless, 
it was unclear how more than two omics datasets could 
be integrated. In the implementation introduced in this 
paper,

which corresponds to the ith measurement of the kth 
omics data of the jth sample, where K is the total num-
ber of omics datasets. Since HOSVD is applied to xkjj′ , 
any number of multi-omics datasets may be handled. 
This slight modification drastically increased the ability 
of KTD-based unsupervised FE to handle multi-omics 
datasets. Thus, it is obvious that the present implemen-
tation has at least one advantage over the past KTD 
implementations.

Kernels Kk were highly correlated between mRNA 
( k = 1 ) and miRNA ( k = 2 ) for the kidney cancer data 
[15] (Fig. 4). Kernels Kk for gene expression profiles and 
the proteome were also highly correlated when HBV vac-
cine experiments were considered (Table 7). Thus, it was 
obvious that the current formalism was very effective in 
identifying the coincidence between individual omics (in 
this case, mRNA, miRNA, and the proteome).

Although the list of enriched pathways in Additional 
file 1: Table S1 did not seem to be related to the HBV vac-
cine directly, there were indirect reasonable relationships. 
For example, the Hippo signaling pathway has recently 

(24)xih =
∑

j

xijxhj ∈ R
N×H

.

(25)

xjj′′ =
∑

j′

(

∑

i

xijxij′

)(

∑

h

xhj′xhj′′

)

∈ R
M×M

.

(26)xkjj′ =
∑

i

xijkxij′k ∈ R
K×M×M

,

Table 5  Proteins identified as DEGs when gene expression profiles in the proteome were considered

WBC HIST1H2BJ, HIST2H2BF, HIST1H2BG, HIST1H2BB, HIST1H2BD, ACTG1, HIST1H2BL, HIST1H2BN, PFN1, HIST1H2BK, HIST3H2BB, ACTB, HBB, HBA2, 
HIST1H2BA, HIST1H2BI, HIST1H2BC, HIST1H2BO, HIST2H2BE, HIST1H2BM, HBA1, HIST1H2BF, HIST1H2BE, HIST1H2BH

Plasma FGA, HP, GSN, ALB, FGG, IGLL5, APOA1, SERPINA1, ORM1, TF, GC, CP, C4A, CSF3R, A2M, HPX, HRG, A1BG, CFH, APOB, C3, CLEC14A

Table 6  Confusion matrix of selected mRNAs between TCGA 
and GEO datasets

P = 6.7× 10
−5 , Odds ratio: 13.13

GEO

P > 0.01 P < 0.01

TCGA​ P > 0.01 17269 101

P < 0.01 65 5
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been identified to be related to the immune system [16]. 
“Hepatitis B” was also significantly enriched (adjusted P 
value of 7.79× 10−3 ), but it did not rank within the top 
10 KEGG pathways in Additional file 1: Table S1. In addi-
tion, since patients with diabetes have a higher risk of 
HBV infection [17], it is reasonable that the two KEGG 
pathways “AGE-RAGE signaling pathway in diabetic 
complications” and “Maturity onset of diabetes in the 
young” were enriched. Although multiple cancer types 
were also enriched in these data, as shown in Additional 
file 1: Table S1, many cancer types other than liver cancer 
are known to be related to the risk of HBV infection [18].

Although genes identified as DEGs in relation to HBV 
vaccination were also enriched in various neurodegen-
erative diseases other than hepatitis (Additional file  1: 
Tables S2 and S3), this is a reasonable finding because 
viral hepatitis was reported to be related to Parkinson’s 
disease [19]. There are also known associations between 
hepatic functions and plasma amyloid-β levels [20]; cir-
rhosis patients with HBV infection have higher plasma 
A β 40 and A β 42 levels than patients with HBV-negative 
cirrhosis. More directly, Ji et  al. [21] reported that the 

hepatitis B core VLP-based mis-disordered tau vaccine 
alleviated cognitive deficits and neuropathology progres-
sion in a Tau.P301S mouse model of Alzheimer’s disease. 
Thus, enrichment of neurodegenerative disease-related 
genes among the identified DEGs does not appear to be 
an artifact, but rather provides possible supportive evi-
dence that KTD-based unsupervised FE detected side 
effects caused by vaccinations.

