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Abstract: The gut microbiota plays a key role in modulating host physiology and behavior, partic-
ularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating
a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and
high-energy feeding are most consistently found to be associated with decreased bacterial diversity,
changes in main phyla relative abundances and increased presence of pro-inflammatory products.
Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and
changes in ingestive behavior. There are multiple pathways through which the microbiome influences
food intake. This review discusses these pathways, including peripheral mechanisms such as the
regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along
the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroin-
flammation and alterations in reward signaling. Most research currently focuses on determining the
role of the microbiome in the development of obesity and using microbiome manipulation to prevent
diet-induced increase in food intake. More studies are necessary to determine whether microbiome
manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote
meaningful weight loss.
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1. Introduction

The gut microbiota is a collection of over 1013 microorganisms, including bacteria
and fungi, that inhabit the gastrointestinal (GI) tract and plays a key role in regulating
host physiology, particularly GI function and energy homeostasis [1,2]. The microbiome
is a relatively stable community of microbes in the individual [3]. In response to the
burgeoning obesity epidemic, research has focused on personal and environmental factors
that might influence weight status. The discovery that in both humans and rodent models,
obese individuals have a distinct microbiome profile compared to their lean counterparts,
with an increased capacity to harvest energy from ingested food, has fueled over 15 years
of research [2]. Microbiota is vital for proper GI function, as it is implicated in vitamin
synthesis, digestion and metabolism of carbohydrate and other dietary components [4],
and development and function of the GI immune system [5]. Gut microbes have also been
shown to influence the function of other peripheral organs, as well as the central nervous
system (CNS), throughout development and the lifespan [6,7]. The importance of the gut
microbiota in regulating host biology is evident from gnotobiotic studies: animals born
germ-free (GF) present with altered intestinal, metabolic, and neural physiology [8,9].

Recently, advances in sequencing technologies have allowed us to more comprehen-
sively and thoroughly assess microbiota composition and its relation with disease states.
Adverse changes in composition have been associated with an array of pathologies, in-
cluding autoimmune diseases, neurological conditions, and metabolic disorders such as
obesity and diabetes [10–13]. It is, however, important to note that any environmental mod-
ification is likely to impact microbiome composition, and differences in bacterial makeup
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associated with pathologies do not equate to a causal link between microbial changes and
pathological development.

There is accumulating evidence supporting a role for an individual’s microbiota in
regulation of food intake through both peripheral and central mechanisms. Peripherally,
bacteria and their metabolites interact with vagal afferent neurons (VANs), which trans-
mit information about intestinal contents to the nucleus of the solitary tract (NTS) [14].
The microbiome influences gut–brain satiety signaling via modulation of gut peptide re-
lease [15] as well as sensitivity to satiety peptides (such as cholecystokinin, or CCK) and the
energy storage hormone leptin [14]. Changes in microbiome composition have also been
reported to affect the structural integrity of the gut–brain axis [16]. Centrally, unfavorable
microbiome composition is associated with inflammation of key regions involved in the
regulation of feeding, particularly the NTS and the hypothalamus [17,18]. Further, there is
emerging evidence that certain taxa of bacteria play a role in modulating reward circuitry
and motivation [19,20]. The purpose of this review is to describe the microbiota’s influence
on food intake through the aforementioned mechanisms, including recent developments in
the relationship between microbiome, reward, and eating behavior.

2. Energy-Dense Diets Alters Gut–Brain Communication and Regulation of Feeding

Chronic intake of energy-dense food has been linked to excessive weight gain [21].
Despite homeostatic signals that act protectively against food overconsumption, chronic
intake of palatable, high-energy diets alters the physiological response to food and favors
overeating. Ultimately, this results in increased body weight (BW) and fat deposition.
Specifically, sensitivity to hedonic cues is altered, while homeostatic signals of meal termi-
nation are dampened [22].

The vagus nerve is a direct pathway that carries post-ingestive feedback from the gut
to the brain [23]. Mechano- and chemosensitive VANs respond to the nutrient composition
of ingested food to regulate meal size [24]. VANs terminate in the NTS, where postprandial
signals increase neuronal activity [25]. In addition, VANs project to limbic brain regions,
and this gut–reward circuit is sufficient and necessary for meal termination [23]. Chronic
consumption of a high-fat (HF) diet reduces VAN sensitivity to tension [26,27], satiation
hormones (e.g., CCK) [26,28–33], and intestinal nutrients [34–37]. As such, diet-induced
disruption of vagal signaling coincides with the onset of hyperphagia [38]. In addition,
diet-induced obese (DIO) rats also exhibit significantly decreased postprandial neuronal
activation in the NTS compared to lean animals [29,37].

