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Abstract

Background: Resting-state functional magnetic resonance imaging (RS-fMRI) has frequently been used to investigate local
spontaneous brain activity in Parkinson’s disease (PD) in a whole-brain, voxel-wise manner. To quantitatively integrate
these studies, we conducted a coordinate-based (CB) meta-analysis using the signed differential mapping method on 15
studies that used amplitude of low-frequency fluctuation (ALFF) and 11 studies that used regional homogeneity (ReHo). All
ALFF and ReHo studies compared PD patients with healthy controls. We also performed a validation RS-fMRI study of ALFF
and ReHo in a frequency-dependent manner for a novel dataset consisting of 49 PD and 49 healthy controls. Findings:
Decreased ALFF was found in the left putamen in PD by meta-analysis. This finding was replicated in our independent
validation dataset in the 0.027–0.073 Hz band but not in the conventional frequency band of 0.01–0.08 Hz. Conclusions:
Findings from the current study suggested that decreased ALFF in the putamen of PD patients is the most consistent
finding. RS-fMRI is a promising technique for the precise localization of abnormal spontaneous activity in PD. However,
more frequency-dependent studies using the same analytical methods are needed to replicate these results. Trial
registration: NCT NCT03439163. Registered 20 February 2018, retrospectively registered.
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2 Meta-analysis of resting functional imaging in PD
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Background

Parkinson’s disease (PD) is a progressive neurological degen-
erative disorder that is characterized by bradykinesia, rigidity,
tremor, and postural instability. The main pathological feature
of PD is the progressive loss of dopamine neurons in the sub-
stantia nigra and putamen [1]. However, it remains unclear how
these pathological changes lead to parkinsonian symptoms. To
answer this question, many neuroimaging studies that used
functional magnetic resonance imaging (fMRI) have investigated
PD-related neural abnormalities and found that PD patients
showed abnormal activity in the striatum and brain stem, as
well as in other brain regions [2]. Most fMRI studies have been
focused on motor-related neural changes in PD. Herz et al. con-
ducted a coordinate-based (CB) meta-analysis on motor task-
related functional neuroimaging studies [3] and found a consis-
tently decreased activation in the posterior portion of the puta-
men in PD patients during motor tasks.

While task-related fMRI holds the advantage of being able to
assess specific activation corresponding to specific tasks, differ-
ent tasks activate different brain regions and hence the results
are less suitable for meta-analysis. Resting-state (RS) fMRI has
two intrinsic advantages: it is noninvasive and task free. Task-
free RS is a simpler experimental design for PD investigation.
Therefore, RS-fMRI design is very similar across studies, and is
more suitable for meta-analysis. There have been three pub-
lished CB meta-analysis investigations of RS-fMRI studies in PD
[4-6]. The CB meta-analysis study by Tahmasian and colleagues
included 28 publications, in which a variety of RS-fMRI analytical
methods were used, such as amplitude of low-frequency fluctu-
ation (ALFF) or its derivative, fractional ALFF (fALFF); regional ho-
mogeneity (ReHo); and various network analytical methods [6].
In contrast, the analytical methods in the original studies that
were included in the two CB meta-analysis studies by Pan and
colleagues were very similar, i.e., ReHo [4] and ALFF/fALFF [5],
respectively. In between-group comparison studies, ALFF/fALFF
and ReHo are usually used in “voxel-wise whole-brain” anal-
ysis with very similar preprocessing parameters across stud-
ies. Therefore, these studies are suitable for inclusion in meta-
analysis [7]. In the CB meta-analysis studies by Pan and col-
leagues, the authors found decreased ReHo [4] and decreased
ALFF [5] in the putamen, which was consistent with the hypoth-
esis of decreased dopaminergic function in the putamen [1].

Frequency-dependent or subfrequency band analysis is
drawing more and more attention in RS-fMRI studies since the
work by Zuo and colleagues [8]. They observed a higher RS-fMRI
fALFF at a frequency band of 0.027–0.073 Hz (namely, slow-4)
than that at 0.01–0.027 Hz (namely, slow-5) in the basal gan-
glia, which is a critical subcortical area in PD pathology. How-
ever, only two of the previous ALFF or ReHo PD studies inves-
tigated subfrequency bands. Hou and colleagues found similar
decreased ALFF in the putamen for the two subfrequency bands
[2], but Zhang and colleagues did not find abnormal ALFF in
the putamen in any of the two frequency bands [9]. Although
higher-frequency band (>0.1 Hz) of the RS-fMRI signal could be
contaminated by physiological noise, including respiratory noise
(around 0.3 Hz) and heart beats (around 1.2 Hz), quite a few stud-
ies found that RS-fMRI signal at higher frequency bands was of
pathophysiological [10, 11] and physiological [12] significance. It
would be interesting to perform more studies at subfrequency
bands in RS-fMRI studies on PD.

In the current study, we carried out a CB meta-analysis on
previous PD resting-state fMRI studies using ALFF/fALFF and
ReHo separately, similar to previous meta-analysis [4, 5]. How-
ever, we also added five articles that were published after the CB
meta-analysis articles by Pan and colleagues [4, 5]. Furthermore,
to validate the results of our CB meta-analysis, we analyzed ALFF
and ReHo in the conventional frequency band, as well as in sub-
frequency bands, and we studied an independent and relatively
large cohort of PD patients and healthy controls.