Other conventional univariate tools such as limma [22] 
and sam [23] cannot be used for these tasks since they are 
designed to handle categorical classes and thus cannot be 
applied to HBV vaccination data, which are only associ-
ated with time points and are not categorical. Although 
regression analysis was attempted for the synthetic data-
set, there were no features correlated with dates. Thus, 
there were no univariate feature selection methods 
applicable to the HBV vaccination data that could iden-
tify features correlated with date. For the kidney cancer 
datasets, it has been extensively demonstrated that these 
conventional univariate tools such as limma [22] and sam 
[23] cannot compete with the TD-based unsupervised 
FE approach [5, 12]. Thus, no univariate feature selection 
method was identified that was superior to TD-based 
unsupervised FE when applied to kidney cancer datasets.

The performance of the proposed method has not 
been compared to other existing multi-omics–oriented 
methods [1, 2] because no suitable methods were identi-
fied for suitable comparison. First, most of the recently 
proposed cutting-edge methods adapted to multi-omics 
analysis are specific to a high-throughput sequenc-
ing (HTS) architecture. For example, MKpLMM [24] 

Fig. 4  Scatter plot of kernels Kk between messenger RNA (mRNA) and microRNA (miRNA). Upper: TCGA (Pearson correlation coefficient 
= 0.627, P = 0.00 ), Lower: GEO(Pearson correlation coefficient = 0.349, P = 2.32× 10

−34)

Table 7  Correlation between HBV vaccine experiment kernels. 
Upper triangle: Pearson correlation, lower triangle: P values

– Gene expression WBC Plasma

Gene expression – 0.1279405 0.2192163

WBC 1.34× 10
−11 – 0.4384998

Plasma 1.52× 10
−31

8.98× 10
−131 –



Page 10 of 12Taguchi and Turki ﻿BMC Medical Genomics           (2022) 15:37 

requires genomic coordinates, which are not available 
for the datasets analyzed in this study. Similarly, csaw 
[25] requires a bed file, which is also not available for the 
present dataset. Since the purpose of the present study 
was to propose a more flexible method that is not spe-
cific to the HTS architecture and the datasets employed 
in this study were not obtained using HTS, these were 
considered unsuitable methods for comparison with the 
proposed implementation of KTD-based unsupervised 
FE. Second, other methods that are not specific to HTS 
lack the statistical validation of feature selection (i.e., no 
ability to attribute P values to features). For example, 
although MOFA [26] is not specific to HTS, it does not 
have the ability to select features; thus, we were not able 
to compare its performance with that of our proposed 
method. Although DIABLO [27] is also not specific to 
the HTS architecture and has feature selection ability, 
there is no functionality to attribute P values to individ-
ual features; thus, features cannot be selected based on 
statistical significance, and therefore, DIABLO was con-
sidered to be outside of the scope of this study. FSMKL 
[28], which is also not specific to the HTS architecture 
does have the ability to add statistical scores to individual 
features; however, selecting features based on statistical 
scores is not effective. In this sense, to our knowledge, 
there are no other multi-omics–oriented feature selec-
tion methods that satisfy the following requirements:

•	 Not specific to the HTS architecture
•	 Attributes P values to individual features to evaluate 

statistical significance
•	 Can handle more than or equal to three kinds of 

omics data simultaneously
•	 Applicable to severe large p small n (typically, 

p/n ∼ 102 or more) problems

For example, for the large p small n problem, although 
Subramanian et  al. [2] summarized existing machine 
learning methods for multi-omics analysis, typically 
they are applied to studies including up to 102 samples; 
thus, they cannot be regarded as a severe large p small n 
problem. As a result, the performance of the KTD-based 
unsupervised FE was not directly compared to other 
existing methods that satisfy all of the above conditions.