Other neuronal networks involved in the regulation of feeding are also altered by
chronic HF consumption. Leptin is a key adiposity signal, with amounts produced pro-
portional to the amount of fat stored in the body [39]. Hypothalamic leptin signaling
is disrupted during chronic HF feeding [40], with increased expression of suppressor of
cytokine signaling 3 (SOCS3) and decreased phosphorylated signal transducer and activa-
tor of transcription 3 (STAT3) in the arcuate nucleus [41]. Pro-opiomelanocortin (POMC)
neurons in the hypothalamus in a normal physiological state are activated by leptin [42] to
ultimately decrease food intake via the production of α-melanocyte-stimulating hormone
(α-MSH) [43,44]. Thus, HF-induced disruption of leptin can directly alter hypothalamic
inhibition of food intake. Another neuronal system altered by HF intake is the dopaminer-
gic reward system. Food’s hedonic value is an important factor in food consumption, and
increased motivation for food intake is linked to obesity [45]. Palatable foods initially have
a higher reward value [46], while as obesity progresses, reductions in reward signaling
emerge and lead to compensatory overeating [47]. Among regions involved in the mesolim-
bic dopaminergic system, the nucleus accumbens (NAc) and striatum exhibit decreased
dopamine release in rodents with long-term exposure to a HF diet [48].

Microbiome Alterations Seen with Energy-Dense Feeding

Dietary intake is a major and easily modifiable determinant of an individual’s micro-
biota composition; other factors include age and genetics [49]. In humans, both short- and
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long-term intake of specific macronutrients, as well as fibers and other plant foods, are
correlated with abundance distribution of specific bacterial taxa present in the GI tract [49].
Obesity is associated with changes in microbiome composition. While the vast majority of
the composition is specific to the individual, small-scale studies have found that obesity has
been associated with an increased ratio of Firmicutes to Bacteroidetes, the two main phyla
present in the GI tract [12]. Conversely, weight loss through caloric restriction has led to an
increase in Bacteroidetes abundance, whether that restriction was through a carbohydrate-
or fat-restricted diet plan [12]. Similar results are observed in rodent models of DIO, with
the addition of a bloom in the pro-inflammatory Proteobacteria sometimes reported in hu-
mans with obesity or type 2 diabetes [50]. In rats, 8 weeks of 45% HF-feeding is associated
with decreased bacterial α-diversity, a measure of the variety of bacterial taxa colonizing
the gut, and increased relative abundances in the Firmicutes orders Clostridiales [51], in
particular, the Dorea genus, and Erysipelotrichiales (Erysipelotrichaceae family) [52]. Three
weeks of 60% HF-feeding has a similar effect on microbiome composition in rats, with
increases in relative abundances of several Firmicutes families, including Streptococcaceae,
Erysipelotrichaceae, Lachnospiraceae (Dorea genus), Peptococcaceae, and Staphylococcaceae, as
well as Proteobacteria families Desulfovibrionaceae and Enterobacteriaceae [16]. In rats, a mere
7 days of 60% HF-feeding is associated with decreased abundance of the Bacteroidetes
orders Bacteroidales (Prevotella genus) and Sphingobacteriales, and increased Firmicutes order
Erysipelotrichales, and several Proteobacteria orders, including Rhodocyclales and Altermon-
dales, among others [53]. Diets high in sugars also affect gut microbiome composition, with
alterations in the Firmicutes to Bacteroidetes ratio sometimes being reported [17,54], but not
always [55]. Different results have also been observed with respect to α-diversity [17,54–56].
In a study comparing high-glucose, high-fructose, and HF diets in mice, researchers found
that all three similarly decreased diversity, decreased Bacteroidetes abundance (specifically
Muribaculum spp.) and increased Proteobacteria abundance (specifically Desulfovibrio spp.);
however, diets high in sugars led to a significant increase in Akkermansia muciniphila abun-
dance compared to a HF diet [54]. When compared to an unrefined chow diet, both refined
low-fat, high-sugar (LFHS) and HF, high-sugar (HFHS) diet consumption in rats result
in decreased diversity and significant alterations in relative abundances within 1 week
of feeding [17]. The LFHS diet increases Firmicutes, particularly Ruminococcaceae and
Lachnospiraceae, as well as Proteobacteria genera Sutterella and Bilophila, and decreases
Bacteroidetes abundances, though changes are more pronounced with HFHS-feeding. [17].
A mere daily 2 h access to HFHS pellets alters gut microbiome composition in chow-fed rats
with increased relative abundances of Lachnospiraceae, Ruminoccoceae, and Erysipelotrichaceae
families [56].

