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Abstract

The sequencing of antibody repertoires of B-cells at increasing coverage and depth has led

to the identification of vast numbers of immunoglobulin heavy and light chains. However, the

size and complexity of these Adaptive Immune Receptor Repertoire sequencing (AIRR-

seq) datasets makes it difficult to perform exploratory analyses. To aid in data exploration,

we have developed AIRRscape, an R Shiny-based interactive web browser application that

enables B-cell receptor (BCR) and antibody feature discovery through comparisons among

multiple repertoires. Using AIRR-seq data as input, AIRRscape starts by aggregating and

sorting repertoires into interactive and explorable bins of germline V-gene, germline J-gene,

and CDR3 length, providing a high-level view of the entire repertoire. Interesting subsets of

repertoires can be quickly identified and selected, and then network topologies of CDR3

motifs can be generated for further exploration. Here we demonstrate AIRRscape using

patient BCR repertoires and sequences of published monoclonal antibodies to investigate

patterns of humoral immunity to three viral pathogens: SARS-CoV-2, HIV-1, and DENV

(dengue virus). AIRRscape reveals convergent antibody sequences among datasets for all

three pathogens, although HIV-1 antibody datasets display limited convergence and idio-

syncratic responses. We have made AIRRscape available as a web-based Shiny applica-

tion, along with code on GitHub to encourage its open development and use by immuno-

informaticians, virologists, immunologists, vaccine developers, and other scientists that are

interested in exploring and comparing multiple immune receptor repertoires.

Author summary

Technological advances in next generation sequencing have allowed for broad experimen-

tal sampling of immune repertoires, providing insight into how our immune system

responds to infection, vaccination, autoimmunity, and cancer. The scale of these “big

data”, however, make it difficult to bioinformatically extract the key sequence features that

are shared across multiple repertoires. With AIRRscape, we enable large-scale immune

repertoire visualization and analysis that requires no knowledge of the command line or

advanced programming. By providing the community with an open-source, interactive,
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and user-friendly interface, we reduce the barriers to exploring immune repertoires at

scale. We demonstrate the use of AIRRscape to characterize features of immune responses

to viral infection that are shared across multiple repertoire datasets.

1. Introduction

Individual B-cell receptor (BCR) repertoires have exceptional diversity, estimated to be greater

than 109 in a single adult [1,2]. Improvements in sequencing capability over the past twenty

years have allowed a wider sampling of BCR sequences to be uncovered, e.g. [3–5]. These

adaptive immune receptor response sequence (AIRR-seq) datasets can offer a complex and

information-rich glimpse into B-cell immune responses to vaccination and infection. For

example, with analyses of AIRR-seq data comes an increasing recognition that convergence

among BCR repertoires, sometimes termed ‘public’ clonotypes [1,2,6,7], is important for

understanding the humoral immune response to natural infections and for improving vaccine

design.

The size of AIRR-seq datasets can make it challenging to visualize the BCR sequence fea-

tures of individual repertoires, let alone of multiple repertoires concurrently. Several groups

have developed metrics to assess similarity among entire BCR repertoires [8,9], but few open-

source tools enable facile, multi-dimensional visualization and exploration of these repertoires.

An overview of existing tools and their features [10–21] is provided in Table 1. Notable exam-

ples of higher-level BCR repertoire visualizations (e.g. for features such as V-gene and J-gene

usage, CDR3 length, and CDR3 amino acid sequence motifs) include Circos plots [22], radial

phylogenies [23], and clouds summarizing clonotype networks [24]. While powerful in offer-

ing a global overview of AIRR-seq data, these methods are not amenable to interactive explora-

tion, in particular to uncover and display antibody convergence.

To enable simultaneous interactive visualization of multiple BCR repertoires and in-depth

data exploration, we have developed an open-source tool called AIRRscape. Analysis using

AIRRscape begins with the generation of sequence feature heatmaps, which can span both

individual or combined AIRR-seq datasets. Visual comparison of these heatmaps in their

entirety provides a simple and intuitive global overview of differences in three coupled AIRR-

seq dataset features: 1) V- and J-gene usage; 2) CDR3 length, and 3) either somatic hypermuta-

tion (SHM) or sequence read count. AIRRscape enables extraction of all sequences that fit a

particular set of features from the heatmap (individual or combined datasets) into bins for

finer scale local analysis. Topologies or phylogenetic networks of CDRH3 or CDRL3 amino

acid motifs can be generated, on the fly, to examine clonotypes and study antibody conver-

gence among multiple studies and patients. Recognizing the lack of consensus on how to

define clonal lineages [2], we allow users to select from a range of CDR3 identity thresholds to

define and visualize antibody convergence. AIRRscape uses R Shiny [25], and we have

deployed it at https://airrscape.czbiohub.org. Thus, it can be easily used on any web browser

without advanced programming or command-line expertise.

Here we use AIRRscape to examine collections of antibodies and BCR repertoires from

three types of viral infections to address several questions. For SARS-CoV-2: how representa-

tive are published antibodies relative to healthy and COVID-19 patient repertoires, and how

common are convergent antibody responses [26–28]? For HIV-1: how comparable are pub-

lished anti-HIV-1 antibodies relative to anti-SARS-CoV-2 antibodies as well as to HIV-1

patient repertoires, and how common are public antibody sequences reported in [7]? For

DENV: how common are the convergent antibodies reported in recent studies [29–31]? We
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show that AIRRscape provides an intuitive and explorable visualization of the convergent anti-

body responses that occur in patients infected with SARS-CoV-2 or DENV, as well as the idio-

syncratic responses that are typical in HIV-1 due to high SHM.