It should be noted that both ALFF and ReHo are metrics for
measuring local activity. Both methods have been widely used in
studies on brain disorders in whole-brain voxel-wise analysis. A
study showed that ReHo and ALFF could reveal convergent ab-
normal local activity in some brain areas [13], but ReHo and ALFF
also detected different brain regions with abnormal brain activ-
ity. The two methods are very different mathematically. ReHo
depicts the local synchronization of the time course of neighbor-
ing voxels, while ALFF depicts the fluctuation amplitude of every
signal time course. Hence, both separate and combined analyses
are necessary. Therefore, in addition to separate meta-analysis
on ALFF and ReHo, we were also interested in combining both
ALFF and ReHo studies into our meta-analysis. Furthermore, we
investigated the frequency-specific features of PD-related brain
activity in an independent dataset to improve our understand-
ing of the neurophysiological changes underlying PD.

Data Description

The data for the current study included two parts. Part 1 was
for a CB meta-analysis including coordinates, t value, and sam-
ple size. These data were extracted from published articles that
used RS-fMRI in PD. Part 2 was for validation purposes and used
RS-fMRI data from 80 patients with PD and 52 healthy partici-
pants. After quality control (see details in Analyses section), 49
patients with PD and 49 healthy participants were entered into
the final analysis. All data in the current study can be used for
further validation and exploratory studies.

Analyses
Literature search

On 28 June 2017, we conducted a PubMed literature search [14]
using the search strings as follows: ((Parkinson[Title/Abstract])
OR (Parkinson’s[Title/Abstract])) AND ((“resting-state fMRI” OR
ALFF OR ReHo OR “default mode network”)). A total of 138 ar-
ticles were retrieved.

We also reviewed articles and references to retrieve addi-
tional articles. An additional study, using the Kendall coeffi-
cient of concordance (KCC) method, was included in the current
meta-analysis after carefully reviewing a recent publication of
meta-analysis [4] because KCC is the same algorithm as that
of ReHo [15]. Only RS-fMRI studies written in English were el-
igible. The inclusion criteria were as follows: articles reporting
original data; analyses using ReHo or ALFF/fALFF and based on
the whole brain; articles reporting results on RS data in adult
PD patients and studies aimed at comparing PD with healthy
controls; studies reporting results with coordinates from group
comparisons (PD vs healthy controls) in Montreal Neurological
Institute (MNI) or Talairach space; patients were in an off-state;
and patients were pretreatment, presurgery, and noncomorbid.



Wang et al. 3

Tab
le

1:O
rigin

alarticles
in

clu
d

ed
in

th
e

p
resen

t
m

eta-an
alysis

stu
d

y

R
eferen

ces
In

d
ices

Sam
p

le
size
(fem

ale)
A

ge
(SD

)
D

isease
d

u
ration

H
&

Y
(SD

)
U

PD
R

S
III

(SD
)

Foci
FW

H
M

Scan
n

er
C

om
p

arison
M

ed
ication

statu
s

H
ou

et
al.,2014

A
LFF

PD
101

(42)
59.84

(7.15)
7.23

(4.42)
1.87

(0.71)
25.54
(11.51)

7
3

3
T

PD
O

FF
vs

H
C

slow
-4

(0.027–0.073
H

z)
#

O
ff-state

H
C

102
(42)

59.91
(7.09)

4
PD

O
FF

vs
H

C
slow

-5
(0.01–0.027

H
z)

#

7
H

C
vs

PD
O

FF
slow

-4
(0.027–0.073

H
z)

#

5
H

C
vs

PD
O

FF
slow

-5
(0.01–0.027

H
z)

#

K
w

ak
et

al.,2012
A

LFF
PD

24
(2)

64.3
(8)

5.4
(3)

2.2
(0.3)

18.5
(8)∗

4
8

3
T

PD
O

FF
vs

H
C

O
ff-state

H
C

24
(5)

63.3
(7)

4
H

C
vs

PD
O

FF
fA

LFF
6

PD
O

FF
vs

H
C

5
H

C
vs

PD
O

FF
W

en
et

al.,2013
A

LFF
PD

16
(8)

60.7
(18.7)

5.6
(7.4)

1.5
(1)

33.8
(24.2)

11
5

3
T

PD
-N

D
ep

O
FF

vs
H

C
O

ff-state
H

C
21

(8)
55.4

(16.4)
8

H
C

vs
PD

-N
D

ep
O

FF
Y

ao
et

al.,2015
A

LFF
PD

12
(8)

63.4
(7.4)

8.4
(5.1)

2.8
(0.9)

18.0
(12.9)

5
4

3
T

PD
n

on
V

H
vs

H
C

N
/A

H
C

14
(8)

64.1
(4.0)

2
H

C
vs

PD
n

on
V

H
Z

h
an

g
et

al.,2013
A

LFF
PD

82
(47)

59.7
(11.9)

7.05
(6.01)

N
/A

20.24
(8.44)

7
8

3
T

PD
O

FF
vs

H
C

slow
-5

(0.01–0.027
H

z)
#

O
ff-state

H
C

77
(46)

58.6
(8.5)

5
H

C
vs

PD
O

FF
slow

-4
(0.027–0.073

H
z)