In humans, specific dietary patterns and components have been reported to affect
bacterial taxa relative abundances. Obese humans switched to a strict vegan diet low
in fat and high in fiber display an increase in abundance of Bacteroidetes over a 4-week
period [57]. Self-classified vegans tend to have lower Bifidobacterium spp., Escherichia coli,
and Enterobacteriaceae spp. when compared to vegetarian and omnivorous humans [58].
Two recent studies published in 2021 associated specific dietary components with mi-
crobial taxa. In Japanese monozygotic twins, significant associations are found between
Lachnospiraceae species: Lachnospira and Lachnospiraceae UCG-008 negatively correlate with
protein intake and saturated fat intake, respectively, while the Lachnospiraceae ND3007
group correlates positively with total fat intake [59]. A population study of 1920 Chinese
adults found that a calculated healthy diet score, based on intakes of fruit, vegetables,
seafood, nuts/legumes, refined grains, red meat, and processed meat, is associated with
increased abundances within Firmicutes and Actinobacteria, particularly the genera Copro-
coccus and Bifidobacterium. Dairy is positively associated with the family Bifidocacteraceae
and genus Bifidobacterium; seafood with families Alcaligenaceae and Desulfovibrionaceae;
and nuts and legumes with the phyla Proteobacteria. Inverse associations are found with
processed meat and the family Lachnospiraceae, while it was positively associated with
Fusobacteriaceae and Acinetobacter under Proteobacteria [60].



Nutrients 2021, 13, 3067 4 of 14

There is evidence that Western-type diet-driven changes in microbiome composition
negatively affect host metabolism and energy homeostasis. Studies using microbiota-
depleted and GF rodent models have established a relationship between diet-driven dys-
biosis and excessive weight gain. GF mice have been shown to exhibit resistance to weight
gain when fed a HFHS diet that leads to increased adiposity in a conventional mouse,
showing that microbiota is necessary for DIO [61]. Conversely, GF rats and mice colonized
with fecal and cecal contents from conventional HFHS-fed animals display a significant
increase in BW compared to rodents colonized with chow-fed animal microbiome [16,62].
Similar results have been observed when GF animals are re-colonized with GI contents
from a genetically obese donor [2] or from an obese human donor [63]. We have success-
fully replicated these findings in an antibiotic depletion model [16]. These studies establish
that an “obese microbiome” from a host that is obese, or “HF-type microbiome” from
a host fed a HF diet, is sufficient to alter energy homeostasis and affect BW regulation,
at least in the short term. The GF studies cited here do not extend past 5 weeks post-
colonization [2,16,63]. While there is evidence that an individual’s microbiota composition
may affect energy harvest [2], storage [18], and utilization [64], a major effect on BW may
be driven by changes in regulation of energy intake.

Microbiota-depleted rats colonized with a HF-type microbiome have been shown to
significantly increase weekly food intake compared to rats colonized with a chow-type
microbiome [16]. Conversely, modulation of the microbiome via supplementation of anti-,
pro-, or prebiotics impacts weight and intake. In rats fed a 60% HF diet, administration of
minocycline, a broad-spectrum antibiotic, lessens microbiome alterations and significantly
reduces food intake [53]. In this experiment, 3 weeks of antibiotic administration normal-
izes HF-fed minocycline-treated rats’ intake to that of the control rats. This occurs with
restoration of the Firmicutes to Bacteroidetes ratio to a level comparable to that of the chow
animals, prevention of the HF-induced decrease in Bacteroidales and Sphingobacteriales, and
significant reduction in Erysipelotrichales [53]. Administration of oligofructose, a benefi-
cial prebiotic fermented by intestinal microbes [65], restores populations of Akkermansia
muciniphila in DIO mice and normalizes BW [66]. In addition to preventing weight gain,
probiotics have been found to promote weight loss in mice fed a HF diet for 12 weeks.
In these animals, supplementation with a probiotic containing Lactobacillus rhamnosus,
Lactobacillus acidophilus, and Bifidobacterium bifidum for 5 weeks decreases BW and food
intake [67]. In young men, supplementation with a probiotic along with the initiation of a
HF diet (55% kcal from fat, 25% of kcal from saturated fat) reduces the amount of weight
gained over 4 weeks [68]. Based on these data, microbiome alterations appear sufficient to
alter food intake and necessary for HF-diet-induced increases in intake.