2. Material and methods

2.1 Datasets

Recent efforts by the AIRR Community [32,33] have led to the organization and standardiza-

tion of T-cell and B-cell repertoire analysis, enhancing the accessibility of BCR repertoire data-

sets. Here we utilize two AIRR-seq data repositories, iReceptor and Observed Antibody Space

[34–36], to gather BCR repertoire datasets in response to three viral pathogens: SARS-CoV-2,

HIV-1, and DENV, the causative agents of COVID-19, AIDS, and dengue, respectively. Data-

sets primarily come from studies examining patient bulk BCR repertoires [7,23,26,29,30,37–

41]. We also examine repositories of known monoclonal antibodies collated from multiple

antibody discovery studies: CoV-AbDab for COVID-19 [42], and for HIV/AIDS the IEDB and

CATNAP databases [43,44] and a recent dataset by Yacoob et al. [45]. For dengue, we focus on

a set of described plasmablast sequences from two patients [29,31]. All datasets are summa-

rized in Table 2.

Table 1. Open-source tools for comparing and visualizing BCR repertoires.

Tool Summary Features Reference

AIRRscape Web-based interactive tool for exploring B-cell

receptor repertoires

Enables easy input of AIRR-seq datasets; simultaneously visualizes hundreds of

thousands of sequences and networks of CDR3 motifs for analysis of convergence

This

study

AncesTree Interactive immunoglobulin lineage tree visualizer Enables exploration of antibody clonal lineages processed following AIRR

Community standards using a Java-based GUI

10

ASAP Web server for AIRR-seq analysis pipeline Processes and visualizes multiple repertoires starting from paired fastq files;

outputs plots of somatic hypermutation, VDJ gene usage, & clonal expansion

11

BRrepertoire Web server for large-scale statistical analyses of

repertoire data

Accepts web-based inputs from IMGT output; focuses on plots of physico-

chemical properties

12

immunarch R package for analysis of T-cell receptor and B-cell

receptor repertoires

Accepts multiple input data types; generates many exploratory plot types using R

commands

13

immuneREF R package for analysis of repertoire similarity on a

one-to-one, one-to-many, and many-to-many scale

Compares multiple repertoires processed via AIRR Community standards;

visualizations include repertoire clustering by similarity and comparison of CDR3

amino acid occurrence and VJ usage among repertoires

14

Olmsted Dockerized application for B-cell repertoire and clonal

family tree exploration

Visualizes clonal lineages after clustering and processing of AIRR-seq data in

JSON format; enables interactive exploration of clonotype phylogenies and amino

acid changes

15

PASA Web server for analysis and integration of data

obtained from proteomics of serum antibodies

Enables exploration of proteomics data obtained via raw mass spectrometry data

files from LC-MS/MS

16

sumrep R package for immune receptor repertoire comparison

and model validation

Compares multiple repertoires and outputs multiple similarity indices; creates

plots of similarity distributions

17

VDJbase AIRR-seq genotype and haplotype database Has interactive modules for analysis of published AIRR-seq data including

haplotype, gene, and allele usage; produces reports

18

VDJServer Free, scalable web-based pipeline for immune

repertoire analysis

Processes and visualizes repertoires starting from fastq files; outputs plots of

somatic hypermutation, gene usage, clonal abundance, and diversity & selection

measures

19

VDJtools Software suite for analysis of T-cell receptor

repertoires

Processes and visualizes T-cell receptor repertoire datasets 20

VDJviz Web tool for browsing and analyzing B-cell and T-cell

receptor repertoires

Uses VDJtools API; has interactive plots of VJ usage, clonal expansion, &

rarefaction curves; online demo allows for analysis of up to 25 samples of 10,000

clonotypes each

21

https://doi.org/10.1371/journal.pcbi.1010052.t001
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2.2 Data processing

BCR repertoire datasets are first downloaded either as tab-delimited files that follow AIRR

Community standards or as sequence files that are partially processed, e.g. using the pRESTO

module of the Immcantation suite [46]. For the repertoires in the latter category, the process-

ing is completed using two Dockerized Change-O scripts from the Immcantation suite, ‘chan-

geo-igblast’ and ‘changeo-clone’ [47]. The collated lists of antibodies against SARS-CoV-2 and

HIV-1 (from the IEDB database only) are focused on protein sequence and do not include

SHM, the % nucleotide divergence from germline V-gene, which thus needs to be calculated

separately. For those antibody sequences we first run a tblastn search of the NCBI nr/nt data-

base to find perfectly matched nucleotide sequences, and then use the Change-O scripts for

processing (after checking to ensure the source is the same antibody without codon optimiza-

tion). We subsequently color the SHM values of these sequences to highlight this additional

step. The resulting repertoire datasets now follow the AIRR Community standards, with col-

umns indicating the assigned V-gene (v_call), assigned J-gene (j_call), mutation from germline

V-gene (v_identity), and assigned V(D)J junction amino acid sequence (junction_aa).

A custom R function is used to further process the BCR repertoire datasets before visualiza-

tion with Shiny. First we calculate the level of SHM from germline V-gene using the standard

column v_identity. We also calculate CDR3 amino acid length as defined by the international

ImMunoGeneTics information system (IMGT) by removing the first and last residue in the

standard column junction_aa, with the new value called cdr3length_imgt. All sequences with

stop codons and sequences with CDR3 lengths that are missing, not divisible by 3, or fewer

than 3 amino acids are then removed. Lastly, we create additional columns used in our tool,

namely vgf for the assigned V-gene family, vgf_jgene for the V-gene family + J-gene assign-

ment, ncount for the count of sequences per unique combination of vgf_jgene + cdr3length_
imgt, and shm_mean and shm_max for mean or maximum SHM from its germline V-gene,

respectively, per unique combination of vgf_jgene + cdr3length_imgt. This function

(AIRRscapeprocess) is embedded in the Import Data tab of the AIRRscape tool to allow

researchers to modify and combine user-supplied datasets.

To visualize multiple repertoires simultaneously, sets of antibodies and/or repertoires are

combined in two possible configurations. The first option visualizes a set as separate faceted

Table 2. Datasets used in AIRRscape. Datasets in italics are collections of antibodies.