#

6
H

C
vs

PD
O

FF
Slow

-5
(0.01–0.027

H
z)

#

Lu
o

et
al.,2014

A
LFF

PD
30

(15)
53.64
(10.18)

2.12
(1.3)

2
26.83
(12.44)

1
8

3
T

PD
-N

D
ep

O
FF

vs
H

C
O

ff-state

H
C

30
(15)

51.9
(7.7)

C
h

en
et

al.,2015
A

LFF
PD

19
(7)

64.8
(8.34)

6.68
(4.85)

2.13
(0.984)

21.6
(11.6)

5
8

3
T

PIG
D

vs
H

C
N

/A
H

C
22

(10)
65.1

(5.0)
5

H
C

vs
PIG

D
Skid

m
ore

et
al.,

2013
A

LFF
PD

14
(3)

62
(9)

N
/A

N
/A

37
(13)

1
6

3
T

PD
vs

H
C

O
ff-state

H
C

15
(6)

65
(13)

7
H

C
vs

PD
H

u
et

al.,2015
fA

LFF
PD

17
(7)

60.29
(12.03)

3.94
(2.57)

N
/A

17.11
(6.12)

3
8

3
T

PD
vs

H
C

N
/A

H
C

20
(9)

58.48
(6.89)

G
ao

et
al.,2016

A
LFF

PD
16

(6)
64.13

(6.71)
5.69

(4.07)
1.73

(0.57)
16.93

(3.86)
18

8
3

T
H

C
vs

PD
cogn

itively
n

orm
al

O
ff-state

H
C

16
(7)

63.5
(6.49)

Liet
al.,2016

A
LFF

PD
16

(10)
62.8

(6.6)
4

(4.3)
2.2

(0.8)
22.1

(12.5)
1

6
3

T
H

C
vs

PD
-n

R
B

D
O

ff-state
H

C
19

(8)
62.7

(8.1)



4 Meta-analysis of resting functional imaging in PD
Tab

le
1:C

on
tin

u
ed

R
eferen

ces
In

d
ices

Sam
p

le
size
(fem

ale)

A
ge

(SD
)

D
isease

d
u

ration
H

&
Y

(SD
)

U
PD

R
S

III
(SD

)
Foci

FW
H

M
Scan

n
er

C
om

p
arison

M
ed

ication
statu

s

X
ian

g
et

al.,2016
A

LFF
PD

24
(12)

62.7
(7.4)

7.0
(3.3)

2.2
(0.9)

22.0
(7.0)

3
6

3
T

H
C

vs
PD

O
FF

O
ff-state

H
C

22
(11)

65.6
(6.9)

4
PD

O
FF

vs
H

C
Z

h
an

g
et

al.,2016
A

LFF
PD

32
(10)

65
(8.38)

4.04
(3.98)

2.18
(0.67)

21.6
(9.99)

4
6

3
T

PD
-N

F
vs

H
C

O
ff-state

H
C

25
(13)

64.6
(4.49)

Tan
g

et
al.,2017

A
LFF/fA

LFF
PD

51
(24)

53.2
(11)

5.745
(5.026)

2.353
(0.764)

48.59
(23.41)

3
8

3
T

PD
vs

H
C

O
ff-state

H
C

50
(29)

51.5
(10.7)

Possin
et

al.,2013
fA

LFF
PD

12
(9)

73.9
(5.9)

9
(7)

N
/A

30.8
(14.5)

48
4

3
T

PD
vs

H
C

O
ff-state

H
C

12
(11)

72.9
(5.2)

C
h

oe
et

al.,2013
R

eH
o

PD
22

(12)
58.3

(2.4)
3.2

(0.4)
1.6

(0.2)
10.4±

1.2
2

9
3

T
PD

O
FF

vs
H

C
O

ff-state
H

C
25

(15)
58.3

(1.7)
1

H
C

vs
PD

O
FF

W
u

et
al.,2009

R
eH

o
PD

22
(6)

59.5
(8.1)

4.1
(1.8)

1.7
(0.5)

25.6
(8.1)

11
4

1.5
T

PD
O

FF
vs

H
C

O
ff-state

H
C

22
(6)

59.7
(N

/A
)

13
H

C
vs

PD
O

FF
Y

an
g

et
al.,2013

R
eH

o
PD

17
(7)

60.43
(9.65)

1.6
(1.06)

1.2
(0.33)

20.57
(3.82)

10
4

1.5
T

PD
m

ed
ication

-n
aive

vs
H

C
O

ff-state

H
C

17
(7)

60.73
(8.57)

7
H

C
vs

PD
m

ed
ication

-n
aive

Sh
en

g
et

al.,2014
R

eH
o

PD
21

(7)
57.3

(6.1)
4.0

(2.4)
1.95

(0.63)
43.8

(8.2)
3

4
3

T
n

D
-PD

O
FF

vs
H

C
O

ff-state
H

C
25

(9)
56.7

(5.3)
Jian

g
et

al.,2015
R

eH
o

PD
13

(6)
68.46

(6.5)
2.83

(2.38)
2.5

(0.46)
19.31

(8.33)
11

4
3

T
PIG

D
vs

H
C

O
ff-state

H
C

17
(8)

63.71
(5.21)

16
H

C
vs

PIG
D

Liet
al.,2016

R
eH

o
PD

23
(12)