3. Microbiome Composition Influences Peripheral Intake Mechanisms

The presence of food in the GI tract leads to the release of satiety signals, such as
CCK, by enteroendocrine cells (EECs) that can signal via the vagus nerve to regulate food
intake, particularly meal size [23,24]. There is evidence that GI bacterial makeup modulates
several aspects of this gut–brain communication.

3.1. GI Satiety Peptide Expression/Release

An individual’s gut microbiota may affect regulation of meal size via modulation of GI
satiety peptide expression and release. GF mice, when compared to conventional mice of
similar body weight, display decreased intestinal expression of CCK peptide [36]. Further,
fructose malabsorption induces microbiome alterations, which, in mice, is associated with
changes in CCK expression and secretion [69]. Ketohexokinase (KHK)-knockout mice are a
model of fructose malabsorption. KHK catalyzes fructose phosphorylation and KHK dele-
tion prevents the upregulation of GLUT5, a fructose transporter [69]. KHK-KO mice do not
absorb most fructose, and feeding these animals a diet of 20% fructose leads to increased
fructose concentration in the colon and alterations in microbiome composition, including
increased relative abundances of Actinobacteria (families Coriobacteriaceae and Corynebacteri-
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aceae), Bacteroidetes and Lactobacillaceae (particularly Lactobacillus johnsonii); and decreased
Proteobacteria (family Desulfovibrionaceae) [69]. These alterations are accompanied by a
significant increase in CCK-positive EECs, which can be prevented via antibiotic adminis-
tration, demonstrating that the microbiota is necessary for fructose malabsorption-induced
alterations in CCK release [69]. In addition to modulating CCK expression, microbiome
may influence CCK release. In the murine EEC line STC-1, application of certain fatty
acid metabolites produced by commensal lactic acid bacteria results in increased CCK
release [70].