Dataset Data type Sample Reference Source Number of sequences

COVID-19 SARS-CoV-2 mAbs - 2 CoV-AbDab database (2) 4,306
COVID-19 patient bulk repertoire p11 23 iReceptor (34) 9,385

COVID-19 patient bulk repertoire 7450 38 iReceptor 15,645

COVID-19 patient bulk repertoire galson-01 26 iReceptor 29,795

COVID-19 patient bulk repertoire M5 37 iReceptor 18,711

Dengue dengue mAbs - 31 (31) 79
Dengue patient bulk repertoire d13 29 SRA 32,495

Dengue patient bulk repertoires 45 patients 30 Observed Antibody Space (35) 198,119

Healthy control bulk repertoire BX 40 SRA 50,942

HIV-1 HIV-1 mAbs - 43 IEDB (43) 98
HIV-1 HIV-1 mAbs - 44 CATNAP (44) 441
HIV-1 HIV-1 mAbs - 45 (45) 83
HIV-1 patient bulk repertoire NIH45 41 iReceptor 14,644

HIV-1 patient bulk repertoire MT1214 39 iReceptor 33,855

HIV-1 patient bulk repertoires 6 CAPRISA patients 7 Observed Antibody Space 184,294

https://doi.org/10.1371/journal.pcbi.1010052.t002
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panels for individual repertoires (see 2.3). The second option combines these repertoires into a

single panel, to enable searches of antibody convergence. Due to their broader importance,

only heavy chain antibody sequences are visualized in each of these combined repertoires

[48,49]. For all of the repertoire-based visualizations, we compact the individual repertoires by

collapsing all sequences with the same vgf_jgene + cdr3length_imgt bin assignments and identi-

cal CDR3 amino acid motifs. In datasets containing multiple individuals, we compact only

individual repertoires before combining them. A depiction of the workflow of dataset process-

ing is summarized in Fig 1.

2.3 AIRRscape application

AIRRscape is developed as an interactive web application using R Shiny. We use AIRRscape to

visualize the main features of BCR repertoire datasets from processed tab-delimited files. To

begin, in the Import Data tab researchers have the option to import, convert and combine up

Fig 1. Workflow of repertoire data retrieval and processing.

https://doi.org/10.1371/journal.pcbi.1010052.g001
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to six separate BCR repertoires following AIRR Community standards (as .tsv or .tab files, no

metadata required), which are downloaded in the two configurations after combining (see

2.2). Next, in the AIRRscape tab researchers can explore the user-supplied or pre-loaded data-

sets as a generated heatmap with either multiple panels of individual BCR repertoires (Fig 2A)

or a single panel combining multiple repertoires (Fig 2B). The x-axis of the heatmap shows

antibodies binned according to their assigned V-gene family + J-gene germline, while the y-

axis shows CDR3 length. Left of the Import Data and AIRRscape tabs, the user can choose data-

sets to visualize one of three parameters for coloring the bins: 1) by percent of overall total anti-

body sequences, 2) by average SHM of the bin, or 3) by maximum SHM of the bin. The user

can then hover over the paneled heatmaps to view an interactive popup displaying a bin’s attri-

butes (Fig 2B). Clicking on a single bin or selecting multiple bins using a drawn rectangle pro-

duces a table of antibodies and their features (Fig 3). Within the table, users can query by or

focus on any of the antibody features loaded in the datasets. Selected antibodies can be down-

loaded or further explored via their topologies (i.e. their phylogenetic relationship, with the

caveat that convergent antibodies are not clonally related).

Below the table of selected antibodies, AIRRscape displays interactive topologies of CDR3

amino acid sequence similarity (Fig 3). Binning antibodies both by germline assignment as

well as CDR3 length enables examination of these CDR3 motifs in a phylogenetic framework,

since the CDR3 motifs will be ‘aligned’ when constrained to bins with a given CDR3 length.

The labels of the topology tips conveniently display antibody names, assigned V-genes, and

CDR3 amino acid sequences. The major advantage of this approach is that thousands of anti-

body CDR3 sequences can be visualized via a web browser for quick and easy exploration by

researchers without command-line expertise.

AIRRscape allows for multiple options to create CDR3 topologies. First, a user may select a set of

antibodies from the table for constructing their topology via either the neighbor-joining or parsi-

mony tree building methods using the Phangorn package [50,51]. Alternatively, a user can select a

single antibody sequence of interest to identify all similar sequences in that bin within a chosen

amino acid identity threshold. AIRRscape will then display a parsimony topology of these nearest

sequences. The options for identity threshold are 50%, 70% used in [7], 80% used in [6], and 100%

used in [1]. Topology tip colors are unique to each dataset. Lastly, the user has the ability to change

both the height and width of the topology. Height adjustment allows the user to more easily visualize

a small topology or examine a large topology (up to 500 sequences) across more than one visible

page; adjusting the width allows the user to see the full tip label when there are long branch lengths.

Two custom R scripts, airrscape_preprocessing.R and airrscape_processing.R, are included to

document the data processing and to manually convert files that follow the aforementioned

AIRR Community standards for loading into AIRRscape. Both the pre-processing scripts and

the R Shiny code for AIRRscape are available on GitHub at https://github.com/czbiohub/

AIRRscape. AIRRscape can be run locally using RStudio within a browser, or it can be used on

the web at https://airrscape.czbiohub.org.

3. Results

To illustrate the utility of AIRRscape, we used it to explore the adaptive BCR responses to

three viral pathogens: SARS-CoV-2, HIV-1 and DENV.