63
(7.1)

7
(3.3)

2.2
(0.9)

38
(18.6)∗

10
6

3
T

PD
vs

H
C

O
ff-state

H
C

20
(9)

65.3
(7.0)

4
H

C
vs

PD
Z

h
an

g
et

al.,2015
R

eH
o

PD
27

(11)
63.38

(9.46)
4.17

(4.07)
2.21

(0.67)
19.88

(6.7)
13

4
3

T
PD

-A
R

vs
H

C
O

ff-state
H

C
26

(15)
59.31

(7.15)
8

H
C

vs
PD

-A
R

Sh
en

g
et

al.,2016
R

eH
o

EO
PD

18
(8)

45.4
(6.07)

3.04
(1.99)

2.03
(0.78)

16.94
(5.07)

1
4

3
T

Y
ou

n
g

H
C

vs
EO

PD
O

ff-state
Y

ou
n

g
H

C
19

(10)
45.8

(3.55)
1

EPO
D

vs
Y

ou
n

g
H

C

LO
PD

21
(9)

63.6
(4.84)

3.1
(1.78)

2.0
(0.62)

18.61
(4.51)

2
O

ld
H

C
vs

LO
PD

O
ff-state

O
ld

H
C

18
(10)

61.7
(9.73)

W
en

et
al.,2016

R
eH

o
rPD

12
(4)

60.8
(7.02)

5
(N

/A
)

N
/A

28.9
(10.9)

7
4

3
T

rPD
p

re
vs

H
C

O
ff-state

H
C

31
(16)

59.6
(7.65)

2
H

C
vs

rPD
p

re
lPD

14
(8)

61.4
(7077)

5.5
((N

/A
)

N
/A

26.4
(15.6)

6
lPD

p
re

vs
H

C
O

ff-state
8

H
C

vs
lPD

p
re

Y
eo

et
al.,2012

R
eH

o
PD

12
(6)

53.5
(10.9)

2.67
(2.3)

1.5
(0.6)

7.8
(3.9)

8
9

3
T

H
C

vs
PD

before
stim

u
lation

s
O

ff-state

H
C

12
(6)

55.9
(9.8)

B
orron

iet
al.,2015

R
eH

o
PD

11
(1)

66.3
(3.8)

7.8
(3.1)

N
/A

10.7
(5.4)

3
8

1.5
T

H
C

vs
PD

N
/A

H
C

10
(7)

62.2
(8.0)

In
tw

o
stu

d
ies

(H
ou

et
al.,2014;Z

h
an

g
et

al.,2013),su
bfreq

u
en

cy
an

alysis
w

as
p

erform
ed

.T
h

e
tw

o
su

bfreq
u

en
cy

ban
d

s
w

ere
taken

in
to

on
e

text
fi

le
for

m
eta-an

alysis.
∗T

h
e

score
is

u
n

certain
w

h
eth

er
fu

llU
PD

R
S

or
p

art
III

becau
se

w
e

failed
to

con
tact

th
e

au
th

ors.

A
bbreviation

s:A
LFF:am

p
litu

d
e

of
low

-freq
u

en
cy

fl
u

ctu
ation

;EO
PD

:early
on

set
PD

;fA
LFF:fraction

alam
p

litu
d

e
of

low
-freq

u
en

cy
fl

u
ctu

ation
;FW

H
M

:fu
ll-w

id
th

at
h

alf
m

axim
u

m
;H

C
:h

ealth
y

con
trol;H

&
Y

:H
oeh

n
an

d
Y

ah
r

scale;
lPD

p
re:

p
re-left-sid

e-th
alam

otom
y

PD
;

LO
PD

:
late

on
set

PD
;

n
D

-PD
:

n
on

d
ep

ressed
PD

;
N

-V
H

PD
:

n
o

visu
al

h
allu

cin
ation

s
PD

;
PD

:
Parkin

son
’s

d
isease;

PD
-A

R
:

akin
etic-rigid

PD
;

PD
-n

R
B

D
:

n
o

rap
id

eye
m

ovem
en

t
sleep

beh
avior

d
isord

er
PD

;
PD

-N
D

ep
:

n
on

d
ep

ressed
PD

;
PD

O
FF:

PD
off

m
ed

ication
;

PIG
D

:
p

ostu
ral

in
stability

gait
d

iffi
cu

lty
PD

;
R

eH
o:

region
al

h
om

ogen
eity;

rPD
p

re:
p

re-righ
t-sid

e-th
alam

otom
y

PD
;

U
PD

R
S:

u
n

ifi
ed

Parkin
son

’s
d

isease
ratin

g

scale.



Wang et al. 5

According to these criteria, two investigators (J.W., H.-x.W.) inde-
pendently searched and selected the articles from PubMed. Final
decisions were made by a neurologist (T.W.); 26 RS-fMRI studies
(15 studies using ALFF/fALFF [2, 9, 16-28] and 11 studies using
ReHo [29-39]) were included in the present CB meta-analysis (Ta-
ble 1).