HBV vaccination data were selected to demonstrate 
the superior power of advanced KTD-based unsu-
pervised FE because of the difficulty of the problem 
with this dataset. Since vaccination must be given 
to healthy people, side effects must be minimized 
[29]; in fact, since vaccination is essentially an infec-
tion with a weaker pathogen, its effect is inevitably 
weak. As expected, a very limited number of features 
(genes and proteins) were selected using the advanced 

KTD-based unsupervised FE proposed in this article, 
whereas conventional linear regression analysis did not 
attribute significant P values to any features. This sug-
gests that the proposed advanced KTD-based unsuper-
vised FE method has superior ability to select features 
when applied to even particularly difficult multi-omics 
datasets.

One might wonder why we did not employ more 
advanced feature selection methods other than lasso or 
rf. Generally, other methods are not fitted to the pre-
sent situation, i.e., the large p small n problem. Since 
it is impossible to demonstrate the difficulty of using 
all the other methods, we consider two methods, 
class-specific mutual information variation for feature 
selection [30] and multilabel feature selection with 
constrained latent structure shared term [31] in order 
to demonstrate why other advanced methods are not 
fitted to the large p small n problem. When k features 
were aimed to be selected, although the complexity of 
class-specific mutual information variation for fea-
ture selection was supposed to be kMN, it excluded 
the computational time needed for the computation 
of mutual information among N features, which is as 
large as N 2 . It is not fitted to the large p small n prob-
lem associated with a large number of features, N. For 
example, in the synthetic example, we tried to com-
pute mututal information among N = 100 features for 
only one ensemble; it took 100 s. Since we employed 
N = 1000 , it would take 100× (1000/100)2 = 104 s 
for only one ensemble. We employed 100 ensembles; 
thus, in total, the required computational time for 100 
ensembles would be as long as 104 × 100 = one million 
s, which is unrealistic, since other methods, such as 
linear regression, lasso and rf, require less than 10 min 
(= 600 s) for computation with 100 ensembles. This 
means that class-specific mutual information variation 
for feature selection is not reasonable to be applied to 
the present synthetic example. As for multilabel feature 
selection with constrained latent structure shared term, 
it is not fitted to the large p small n problem as well, 
since it can select at most M features. Multilabel fea-
ture selection with constrained latent structure shared 
term decomposes the matrix N ×M into a product of 
two small matricies, N × k and k ×M , when k features 
are selected. Nevertheless, in the large p small n prob-
lem, since M ≪ N  , k < M < N  . Thus, it can select at 
most M features. On the other hand, multilabel feature 
selection with constrained latent structure shared term 
was applied to the case where N < M [31]. In our syn-
thetic example, the number of features to be selected, 
2N1 , is larger than M. Thus, multilabel feature selection 
with constrained latent structure shared term cannot 
be used for the present synthetic example. Although 



Page 11 of 12Taguchi and Turki ﻿BMC Medical Genomics           (2022) 15:37 	

these are only two examples, most of the popular fea-
ture selection methods are not suitable for the large p 
small n problem, as shown for these two methods.

Conclusion
In this paper, an advanced KTD-based unsupervised 
FE method was introduced, which was modified to be 
applied to feature selection in multi-omics data analy-
sis that is often very difficult, mainly based on the large 
p small n problem. The proposed method was success-
fully applied to a synthetic dataset, as well as to two 
real datasets, and attributed significant P values to fea-
tures with reduced CPU time and memory, even when 
applied to integrated analysis of more than two multi-
omics datasets. Although the modification from the 
previously proposed KTD-based unsupervised FE was 
not significant, this slight modification was successful 
when applied to feature selection of multi-omics data 
analysis, which often poses a challenge in the case of a 
large p small n problem.
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