The microbiota’s influence on gut satiety peptides is not limited to CCK. Glucagon-like
peptide (GLP) 1 is an incretin released from intestinal L-cells that decreases food intake via
a vagally mediated pathway [71]. There is evidence that short chain fatty acids (SCFAs)
produced by a healthy microbiome [72] influence GLP-1 release [15]. Application of SCFAs-
acetate, propionate, and butyrate-to-mouse colonic cell cultures leads to increased secretion
of GLP-1 through activation of the free fatty acid receptor (FFAR) 2, a nutrient-sensing
G-protein coupled receptor [15]. This suggests that bacterial metabolites may be able to
directly interact with L-cells to regulate GLP-1 release [15]. SCFAs are produced through
fermentation of soluble fibers such as inulin, and while most gut bacteria can produce
acetate, there are specific taxa that produce propionate and butyrate [73]. Propionate
producers include Bacteroides spp., Salmonella spp., Megasphaera elsdenii, Coprococcus catus,
and Ruminococcus obeum; and butyrate producers include Anaerostipes spp., Roseburia spp.,
and Coprococcus comes, eutactus, and catus (this list is non-exhaustive) [73]. Supplementation
of inulin and other prebiotic fibers has been shown to prevent hyperphagia associated
with energy-dense diet consumption in rodents [74,75] as well as increased cecal and
portal GLP-1 concentrations in rats fed standard chow [76]. Similarly, rats pretreated with
35 days of oligofructose supplementation consumed less food, gained less weight, and
had nearly twice the expression of portal and colonic GLP-1 when switched to a HF diet
compared to control rats [74]. Oligofructose supplementation for 3 weeks in chow-fed rats
leads to a decrease in intake accompanied by increased cecal and portal concentrations of
GLP-1 and peptide YY (PYY), another anorexigenic gut peptide [76]. A study in humans
found that acute supplementation of inulin-propionate ester increased plasma GLP-1
and PYY and was associated with decreased food intake at a meal post-supplementation
when compared to controls [77], showing that propionate has acute effects on food intake.
Interestingly, prebiotic supplementation results in increased colon length [75,76] compared
to non-supplemented controls, which led the authors to conclude that GLP-1 increase
may be due in part to an increased number of secretory cells [76]. However, GF mice
with significantly decreased intestinal expression of satiety peptides (CCK, GLP-1, and
PYY) exhibit increased cecal and decreased ileal counts of EECs compared to conventional
mice [36]. A study found that GF mice have altered ileal expression of genes related to
vesicle organization in L cells that was accompanied by increased GLP-1 in ileal L cells,
while the colonic transcriptome was not significantly altered [78]. The authors suggest
that this is due to the colonic mucus barrier, which prevents bacteria from coming into
direct contact with EECs, while microbes in the ileum may come into direct contact with
the mucosa [78]. Studies have also found that GF mice have more EECs in the colon
compared to conventional mice [36], or mice colonized with Bacteroides thetaiotaomicron,
which may be due to differences in neurogenesis [79]. Microbiota may influence GLP-1
release through yet another mechanism. Administration of Akkermansia muciniphila as
a probiotic in obese mice restores levels of acylglycerols in the gut [66]. Acylglycerols
are products of fat digestion and components of the endocannabinoid system, and one
acylglycerol, 2-oleoylglycerol, stimulates L-cells to secrete gut peptides, including GLP-1,
through stimulation of a G-protein-coupled receptor [80] (Table 1).
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Table 1. Gastrointestinal (GI) satiety peptides and their association with microbiota.

Satiety Peptide Association with Microbiota

CCK VANs exhibit decreased CCK sensitivity when the GI tract is colonized
with HF-type microbiome [16].

GLP-1 SCFAs produced when microbiota ferments soluble fibers may promote
GLP-1 secretion [15,76].

PYY Rats fed soluble fiber also exhibit increased PYY levels in the GI tract [76].

3.2. CCK and Leptin Signaling

In addition to affecting gut peptide expression and release [15,69,81], there is evidence
that changes in an individual’s microbiota composition modulate vagal afferent sensitivity
to gut-originating satiety signals, particularly CCK [14]. CCK is released from the proximal
GI tract (duodenum and early jejunum) in response to long-chain fatty acids [82] and
amino acids [83], and acts on VANs to promote meal termination [84]. Colonization of
microbiota-depleted rats with a HF-type microbiome is sufficient to reduce CCK-induced
satiety in the receiver animals [16]. Conversely, it has been shown that preventing HF
diet-driven dysbiosis through prebiotic supplementation prevents HF diet-induced loss
in CCK signaling [52], demonstrating that changes in microbiome composition are also
necessary for HF diet-induced alterations in CCK signaling.

VAN sensitivity to CCK may be altered through bacterial metabolites and their effect
on leptin signaling. Leptin, an anorexigenic adipokine, is released from adipocytes in
proportion to fat mass [39] and enhances CCK signaling [85]. Peripheral leptin resistance
has been linked to a reduction in CCK sensitivity and increased intake [14,33]. Lipopolysac-
charide (LPS), a pro-inflammatory by-product of Gram-negative bacteria, increases in
circulation in DIO rodents [14,86]. Cecal and serum concentrations of LPS are increased
in animals fed both LFHS and HFHS diets [17]. In rats, chronic low-dose administration
of LPS, resulting in serum levels comparable to those seen in HF-fed animals, leads to
VAN leptin resistance and decreased sensitivity to CCK [14]. LPS leads to Toll-like receptor
(TLR) 4 activation at the level of the nodose ganglion (NG), where VAN cell bodies are
located, which subsequently increases SOCS3 protein levels. SOCS3 inhibits activation of
the leptin receptor, potentially abolishing the synergistic effect of leptin on CCK sensitivity
and decreasing feeding suppression following CCK injection [14].