Meta-analysis of ALFF and ReHo studies

Signed differential mapping (SDM) software (version 5.141 for
Windows) [40] was used for meta-analysis. One feature of SDM
is “the representation of both positive differences and negative
differences in the same map, thus obtaining a signed differen-
tial map (“SDM”).” Another feature is “the use of effect sizes
(leading to effect-size SDM or “ES-SDM”)40].” Two directions of
abnormality were probed: RS activity increases and decreases
in PD patients compared with healthy controls. ALFF measures
the fluctuation amplitude of the low-frequency band (usually
0.01–0.08 Hz) of a single time course [41], and fALFF is the ratio
of the ALFF to the fluctuation amplitude of the full-frequency
band [42]. ReHo measures the local synchronization of the time
courses of the nearest neighboring voxels (usually 27 voxels)
[15]. Although ALFF and ReHo showed significant correlation
in most voxels [43], a previous comparison study showed that
ALFF and ReHo could detect different abnormal brain areas [13].
Therefore, similar to two previous CB meta-analysis articles [4,
5], we first performed meta-analysis separately on ALFF/fALFF
studies (15 studies) and ReHo studies (11 studies, including 13
comparisons) (Table 1) and then combined ALFF and ReHo (see
below). The analysis procedure included listing the peak coordi-
nates and t-values from each study; using the files prepared in
i) to recreate the effect-size maps (standard stereotactic space)
of the original studies with 10 Monte Carlo randomizations and
full-width at half maximum (FWHM) 20 mm; and generating the
mean map in a voxel-wise manner weighted by the sample size,
variance, and between-study heterogeneity. A combined thresh-
old of P < 0.001 (uncorrected for false discovery rate [FDR]) with
peak height Z value >1 was adopted as recommended in the
SDM, together with extent threshold >10 voxels [44, 45].

In addition to the above separate meta-analysis on ALFF and
ReHo as by Pan and colleagues [4, 5], we further performed a
combined meta-analysis of all ALFF and ReHo studies (15 ALFF
and 13 ReHo = 28 comparisons; Table 1). Results were also
thresholded at P < 0.001, uncorrected for FDR, with a peak height
Z value >1 and extent threshold >10 voxels [44, 45].

Validation study of ALFF and ReHo on an independent
dataset of RS-fMRI

Participants
This validation study contains RS-fMRI data of 80 patients with
PD and 52 healthy participants. After head motion control, 12 pa-
tients were excluded, and matching for age and gender was con-
ducted. A total of 98 right-handed participants, made up of 49 PD
patients (26 females) and 49 age- and gender-matched healthy
controls (26 females) were enrolled in the final analysis (mean
age ± standard deviation: 62.3 y ± 8.0, 61.8 y ± 8.3, respectively;
Table 2). The PD diagnoses were based on the UK Parkinson’s
Disease Society Brain Bank Clinical Diagnostic Criteria [46]. Pa-
tients were assessed using the unified Parkinson’s disease rating
scale III [47] and the Hoehn and Yahr disability scale [48]. Exclu-
sion criteria included history of head trauma, substance abuse,
or psychiatric disorder. For healthy controls, additional exclu-
sion criteria included any history of neuropsychiatric disorders.

Table 2: Demographic characteristics

Parkinson’s disease Control

Male/Female N = 49 (23/26) N = 49 (23/26)
Age (y) 62.3 ± 8.0 61.8 ± 8.3
Disease duration (y) 5.5 ± 3.8 -
Disease stage
(Hoehn and Yahr
scale)

1.9 ± 0.7 -

Unified Parkinson’s
disease rating scale
III

23.3 ± 11.0 -

Mini-mental State
Examination

28.3 ± 1.6 -

The present investigation was performed according to the Dec-
laration of Helsinki and was approved by the Medical Research
Ethics Committee at Xuanwu Hospital, Capital Medical Univer-
sity. All participants gave written informed consent prior to par-
ticipation.

Data acquisition

fMRI data were acquired on a 3T MR scanner (Trio system;
Siemens Magnetom scanner, Erlangen, Germany) with gradient-
echo echo-plannar imaging sequences. Whole brain fMRI scan-
ning with three slightly different parameters was carried out
(see Table 3). All participants were instructed to keep their eyes
closed, relax, remain motionless, not think of anything in par-
ticular, and not fall asleep. Foam pads were used to minimize
head motion.

Data analyses

The minimum time points were 180 (dataset 1, Table 3). The ex-
tra time points of datasets 2 and 3 were discarded and hence
180 time points were left. The RS-fMRI data preprocessing in-
cluded the following steps: 1) discarding the first 10 volumes to
allow the signal to reach equilibrium and the subjects to adapt
to the circumstances; 2) correcting for the acquisition time de-
lay between slices; 3) rigid-body realigning for estimation and
correction of the motion displacement (participants whose head
motion exceeded 2 mm in translation or 2 degrees in rotation in
any direction were excluded); 4) normalizing to MNI space us-
ing the echo-plannar imaging template in statistical paramet-
ric mapping 8 [49]; 5) regressing out of the six motion param-
eters; 6) removing the linear trend; and 7) band-pass filtering
for five frequency bands (0–0.01, 0.01–0.027, 0.027–0.073, 0.073–
0.198, and 0.198–0.25 Hz, as well as 0.01–0.08 Hz). Most of the pre-
vious PD studies investigating amplitude of low-frequency fluc-
tuation used ALFF but not fALFF. We therefore analyzed ALFF
only. For calculating ALFF, data were further smoothed, with a
Gaussian kernel of 6 mm FWHM.ALFF was then calculated using
the REST toolkit [50]. For ReHo, the calculation was performed
first, and then the 6 mm FWHM smoothing was carried out on
the ReHo maps.