3.1 anti-SARS-CoV-2 antibody datasets share characteristics and

convergent motifs

We first examined the CoV-AbDab database of validated monoclonal anti-SARS-CoV-2 anti-

bodies and compared them to published bulk BCR repertoires of four COVID-19 patients, as
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Fig 2. AIRRscape visualization of immune repertoires. Heatmaps comparing characteristics of (A) separate and (B) combined

datasets for anti-SARS-CoV-2 and anti-HIV-1 antibodies.

https://doi.org/10.1371/journal.pcbi.1010052.g002
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well as to a healthy control bulk BCR repertoire. We visualized 2,153 paired antibody

sequences from the CoV-AbDab dataset and a single representative repertoire from each study

of COVID-19 patient bulk repertoires ([23,26,37,38], Table 2). After removing duplicate

sequences (as described in 2.2), we compared 73,536 COVID-19 patient antibody CDRH3

sequences and 50,942 healthy control sequences (Fig 4).

We first asked how representative the anti-SARS-CoV-2 antibodies are relative to patient

repertoires and relative to a healthy control repertoire, based on the heatmap visualizations in

AIRRscape. This visual analysis suggested that the overall pattern of heavy chain V-gene family

+ J-gene pairings versus CDRH3 length distribution appears similar among the CoV-AbDab

dataset, the four patient repertoires, and the healthy control repertoire (Fig 4). The most com-

mon V+J gene family assignments in all datasets were IGHV3+IGHJ4, IGHV3+IGHJ6,

IGHV4+IGHJ4, IGHV4+IGHJ6, IGHV1+IGHJ4 and IGHV1+IGHJ6. A notable visual differ-

ence between the datasets was the presence or absence of sequences assigned to IGHV7 (Fig

4), which is not unexpected given that this gene ‘family’ consists of a single functional V-gene

that does not occur in all individuals [1]. SHM levels among the anti-SARS-CoV-2 antibodies

Fig 3. AIRRscape interface showing antibodies and CDR3 amino acid topology of selected antibody bin. Selected bin is highlighted in the red box of Fig

2B. SHM values in blue are calculated after an additional tblastn search of the NCBI nr/nt database.

https://doi.org/10.1371/journal.pcbi.1010052.g003
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(mean 2.3%) were lower than the four patient repertoires (overall mean 3.7%) and the healthy

control repertoire (mean 3.3%), although the patient from the Galson et al. study had notice-

ably higher SHM levels (mean 5.5%). These data suggest that a majority of neutralizing anti-

bodies against SARS-CoV-2 do not diverge greatly from germline and therefore may be more

easily elicited among patients.

Next we used AIRRscape to visualize convergent clonotypes among anti-SARS-CoV-2 anti-

bodies and COVID-19 patient bulk BCR repertoires. Visualizations were created based on

their vgf_jgene + cdr3length_imgt bin assignments, where a bin x_y_z represents IGHVx germ-

line assignment + IGHJy germline assignment + CDR3 length of z aa. As use cases, we focused

on three recently reported convergences, visualized as four bins: both 3_4_11 and 3_6_11 for

an IGHV3-53-based cluster as reported by Yuan et al. [28] and Galson et al. [26]; 3_6_14 for a

large cluster found by Galson et al. [26]; and 1_3_16 for a cluster reported by Robbiani et al.

[27]. Within each bin, we selected one published monoclonal antibody and examined the

topology of similar CDRH3 motifs among all the COVID-19 datasets, using the 80% aa

sequence identity threshold selected by Soto et al. [6]. As expected, convergence across all four

bins was observed (Fig 5 and Figs A-C in S1 Data), with each containing 12–30 CDRH3 motifs

from the CoV-AbDab dataset; these motifs were found across seven or more unique studies.

Three of the bins show convergent motifs among multiple patient repertoires (Fig 5 and Figs

A and C in S1 Data), with two also showing convergence among three of the four patient

Fig 4. AIRRscape heatmaps comparing anti-SARS-CoV-2 antibodies, bulk BCR repertoires of four COVID-19 patients, and a healthy control bulk BCR

repertoire.

https://doi.org/10.1371/journal.pcbi.1010052.g004
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repertoires. Furthermore, two of the bins show convergence to the healthy control repertoire

(Fig 5 and Fig A in S1 Data). The three convergent motifs seen in multiple COVID-19 patient

repertoires were also found in HIV-1 and dengue patient repertoires (see 3.4). While SHM is

not included in the CDRH3 topologies, examination of the convergent sequences indicated

that they all show low SHM (0–4%).

3.2 anti-HIV-1 antibody datasets display idiosyncrasies

We collated anti-HIV-1 monoclonal antibodies from two databases and one study [43–45],

and compared this set to published bulk BCR repertoires of eight HIV-1 patients. From the

databases we visualized 358 sequences. For the HIV-1 patient bulk BCR repertoires, 33,855

antibody sequences from patient MT1214 [39], 14,644 from patient NIH45 [41], and 184,294

from six CAPRISA patients [7] were visualized after removing duplicate sequences (see 2.2;

Fig D in S1 Data). Although patient NIH45 was only sequenced for IGHV1 genes, this partial

‘repertoire’ was included because it is the original source of the broadly neutralizing antibody

VRC01 [41].

The heatmap visualizations in AIRRscape were used to compare published anti-HIV-1 anti-

bodies to anti-SARS-CoV-2 antibodies and to two HIV-1 patient repertoires. While the num-

ber of anti-HIV-1 antibodies was sparse relative to that of anti-SARS-CoV-2 antibodies, they

appeared to have similar heavy chain V-gene family + J-gene pairings (Fig 2A). There were

noticeable differences in both SHM and CDRH3 length, consistent with previous anti-HIV-1

Fig 5. SARS-CoV-2 convergent clonotypes to mAb DH1149 in the 3_6_14 bin. An 80% identity threshold is used to calculate convergence.