3.3. Inflammation

In rats, DIO is characterized by a leaky gut and low-grade inflammation, potentially
driven by bacterial products such as LPS [51]. GI-originating inflammation may play a
key role in mediating HF diet-associated alterations in post-ingestive gut–brain signaling.
Interestingly, HF feeding rapidly activates microglia-like cells in the NG [17,87], and this
may be mediated by microbiota. Microglia are the resident macrophages of the CNS [88],
and chronic activation of microglia causes inflammation [89]. Colonization of microbiota-
depleted rats with a HF-type microbiome leads to an increase in positive staining in
the NG for the pan-microglia and monocyte marker-ionized calcium binding adaptor
molecule (Iba) 1 [16], while administration of antibiotics [17] or prebiotics [52] prevents
Iba1+ cell recruitment along the gut–brain axis. In the CNS, microglia alter synaptic function
and axonal growth in response to bacterial products by releasing cytokines [90–92], and
HF diet-driven microglial activation is associated with inflammation-mediated neuronal
death [93]. It is therefore possible that microbiota-driven recruitment of Iba1+ cells in the
NG has a deleterious effect on VAN survival. Co-culture of VANs with Gram-negative
bacteria isolated from HF-fed rats (specifically Proteus mirablis of the order Enterobacteriales
mentioned previously) leads to a dramatic decrease in viable neurons, suggesting that
bacterial products can directly influence VAN survival [53]. Further, increased serum
LPS and decreased innervation of the cecum was found in rats fed a HF diet [17]. These
data would suggest that, in addition to altering vagal afferent signaling, an individual’s
microbiota composition could also affect the structural integrity of the gut–brain axis. A
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decrease in VAN number may explain the reduction in c-fibers observed in the NTS of GF
rats conventionalized with a HF-type microbiome [16]. At the level of the NTS, c-fibers
are predominantly of vagal origin [94]. Conversely, administration of a broad-spectrum
antibiotic [17] or prebiotic [52] concomitant with HF diet introduction can prevent both
dysbiosis and c-fiber withdrawal from the NTS.

4. Microbiota Influences Central Intake Mechanisms
4.1. Neuroinflammation

Besides altering sensitivity to leptin and CCK, bacterial inflammatory products pro-
duced by the obese-type microbiome are linked to inflammation and loss of function in
key brain regions involved in food intake—the NTS, as previously discussed, and the hy-
pothalamus [95–97]. The hypothalamus contains key anorexigenic and orexigenic neuronal
populations involved in regulating appetite and energy expenditure. Signals related to
energy stores within the body, especially leptin, can modulate neuropeptide expression
and release within the hypothalamus to regulate energy homeostasis. Inflammation and
cytokine signaling interfere with leptin sensitivity in neurons [98]. Conventionally raised
mice exhibit increased hypothalamic SOCS3 expression as well as decreased suppression of
orexigenic mRNA (Npy and Agrp) in response to intraperitoneal leptin injection compared
to GF mice [99], hinting that the presence of certain bacterial taxa may interfere with
hypothalamic leptin sensitivity. Increased bacterial LPS may play a role. Female rats fitted
with slow-release pellets set to deliver a daily low (53 µg/day) or high (207 µg/day) dose
of LPS were fed a chow or 60% HF diet for 8 weeks [100]. At the end of the study, both LPS
groups had gained more weight and consumed more food than the control vehicle pellet
group. LPS groups dose-dependently increased expression of IL-1β in the hypothalamus,
while increasing the expression of orexin, a neuropeptide that increases food intake, in
the low-dose group [100]. In DIO mice, increased TLR4 and IL-6 mRNA expression in the
hypothalamus is associated with decreased leptin-induced STAT3 phosphorylation and a
failure to decrease food intake in response to intraperitoneal leptin injection [67]. Supple-
mentation with a probiotic containing Lactobacillus rhamnosus, Lactobacillus acidophilus, and
Bifidobacterium bifidum results in decreased BW and food intake in DIO animals, as well
as normalization of TLR4 and IL-6 mRNA levels in the hypothalamus, and restoration of
leptin-induced pSTAT3 expression [67]. Similar preservation of leptin signaling has been
observed with Lactobacillus rhamnosus supplementation alone [101], demonstrating that the
presence or absence of certain bacterial taxa can modulate hypothalamic leptin signaling.