Statistical analyses

Two-sample t tests were performed to explore the differences
between the two groups in a voxel-wise manner for ALFF and
ReHo, respectively, for each subfrequency band as well for the
conventional frequency band (0.01–0.08 Hz). Monte Carlo sim-
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Table 3: Parameters of the three resting-state fMRI datasets

Dataset 1 Dataset 2 Dataset 3

Time of repetition (ms) 2,000 2,000 2,000
Time of echo (ms) 30 40 40
Field of view 220 mm × 220 mm 256 mm × 256 mm 256 mm × 256 mm
Matrix 64 × 64 64 × 64 64 × 64
Flip angle 90 90 90
Slice thickness 3 4 4
Gap 0.5 1 1
Slices 32 28 28
Volumes 180 239 300

Table 4: Estimated smoothness and cluster size of T maps (PD vs healthy controls based on validation study)

Estimated smoothness (mm)

Frequency band, Hz FWHM x FWHM y FWHM z
Cluster size (number of

voxels)

ALFF
0.01–0.08 10.42 11.20 10.68 46
0–0.01 8.81 9.23 9.03 30
0.01–0.027 8.80 9.15 9.04 31
0.027–0.073 9.53 9.86 9.79 35
0.073–0.198 7.87 8.22 7.82 23
0.198–0.25 7.41 7.61 7.04 19
ReHo
0.01–0.08 12.24 13.03 13.37 64
0–0.01 13.07 14.35 13.80 74
0.01–0.027 12.34 12.55 12.68 62
0.027–0.073 12.39 13.12 13.49 69
0.073–0.198 12.07 13.54 12.93 65
0.198–0.25 11.53 12.18 11.84 56

ulation (AlphaSim) was applied for the multiple comparison
correction within a whole brain mask by using DPABI V3.0 [51]
(DPABI, RRID:SCR 010501) software [52]. DPABI estimates the
smoothness of each statistic map and hence yields effective ker-
nel size of smoothness for each map. Then, the smoothness was
used for the correction. It is believed that simply taking the size
of the Gaussian kernel that was applied during preprocessing
to AlphaSim is incorrect [53]. DPABI prevents that sort of error
by estimated effective smoothness. Although Monte Carlo sim-
ulations in DPABI are based on AFNI’s 3dClustSim, the specific
algorithm used is not by the bug reported in Eklund et al., 2016
since version 1.2 141101 [54, 55]. The corresponding estimated
smoothness and minimal cluster size are listed in Table 4 for
each frequency band of ALFF and ReHo. The voxel-level P value
was set at <0.001 as recommended [54]. The corrected P value
was <0.05.

Findings

Meta-analysis on ALFF and ReHo studies
In the meta-analysis of SDM for ALFF, an increased ALFF in PD
patients compared with controls was found in the right inferior
temporal gyrus. A decreased ALFF in PD patients compared with
controls was found in the left pallidum/putamen and the right
cuneus cortex (Fig. 1, Table 5).

Meanwhile, using SDM for ReHo, increased ReHo was ob-
served in the bilateral inferior parietal lobule and the right su-
perior frontal gyrus/pre-supplementary motor area (SMA) (Brod-

mann area [BA] 9) in PD patients. In addition, decreased ReHo
was observed in the right putamen and right precentral gyrus
(BA 6) in PD patients (Fig. 2, Table 5).

In the meta-analysis of SDM for combination of ALFF and
ReHo, increased spontaneous brain activities in PD patients
compared with controls were found in the right inferior tem-
poral gyrus and right brain stem. Decreased spontaneous brain
activities were found in the left pallidum/putamen and the right
insula (BA 47) (Fig. 3, Table 5).

Results of the validation study of ALFF and ReHo
Compared with healthy controls, PD patients had decreased
ALFF in the bilateral putamen and right fusiform at 0.027–0.073
Hz (Fig. 4, Table 6). PD patients also had decreased ReHo in the
left inferior occipital gyrus at 0–0.01 Hz and increased ReHo in
the right middle frontal gyrus at 0.073–0.198 Hz and 0.198–0.25
Hz (Fig. 4, Table 6). The other frequency bands, including con-
ventional 0.01–0.08 Hz, did not show significant differences of
ALFF or ReHo. Among these brain regions, the decreased ALFF
at 0.027–0.073 Hz in the left putamen was overlapped with our
findings of decreased ALFF in the meta-analysis.

Discussion

Using the SDM meta-analysis, we detected some characteris-
tic PD-related neural changes in the resting state. For example,
there was altered local activity in the putamen and the pre-SMA.
A finding of decreased ALFF in the left putamen from our valida-

https://scicrunch.org/resolver/RRID:SCR_010501
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Figure 1: ALFF/fALFF differences between Parkinson’s disease patients and healthy controls in coordinate-based meta-analysis (P < 0.001, uncorrected for false dis-

covery rate; peak height Z value > 1; extent threshold >10 voxels). The warm color represents an increased SDM value and the cold color represents a decreased SDM
value in Parkinson’s disease patients. Abbreviations: ALFF: amplitude of low-frequency fluctuation; fALFF: fractional amplitude of low-frequency fluctuation; SDM:
signed differential mapping.