Tips are colored by dataset source. Purple tips are published anti-COVID-19 antibodies from 7 different studies, dark gray tips are antibody

sequences from a healthy donor BCR repertoire, and orange through brown shaded tips are antibody sequences from COVID-19 patient BCR

repertoires.

https://doi.org/10.1371/journal.pcbi.1010052.g005
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antibody repertoire characterizations [52,53]. The anti-HIV-1 antibody dataset showed higher

SHM (mean 12.6% vs. 2.3%, Fig 2A) and longer CDRH3 lengths (20.4 vs. 15.8 aa) than the

CoV-AbDab dataset. Comparing published anti-HIV-1 antibodies with the HIV-1 patient rep-

ertoires also revealed higher SHM (mean 12.6% vs. 5.0%) and longer CDRH3 lengths (mean

20.4 vs. 16.0 aa), which contrasts with the COVID-19 results in 3.1 (Fig D in S1 Data) and indi-

cates strong diversifying selection away from unmutated, naive antibodies.

We used AIRRscape to visualize convergent clonotypes among anti-HIV-1 antibodies and

HIV-1 patient bulk BCR repertoires, focusing on ten recently reported convergences from

Setliff et al. [7], visualized as eight bins, as well as the inferred VRC01 germline CDR3 motif

[41]. As per 3.1, we selected one published monoclonal antibody within each bin and exam-

ined the topology of similar CDRH3 motifs among all the HIV-1 datasets, this time using a

lower 70% aa sequence identity threshold and requiring identical V-gene assignment, follow-

ing Setliff et al. [7]. Four of the bins showed limited convergence among HIV-1 datasets (Fig 6

and Fig E in S1 Data), with motifs shared among two, three, or four patient repertoires.

Despite including two antibody datasets from studies on the VRC01 antibody lineage, we nota-

bly could not find any convergence to the VRC01 germline CDR3 motif among the HIV-1

datasets. The complex evolution from germline and mutational requirements of neutralizing

HIV-1 antibodies are consistent with the rarity of success in naturally achieving humoral neu-

tralization in infected individuals and with challenges encountered in vaccine development.

Fig 6. HIV-1 convergent clonotypes to antibodies from Setliff et al. (2018; Fig 4). (A) Convergent clonotypes to mAb 02-o in the 1_4_13

bin. (B) Convergent clonotypes to mAb 02-s in the 1_4_14 bin. (C) Convergent clonotypes to mAb HK20 in the 1_3_15 bin. A 70%

identity threshold is used to calculate convergence. Tips are colored by dataset source. Purple tips are published anti-COVID-19 antibodies,

and green shaded tips are antibody sequences from HIV-1 patient BCR repertoires.

https://doi.org/10.1371/journal.pcbi.1010052.g006
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3.3 anti-dengue antibody datasets share convergent motifs

AIRRscape was used to visualize both reported and potentially undiscovered convergence

among the collated dengue datasets. We searched for convergence between 38 unique antibody

sequences from plasmablasts isolated from two Colombian dengue patients and bulk BCR rep-

ertoires of dengue patients from Colombian and Nicaraguan cohorts. Patient bulk BCR reper-

toires consist of one Colombian patient (d13; [29]) and a collection of 45 Nicaraguan patient

repertoires [30]. After removing duplicates, we compared 32,495 antibody sequences from

Patient d13 and 198,119 from the Nicaraguan cohort (Fig F in S1 Data).

Evidence of convergent antibody motifs was previously found in independent studies of the

Colombian (n = 2) and Nicaraguan (n = 45) patients. Plasmablast sequences in the Colombian

patients were reported to cluster into 15 clonal families, with one clonal family (CF1) found in

both patients [31]. Similarly, analysis of the Nicaraguan cohort found six CDRH3 motifs com-

mon to multiple patients [30].

In our analysis, we began with each of the 15 plasmablast clonal families, and searched for

similar CDRH3 motifs among the full dengue dataset, using the 80% aa sequence identity

threshold as per Soto et al. [6]. Five of the 15 clonal families showed convergence across both

Colombian and Nicaraguan cohorts (Table 3 and Fig 7 and Figs G-I in S1 Data). Of these five,

we identified CF1 from the Colombian cohort as the most prevalent clonal family in the Nica-

raguan dataset, occurring in 16 donors (Table 3 and Fig 7). We also found a previously unre-

ported instance of convergence in the Colombian dataset. CDRH3 motifs from the CF6 clonal

family identified in patient d20 were also found in the patient d13 bulk BCR repertoire, as well

as in two patient repertoires from the Nicaraguan bulk dataset (Table 3 and Fig G in S1 Data).

The six common CDRH3 motifs reported in the Nicaraguan dengue patients were also

explored using AIRRscape. These six motifs group into two clusters by amino acid similarity.

We found that the first cluster is common among the Nicaraguan dengue cohort, occurring in

17 patients, but not seen in the Colombian dataset. Notably, we found that the second cluster

was convergent with the CF1 clonal family ([31]; Fig I in S1 Data), demonstrating its frequent

occurrence. These data demonstrate how repertoire convergence in populations can occur at

different geographic levels, some more restricted than others. This could be due to regional

Table 3. Dengue convergence to plasmablast clonal families.

Clonal

family

V_J_CDR3

length

Plasmablast

donor

Colombian p13 Bulk

matches?

Nicaraguan cohort

matches?

Nicaraguan sequence

matches

Nicaraguan donors with

match

CF1 4_5_10 p13, p20 yes yes 41 16

CF2 1_4_15 p13 yes no

CF3 1_5_16 p13 yes no

CF4 1_4_16 p20 no no

CF5 1_3_17 p13 yes no

CF6 1_4_13 p20 yes yes 2 2

CF7 1_5_16 p13 yes yes 24 5

CF8 1_5_17 p13 yes yes 1 1

CF9 1_5_20 p13 yes yes 7 3

CF10 3_5_14 p13 yes no

CF11 3_6_23 p13 yes no

CF12 3_4_17 p20 no no

CF13 4_5_18 p13 yes no

CF14 4_4_15 p20 no no

CF15 4_5_23 p13 yes no

https://doi.org/10.1371/journal.pcbi.1010052.t003
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differences or similarities in factors such as infection or vaccine history, genetics, and

environment.