Oxidative stress is another inflammatory measure that is increased in DIO rats and
may be related to microbiome composition. In a study by Fouesnard et al., rats were placed
on either a chow or high-energy Western diet (WD; 45% fat) for 6 weeks [95]. WD-fed rats
exhibited hyperphagia in the first week of feeding, increased weight gain, and adiposity.
Metabolomic changes were observed in the hypothalamus within 2 h of diet introduc-
tion, and these changes persisted after the first day of feeding [95]. Specific alterations
included hypothalamic redox homeostasis (increased oxidized glutathione, among other
measures, suggests increased oxidative stress) and cell membrane remodeling processes.
Similarly, cecal microbiome composition was significantly altered within hours of diet in-
troduction, with WD feeding leading to decreased α-diversity and increased Proteobacteria
relative abundance, particularly the Desulfovibrionaceae and Tannerellaceae families, as well
as decreased Lactobacillaceae relative abundance. Cecal metabolites also correlated with
hypothalamic metabolites—one notable association was seen between oxidative stress and
indices of α-diversity. This demonstrates an immediate pro-inflammatory microbiome
shift within 1 day of WD feeding that coincides with alterations in hypothalamic oxidative
stress and hyperphagia [95]. Interestingly, in conventionally raised, but not GF, rats, RNA
expression of superoxide dismutase 2, glutaredoxin, and IL-6 are increased after 2 days of
WD feeding, demonstrating that the microbiota is necessary for the early pro-inflammatory
effects of WD in the hypothalamus.
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4.2. Reward Pathways

External factors can override homeostatic regulation of intake, including food avail-
ability, social and contextual cues, and palatability [71]. The ventral tegmental area (VTA)
contains receptors for peripheral energy signals, including ghrelin, insulin, and leptin [102].
It also receives input from the hypothalamus and the NTS [102]. Optogenetic activa-
tion of VANs that innervate the upper GI tract stimulates reward-associated behavior
such as self-stimulation, place preference, and flavor conditioning, and is sufficient to
increase dopamine (DA) levels in the dorsal striatum [23]. Further, ablation of the vagal–
parabrachial–nigrostriatal pathway abolishes conditioned preference for gastric infusion
of high-calorie nutritive lipids over low-calorie nutritive lipids, while vagal deafferenta-
tion alone decreases conditioned preference and avoidance learning in a number of other
tests [23]. As microbiota has been found to modulate vagal signaling, changes in bacterial
composition are expected to modulate central mechanisms regulating reward.

GF and antibiotic-depleted mice exhibit alterations in dopaminergic reward path-
ways [19]. GF mice have increased DA turnover in the striatum and lower expression
of D1 receptor mRNA in the striatum and NAc [103], a region involved in food-seeking
behavior [104], and display increased preference for even low concentrations of intralipid
compared to conventional mice [36]. Antibiotic administration has resulted in increased L-
3,4-dihydroxyphenylalanine (L-DOPA) in the amygdala of young mice [105] and decreased
DA turnover in the amygdala and striatum in rats, suggesting that microbiota modulates
DA neurochemistry in rodents. Colonization with fecal contents from mice with chronic
ethanol exposure leads to depressive and anxiety-like behaviors similar to those evident in
withdrawal [20], and administration of SCFAs to mice previously exposed to a small dose
of cocaine abolishes conditioned place preference [106], which suggests that microbiota
is directly involved in modulating addiction-like behaviors and may be relevant in food
addiction. These data suggest that individual microbiota may affect food intake not only
through homeostatic mechanisms, but also through regulation of the reward pathway and
hedonic perception. There are studies emerging that support this hypothesis.

In adolescent rats with intermittent daily access to HFHS diet, overall energy intake
increases and monoamine gene expression is altered in the hippocampus and prefrontal
cortex, and these alterations correlate with bacterial relative abundances [56]. Specifically,
prefrontal cortex expression of monoamine oxidase A is positively associated with an
unspecified genus of the Lachnospiraceae family, while expression in the hippocampus is
associated with a number of other families, including unspecified Bifidobacteriales, Bifi-
dobacteriaceae, unspecified Bacteroidales, Rikenellaceae, Lachnospiraceae, Ruminococcaceae, and
Erysipelotrichaceae [56]. Microbiota may play a role in food preferences as well. Increased
preference for sucrose is evident in mice undergoing social stress, and this increased
preference is abolished by SCFA supplementation, suggesting that microbiota modulates
stress-induced sucrose preference via SCFA production [107]. In rats, chronic consumption
of HFHS diets leads to decreased motivation to lever press to receive a sucrose pellet [108].
Fructo-oligosaccharide introduced along with the initiation of HFHS feeding restores moti-
vation for the sucrose pellet; however, supplementation beginning after 10 weeks of HFHS
diet exposure is not able to rescue this measure of motivational behavior [108]. Further,
supplementation leads to decreased preference for HFHS foods compared to rats without
supplementation [108].