Table 5: Brain regions showing differences between PD and healthy controls based on meta-analysis

Brain region
Brodmann

area
Montreal Neurological Institute

(X Y Z) SDM Z value
Cluster size

(mm3) P value

SDM (15 ALFF/fALFF studies)
PD > Controls
Right inferior longitudinal fascicules 42 −28 −14 3.37 6,256 0.000000894
PD < Controls
Left pallidum/putamen −22 4 6 3.08 2,160 0.000015318
Right cuneus cortex 19 6 −88 26 2.39 80 0.000558496
SDM (11 ReHo studies)
PD > Controls
Left inferior parietal lobule 39 −44 −66 38 2.55 4,552 0.000009179
Right superior frontal
gyrus/pre-supplementary motor area

9 10 38 48 2.24 2,120 0.0000844

Right inferior parietal lobule 40 56 −42 40 1.95 360 0.000498116
PD < Controls
Right putamen/insula 48 36 −4 4 2.46 8,744 0.000002623
Right precentral gyrus 6 44 −4 48 1.78 312 0.000464916
SDM (15 ALFF/fALFF studies + 11 ReHo studies)
PD > Controls
Right inferior longitudinal fascicules 44 −30 −16 3.04 2,168 0.000040650
Brain stem 2 −28 −26 2.58 224 0.000389218
PD < Controls
Left pallidum/putamen −22 10 12 2.92 2,504 0.000040233
Right insula 47 30 24 −2 2.51 248 0.000307441

Abbreviations: ALFF: amplitude of low frequency fluctuation; fALFF: fractional amplitude of low frequency fluctuation; PD: Parkinson’s disease; ReHo: regional homo-
geneity; SDM: signed differential mapping.

tion study was very consistent with the results of our CB meta-
analysis, which was also consistent with findings from a previ-
ous CB meta-analysis [5]. The increased ReHo in the validation
dataset was not consistent with our CB meta-analysis results
and the previous one [4].

Methodology: whole-brain voxel-wise comparison and
image-based meta-analysis

Compared with positron emission tomography, RS-fMRI has the
advantages of lower cost, better temporal resolution, and no
ionizing radiation. Since 2009 when the first PD RS-fMRI arti-
cle was published [30], approximately 150 research articles have
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Figure 2: ReHo differences between Parkinson’s disease patients and healthy controls in coordinate-based meta-analysis (P < 0.001, uncorrected for alse discovery

rate; peak height Z value > 1; extent threshold >10 voxels). The warm color represents an increased SDM value and the cold color represents a decreased SDM value
in Parkinson’s disease patients. ReHo: regional homogeneity; SDM: signed differential mapping.

Figure 3: Combined ALFF and ReHo differences between Parkinson’s disease patients and healthy controls in coordinate-based meta-analysis (P < 0.001, uncorrected

for false discovery rate; peak height Z value > 1; extent threshold >10 voxels). The warm color represents an increased SDM value and the cold color represents a
decreased SDM value in Parkinson’s disease patients. ALFF: amplitude of low-frequency fluctuation; fALFF: fractional amplitude of low-frequency fluctuation; ReHo:
regional homogeneity; SDM: signed differential mapping.

described RS-fMRI in PD. To ensure that the analytical methods
were as similar as possible, two previous CB meta-analysis arti-
cles included only ALFF [5] or ReHo [4], because many other ana-
lytical methods are not “whole-brain voxel-wise” and hence not
suitable to CB meta-analysis. For example, the “seed” location of
seed-based functional connectivity varies greatly across studies,
and for independent component analysis, researchers may be
interested in any network or component. Likewise, a very small
portion of the existing graph theory studies are whole-brain
voxel-wise [56]. Instead, most of them are region based due to
the computational cost of this method. Unfortunately, because

only a small portion of RS-fMRI studies have used whole-brain
voxel-wise analytic methods, the two previous CB meta-analysis
studies have included only a limited number (10 or fewer) of arti-
cles in which the same analytical methods were used. After our
careful screening of PD RS-fMRI articles, we found a few addi-
tional eligible studies that used whole-brain voxel-wise analytic
methods, i.e., ALFF/fALFF (15 papers) and ReHo (11 article; Ta-
ble 1). It has been suggested that for meta-analysis, unthresh-
olded effect size maps (named image-based) were better than
coordinate-based meta-analysis [57]. Therefore, effect size maps
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Figure 4: ALFF/ReHo differences between PD and HC in the validation study. The warm color represents an increased ALFF/ReHo and the cold color represents a

decreased ALFF/ReHo in PD (voxel-level P < 0.001, corrected P < 0.05). Abbreviations: ALFF: amplitude of low-frequency fluctuation; ReHo: regional homogeneity; PD:
Parkinson’s disease; HC: healthy controls.