3.4 SARS-CoV-2, HIV-1, and DENV datasets share a limited set of motifs

We examined the SARS-CoV-2, HIV-1, and DENV antibody datasets together, to detect

whether the reported convergent motifs are also found across diverse patient repertoires.

Among the anti-SARS-CoV-2 antibody datasets, three convergent motifs seen in multiple

COVID-19 patient repertoires were also found in both HIV-1 and dengue patient repertoires

(Fig 8 and Figs J and K in S1 Data). The three convergent motifs, found in the 3_6_14, 3_4_11

and 3_6_11 bins, were found in 1, 3, and 2 HIV-1 patient repertoires and 6, 8, and 9 dengue

patient repertoires, respectively. However, convergence with exact V-gene assignment was less

common, found only in the two bins representing the IGHV3-53-based cluster (see 3.1; Figs J

and K in S1 Data).

Fig 7. Dengue convergent clonotypes to CF1 (Zanini et al. 2018). An 80% identity threshold is used to calculate convergence. Tips are colored

by dataset source. Purple tips are plasmablast sequences reported by Zanini et al. (2018) isolated from two Colombian patients (d13 and d20),

blue tips are antibody sequences from the BCR repertoire of patient d13, and gold tips are antibody sequences from a cohort of Nicaraguan

patient BCR repertoires.

https://doi.org/10.1371/journal.pcbi.1010052.g007
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Among the anti-HIV-1 and anti-dengue antibody datasets, convergence across other

patient repertoires was less common. Of the reported HIV-1 convergent motifs, we found no

convergence among COVID-19 patient repertoires and found only one motif with conver-

gence in dengue patient repertoires (Fig L in S1 Data). Of the five clonal families showing con-

vergence across dengue patient cohorts, we found no convergence among HIV-1 patient

repertoires, and only one motif with convergence in a single COVID-19 patient repertoire

(Fig M in S1 Data). These data suggest that public antibody motifs are rare but findable using

AIRRscape. However, additional knowledge of disease history in such datasets is needed

before drawing conclusions. For example, it is not known whether any of the patient reper-

toires with such convergence have multiple viral infections.

4. Discussion

The importance of understanding BCR repertoires has gained increasing appreciation, espe-

cially as a result of the current COVID-19 pandemic. Along with rapidly advancing sequencing

capabilities, this has led to the study and publication of dozens of individual BCR repertoires,

Fig 8. SARS-CoV-2, HIV-1, & dengue convergent clonotypes to anti-SARS-CoV-2 mAb DH1149 in the 3_6_14 bin. An 80% identity

threshold is used to calculate convergence. Tips are colored by dataset source. Purple tips are published anti-COVID-19 antibodies from 7

different studies, dark gray tips are antibody sequences from a healthy donor BCR repertoire, and orange through brown shaded tips are

antibody sequences from COVID-19 patient BCR repertoires. Green shaded tips are antibody sequences from HIV-1 patient BCR repertoires.

Gold tips are antibody sequences from a cohort of Nicaraguan dengue patient BCR repertoires.

https://doi.org/10.1371/journal.pcbi.1010052.g008
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particularly from patients infected by well-studied infectious pathogens as well as from healthy

controls, e.g. [1,6,23,26,27,37,41]. As with other examples of ‘big data’, there are many chal-

lenges in managing these datasets. In response, the AIRR Community has made significant

efforts to standardize and curate BCR repertoires [32–34]. However, visualization and compar-

ative analysis of these repertoires remains a challenge. To begin to address this gap we devel-

oped AIRRscape, a tool that leverages AIRR Community standards to visualize multiple BCR

repertoires quickly and simultaneously. AIRRscape provides a high-level view of large datasets

that allows researchers to investigate differences in commonly used repertoire characteristics,

such as V-gene usage, J-gene usage, CDR3 length, and somatic hypermutation.

Recent studies have found measurable convergence between individual BCR repertoires,

particularly among individuals infected with a common antigen [2]. Such convergence has

great implications for understanding immune responses to antigens and informing vaccine

design. Therefore, a major aim of AIRRscape is to visualize related antibody sequences, partic-

ularly from different repertoires, using the commonly accepted characteristics of convergence,

V-gene assignment, J-gene assignment, and CDR3 motif. We use phylogenetic methods to

more easily visualize and understand differences among the motifs, keeping in mind that the

visualizations are topologies of CDR3 motifs and not necessarily phylogenetic trees indicating

common ancestry, e.g. when multiple individual repertoires are compared. The characteristics

used to find convergence are the same as those used to define clonotypes, or clonal clusters of

antibodies within individuals. Given that no consensus on clonotype definitions has been

reached, with debate largely centered around thresholds of sequence identity in the CDR3

motif, AIRRscape does not require a priori clustering of clonotypes and creates topologies

based on CDR3 amino acid sequences while being agnostic with respect to thresholds.

We validated the utility of AIRRscape by exploring datasets of both antibodies and patient

bulk BCR repertoires for three viral pathogens: SARS-CoV-2, HIV-1, and DENV. Among the

COVID-19 datasets, we first visually confirmed that the set of known anti-SARS-CoV-2 anti-

bodies is broadly similar both to a healthy BCR repertoire and to a collection of COVID-19

patient repertoires, as measured by heavy chain V-gene family + J-gene usage, CDRH3 length

distribution, and relatively low levels of SHM from germline. This is consistent with studies

made in the first months of the COVID-19 pandemic that concluded that anti-SARS-CoV-2

antibodies could likely be induced by vaccines [54]. We then used AIRRscape to examine con-

vergence among anti-SARS-CoV-2 antibodies and COVID-19 patient BCR repertoires as

reported by multiple studies [26–28]. COVID-19 convergent motifs are indeed present in cur-

rently known anti-SARS-CoV-2 antibodies as well as in four COVID-19 patient bulk BCR rep-

ertoires. COVID-19 convergent motifs were also identified among repertoires of healthy

controls and dengue patients, which would not be expected to contain antibodies against

SARS-CoV-2, but could be explained by the relative proximity of the motifs to germline

sequences and/or to infection with other coronaviruses. Convergence of neutralizing antibody

sequences among multiple COVID-19 repertoires is a strong indicator of similarity in SARS-

CoV-2 immune responses and suggests that vaccines eliciting these antibodies will be broadly

effective [27,55]. The discovery that some of these COVID-19 convergent motifs are public

(i.e. also identified in our dengue, HIV-1, and healthy control samples) suggests that there is a

general pre-existing foundation in populations towards COVID-19 protection. While a

primed immune repertoire bodes well for robust vaccine responses, laboratory experiments

are needed to determine whether these sequences are functional against SARS-CoV-2.