Low- and no-calorie artificial sweeteners are another point of contention in terms of
their impact on reward and intake, as it has been found that some sweeteners, such as
stevia, are metabolized by gut microbiota [109]. While short- and long-term studies in
humans do not show that artificial sweetener intake leads to compensatory overeating [110],
there is evidence in both humans and rodents that sweetener intake causes alterations in
reward pathways. In humans, ingestion of sucralose has significantly different effects in
VTA activation compared to glucose or sucrose [111]. Rats exposed to a chronic low dose
of rebaudioside A (RebA), a stevia glycoside, exhibit decreased tyrosine hydroxylase and
dopamine transporter (DAT) mRNA expression in the NAc [112], which can be rescued by
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prebiotic oligofructose supplementation [112]. These data suggest that artificial sweeteners
that are metabolized by microbiota may alter reward signaling. It should be noted that the
evidence is limited as research in this area is still emerging (Table 2).

Table 2. Bacteria associated with food intake alterations. It is important to note that there is currently
insufficient evidence to consistently link specific bacterial species to altered intake. Further, these
findings have only been demonstrated in rodent models and are not applicable in humans.

Bacteria Intake Alterations

Lactobacillus rhamnosus, Lactobacillus
acidophilus, and Bifidobacteria bifidum

5 weeks of supplementation decreased hypothalamic
inflammation, food intake, and BW compared to DIO

animals without the supplement [67]

Akkermansia muciniphila May promote gut peptide release through increasing
acylglycerols in the gut [66]

Gram-negative bacteria

• Produce LPS, which can

# reduce VAN sensitivity to leptin and CCK [14]
# hypothalamic inflammation and BW [100]

• May decrease VAN survival (specifically, Proteus
mirablis) [53]

5. Summary

Microbiota exerts an undeniable influence in the regulation of food intake through
central and peripheral mechanisms, including satiety peptide release and signaling, in-
flammation, and modulation of reward pathways. Microbiota-driven changes in gut–brain
signaling may be linked to alterations in both homeostatic and hedonic regulation of
feeding. Preventing adverse microbial alterations via supplementation of prebiotic fibers
and probiotics can successfully prevent hyperphagia in animal models, especially when
introduced concomitantly with a dietary challenge. However, changes to the gut–brain axis
may have long-term consequences on feeding behavior. HF or HS feeding [17] and HF-type
microbiome alone [16] lead to withdrawal of vagal c-fibers from the NTS. This remodeling
coincides with onset of weight gain and hyperphagia [38]. Nerve injury-induced [113]
or diet-induced [53] vagal withdrawal can be followed by NTS reinnervation (sprouting).
Crucially, reinnervation does not appear to restore function in HF-fed rats, as animals re-
main hyperphagic [38,53], suggesting that gut–brain function may be permanently affected
in obesity. It is still unclear if microbiome-based therapy could restore gut–brain signaling
in obesity. While weight loss in both humans and rodents is associated with microbiome
composition alterations [114,115], there is limited evidence that restoring microbiome in
obese individuals can lead to weight loss. Probiotic use may be circumstantially associated
with weight loss [116], but no causal link has been established. Most animal studies in the
realm of obesity research focus on preventing weight gain when introducing a HF diet and
initiate treatments such as pre- and probiotics concomitantly [117–120]. While helpful when
flushing out the etiology of obesity, these studies do not determine whether modulation
of an individual’s microbiota can successfully and effectively decrease food intake and
promote clinically meaningful weight loss. More studies should be executed in which
pre- or probiotics are supplemented to DIO animals to determine whether microbiome
composition can be restored to a pre-obese state, or if modulation is associated with weight
loss. Such studies would help determine whether the microbiota is an appropriate target to
promote healthy eating behavior and weight loss.
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