Repertoires of patients infected by different SARS-CoV-2 variants could be explored using

AIRRscape to find potential convergence among these datasets. Such convergence would indi-

cate antibody motifs with potential to neutralize the range of known SARS-CoV-2 variants,

which could be prioritized for reverse vaccinology research or development.
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In contrast to the COVID-19 datasets, the HIV-1 datasets are mostly idiosyncratic but do

show limited convergence. Using AIRRscape, we analyzed anti-HIV-1 antibodies and eight

HIV-1 patient bulk BCR repertoires. The heatmaps show high SHM, a common feature of

neutralizing antibodies against HIV-1. We found limited convergence among the HIV-1 data-

sets and no convergence to the VRC01 germline CDR3 motif [41], even using a more permis-

sive CDR3 sequence identity threshold. While the limited convergence appears at odds with

the reporting of VRC01-like antibodies in multiple HIV-1 patients [7,56], the VRC01 class var-

ies in CDRH3 similarity and is instead defined by 20–35% SHM in the germline VH1-2 gene

and a 5 aa CDRL3 length [57,58]. These idiosyncratic characteristics underscore the difficulty

in vaccine development for HIV-1.

Examination of dengue datasets revealed evidence of convergent antibody motifs among

two patient cohorts from Colombia and Nicaragua. Visualizing 15 focal plasmablast clonal

families in AIRRscape, we found five were common to both patient cohorts, often in multiple

patients. The most common convergent lineage CF1, seen in both Parameswaran et al. [30]

and Zanini et al. [31], was found not to be broadly neutralizing against all DENV serotypes

[29]. However, the second most commonly found lineage, CF7, includes the mAb J9 that Dur-

ham et al. [29] found to be broadly neutralizing. That one of two tested convergent antibody

lineages shows broad neutralization suggests further investigations of convergence may be

beneficial for focusing antibody discovery and vaccine design. Broad neutralization could be

particularly important for treating dengue, where antibody-enhanced disease is a problem.

As AIRRscape is in active development, we note some limitations and also envision future

enhancements. AIRRscape is primarily an exploratory tool focused on visualization but vari-

ous metrics could be used to formally measure overlap between repertoires [17,59]. AIRRscape

does not visualize all of the sequences in the bulk BCR repertoire datasets; due to size and com-

puting limitations in the Shiny application, large datasets are collapsed when V-gene + J-gene

assignments as well as CDR3 amino acid motifs are identical. Similarly, to facilitate construc-

tion of topologies of CDR3 amino acid motifs we focus on those with exact same lengths,

although it has been shown that functionally similar antibodies may have different CDR3

lengths [60,61]. While the variability of CDR3 is typically crucial for defining antigen specific-

ity [49,62], other CDRs can also be important in antigen recognition; in those cases,

AIRRscape could be modified to visualize changes outside of CDR3. With respect to identify-

ing convergence, AIRRscape creates bins based on assigned germline V-gene families; thus,

CDR3 topologies can indicate convergence even if antibodies have different germline V-genes

within a family. While this definition of convergence is intended to cluster closely related

germline genes such as IGHV3-53 & IGHV3-66, it may be too broad in some cases. As an aid,

we include the full V-gene assignments in the topology tip names, and we note that restricting

the antibody list to one gene will limit searches to only convergences with matching V-genes.

Also, while AIRRscape is focused on amino acid motifs, we acknowledge that amino acid

sequence convergence is an imperfect predictor of functional convergence. Lastly, although

AIRRscape can quickly and easily search for known antibody sequences, examine overall rep-

ertoire patterns, and find convergence, users currently cannot initiate searches for identical

motifs across datasets, although new tools with this functionality are being developed [63].

In summary, AIRRscape is a useful tool for quick and thorough exploration of large BCR

repertoire datasets. Moreover, AIRRscape is novel among the suite of publicly available tools

in visualizing convergence of antibody motifs. We have released the source code on GitHub so

that interested research groups may use other datasets or incorporate more features. While the

datasets from this study are pre-loaded, the tool allows users to visualize combinations of other

AIRR datasets following AIRR Community standards. The code could be further modified to

meet the desires of immuno-informaticians, virologists, and immunologists, for instance with

PLOS COMPUTATIONAL BIOLOGY AIRRscape: An interactive tool for exploring antibody repertoires

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010052 September 20, 2022 16 / 22

https://doi.org/10.1371/journal.pcbi.1010052


respect to the CDR3 sequence identity thresholds, phylogenetic tree options, or color and visu-

alization schemes. While our focus is on infectious disease, AIRRscape could be used for auto-

immunity and cancer biology, for example to compare healthy vs. autoimmune or cancer

patient repertoires. With minor code modifications, AIRRscape could also be used to visualize

TCR repertoires and their CDR3 motifs. We hope that AIRRscape will be useful for the

research community, and we encourage interested parties to contribute additional features

that would further enable identification of convergent responses.

Supporting information

S1 Data. Supplementary figures. Fig A in S1 Data. SARS-CoV-2 convergent clonotypes to

mAb C102 in the 3_4_11 bin. An 80% identity threshold is used to calculate convergence.

Tips are colored by dataset source. Purple tips are published anti-COVID-19 antibodies from

12 different studies, dark gray tips are antibody sequences from a healthy donor BCR reper-

toire, and orange through brown shaded tips are antibody sequences from COVID-19 patient

BCR repertoires. Fig B in S1 Data. SARS-CoV-2 convergent clonotypes to mAb C125 in the

1_3_16 bin. An 80% identity threshold is used to calculate convergence. Tips are colored by

dataset source. Purple tips are published anti-COVID-19 antibodies from 7 different studies,

dark gray tips are antibody sequences from a healthy donor BCR repertoire, and orange

through brown shaded tips are antibody sequences from COVID-19 patient BCR repertoires.

Fig C in S1 Data. SARS-CoV-2 convergent clonotypes to mAb BD-494 in the 3_6_11 bin.

An 80% identity threshold is used to calculate convergence. Tips are colored by dataset source.

Purple tips are published anti-COVID-19 antibodies from 15 different studies, dark gray tips

are antibody sequences from a healthy donor BCR repertoire, and orange through brown

shaded tips are antibody sequences from COVID-19 patient BCR repertoires. Fig D in S1

Data. AIRRscape heatmaps comparing anti-HIV-1 antibodies and bulk BCR repertoires of

eight HIV-1 patients. Fig E in S1 Data. HIV-1 convergent clonotypes to mAb

CAP351_6m_6041 (Setliff et al. 2018; Fig 3) in the 1_6_14 bin. A 70% identity threshold is

used to calculate convergence. Tips are colored by dataset source. Purple tips are published

anti-COVID-19 antibodies, and green shaded tips are antibody sequences from HIV-1 patient

BCR repertoires. Fig F in S1 Data. AIRRscape heatmaps comparing isolated dengue plas-

mablasts and bulk BCR repertoires of dengue patients from Colombian and Nicaraguan

cohorts. Fig G in S1 Data. Dengue convergent clonotypes to CF6 (Zanini et al. 2018). An

80% identity threshold is used to calculate convergence. Tips are colored by dataset source.

Purple tips are plasmablast sequences reported by Zanini et al. (2018) isolated from two

Colombian patients (d13 and d20), blue tips are antibody sequences from the BCR repertoire

of patient d13, and gold tips are antibody sequences from a cohort of Nicaraguan patient BCR

repertoires. Fig H in S1 Data. Dengue convergent clonotypes to CF7 (Zanini et al. 2018).

An 80% identity threshold is used to calculate convergence. Tips are colored by dataset source.

Purple tips are plasmablast sequences reported by Zanini et al. (2018) isolated from two

Colombian patients (d13 and d20), blue tips are antibody sequences from the BCR repertoire

of patient d13, and gold tips are antibody sequences from a cohort of Nicaraguan patient BCR

repertoires. Fig I in S1 Data. Dengue convergent clonotypes to Parameswaran et al. (2018)

motif ARQIGNWFDP similar to CF1 (Zanini et al. 2018). An 80% identity threshold is used

to calculate convergence. Tips are colored by dataset source. Purple tips are plasmablast

sequences reported by Zanini et al. (2018) isolated from two Colombian patients (d13 and

d20), blue tips are antibody sequences from the BCR repertoire of patient d13, and gold tips

are antibody sequences from a cohort of Nicaraguan patient BCR repertoires. Fig J in S1 Data.

SARS-CoV-2, HIV-1, & dengue convergent clonotypes to anti-SARS-CoV-2 mAb C102 in
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the 3_4_11 bin. An 80% identity threshold is used to calculate convergence. Tips are colored

by dataset source. Purple tips are published anti-COVID-19 antibodies from 12 different stud-

ies, dark gray tips are antibody sequences from a healthy donor BCR repertoire, and orange

through brown shaded tips are antibody sequences from COVID-19 patient BCR repertoires.

Green shaded tips are antibody sequences from HIV-1 patient BCR repertoires. Gold tips are

antibody sequences from a cohort of Nicaraguan dengue patient BCR repertoires. Fig K in S1

Data. SARS-CoV-2, HIV-1, & dengue convergent clonotypes to anti-SARS-CoV-2 mAb

BD-494 in the 3_6_11 bin. An 80% identity threshold is used to calculate convergence. Tips

are colored by dataset source. Purple tips are published anti-COVID-19 antibodies from 15

different studies, dark gray tips are antibody sequences from a healthy donor BCR repertoire,

and orange through brown shaded tips are antibody sequences from COVID-19 patient BCR

repertoires. Green shaded tips are antibody sequences from HIV-1 patient BCR repertoires.

Gold tips are antibody sequences from a cohort of Nicaraguan dengue patient BCR repertoires.

Fig L in S1 Data. HIV-1 & dengue convergent clonotypes to anti-HIV mAb 02-o (Setliff

et al. 2018; Fig 4) in the 1_4_13 bin. An 80% identity threshold is used to calculate conver-

gence. Tips are colored by dataset source. Purple tips are published anti-HIV-1 antibodies,

while green shaded tips are antibody sequences from HIV-1 patient BCR repertoires. Blue tips

are antibody sequences from the BCR repertoire of dengue patient d13, and gold tips are anti-

body sequences from a cohort of Nicaraguan dengue patient BCR repertoires. Fig M in S1

Data. SARS-CoV-2 & dengue convergent clonotypes to anti-dengue mAb CF6 (Zanini

et al. 2018) in the 1_4_13 bin. An 80% identity threshold is used to calculate convergence.

Tips are colored by dataset source. Purple tips are plasmablast sequences reported by Zanini

et al. (2018) isolated from two Colombian dengue patients (d13 and d20), blue tips are anti-

body sequences from the BCR repertoire of dengue patient d13, and gold tips are antibody

sequences from a cohort of Nicaraguan dengue patient BCR repertoires. Brown shaded tips

are antibody sequences from COVID-19 patient BCR repertoires.
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