Table 6: Brain regions of validation study showing differences between PD patients and healthy controls

Brain region
Frequency band

(Hz)
Brodmann

area
Montreal Neurological Institute

(X Y Z)
Peak t
value

Cluster size
(mm3) P value

ALFF
PD < Controls
Right putamen 0.027–0.073 24 12 6 4.22 1,296 <0.001
Left putamen 0.027–0.073 −21 9 3 4.90 1,188 <0.001
Right fusiform 0.027–0.073 19 30 −75 −15 4.53 1,512 <0.001
White matter 21 −9 27 4.79 1,512 <0.001
ReHo
PD < Controls
Left inferior occipital gyrus 0–0.01 19 −33 −87 −12 4.37 2,322 <0.001
PD > Controls
Right middle frontal gyrus 0.073–0.198 46 30 21 39 4.97 2,187 <0.001
Right middle frontal gyrus 0.198–0.25 9 33 27 48 4.83 1,782 <0.001

Abbreviations: ALFF: amplitude of low-frequency fluctuation; PD: Parkinson’s disease; ReHo: regional homogeneity.

from whole-brain voxel-wise comparison should be widely per-
formed in future RS-fMRI studies.

Methodology: ALFF vs ReHo

ALFF measures the amplitude of fluctuation of every single
voxel, while ReHo measures the local synchronization of the
nearest neighboring voxels. The two metrics are the two most
widely used methods for depicting local activity [58]. Also, it has
been shown that ALFF and ReHo were among the RS-fMRI met-
rics that have the highest test–retest reliability [59]. Although
the ALFF and ReHo methods are mathematically different, both
methods measure the local activity of spontaneous brain ac-

tivity. A previous study compared the two methods in atten-
tion deficit hyperactivity disorder [13] and found a few conver-
gent abnormal regions for ALFF and ReHo, albeit some divergent
abnormal activity already existed. Therefore, we performed a
combined meta-analysis on all ALFF and ReHo studies. It was
shown that the results of combined meta-analysis of all ALFF
and ReHo studies looked like complimentary results of separate
meta-analysis mutually between ALFF and ReHo. An interest-
ing result is the decreased spontaneous activity in the bilateral
putamen. These results were replicated in the independent val-
idation dataset. Comparing the results of ALFF and ReHo either
by meta-analysis or independent validation analysis, almost no
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convergent results were found for the two metrics. More studies
are needed in the future to compare the two methods.

Consistent decreased ALFF in the left putamen

There was decreased ALFF in the left putamen in PD patients in
both our validation dataset and CB meta-analysis investigation.
These findings align with previous findings that the striatal dys-
function in PD has been consistently reported in previous stud-
ies [60-67]. It has been established that dopamine uptake is re-
duced in the putamen in PD [68], which is a critical factor that
leads to major parkinsonian symptoms. Cells loss from the sub-
stantia nigra in PD results in dopamine expending in the stria-
tum, with putamen being affected [69, 70]. It has been reported
that 18F-dopa uptake in putamen in PD is associated with the
clinical severity of locomotor disability, and 18F-dopa reduction
in putamen is associated is associated with the degree of rigid-
ity and bradykinesia [68, 71]. A recent meta-analysis of motor-
related task fMRI studies also found decreased activity in the
putamen in PD patients [3]. Notably, in our validation dataset,
we found that the decreased ALFF was mainly found in a subfre-
quency band of 0.027–0.073 Hz, namely, slow-4 [8]. Either ALFF or
ReHo abnormality in the left putamen was not found in the con-
ventional frequency band of 0.01–0.08 Hz. We suggest that future
RS-fMRI studies pay close attention ton subfrequency analysis
in order to validate this finding. Further, the physiological im-
portance of each subfrequency band of RS-fMRI should also be
investigated.

Inconsistent ReHo and ALFF findings

There was decreased ReHo in the right putamen in PD patients in
both our CB meta-analysis and a previous CB meta-analysis [4].
However, no ReHo changes were found in the validation dataset
(Fig. 4). This discrepancy in findings between ALFF and ReHo
might be explained by the differences in the two methods as
discussed in the Methodology: ALFF vs ReHo section. Further,
except for the consistent results in the left putamen in ALFF,
most meta-analysis results were not reproducible in the vali-
dation analysis on the independent dataset. Possible reasons
include the small number of original studies, biased negative
findings after thresholding in the original studies, different fre-
quency bands, and heterogeneity of PD patients.

Limitations

A few limitations should be addressed. First, it has been pro-
posed that at least 20 experiments should be included in a
meta-analysis [72]. Although the design of RS-fMRI is very sim-
ilar across studies, too many analytic methods have been ap-
plied in studies of brain disorders. Only a small portion of these
studies used whole-brain voxel-wise analysis, which is suitable
to CB meta-analysis. Reproductive studies using similar ana-
lytic methods should be performed. Second, image-based meta-
analysis on the unthresholded t maps is better than coordinate-
based meta-analysis [57]. We suggest that future studies use the
same analytic methods, re-analyze the RS-fMRI data from mul-
tiple research centers, and perform image-based meta-analysis
while taking PD symptoms into account. Third, although the
decreased ALFF in the left putamen was the most consistent
finding, other brain regions should not be overlooked. In addi-
tion to the consistent decreased activity in the left putamen,
the current meta-analysis also found increased activity in a
few cortical regions, which were consistent with three previous

meta-analytic articles [4-6]. It should be noted that these meta-
analytic articles, including the current one, recruited the same
studies to some extent. Therefore, it is not surprising that these
articles found similar abnormal regions. However, most of the
abnormal regions were not reproducible in the current valida-
tion study on an independent dataset. Future studies could in-
crease sample size and focus on brain regions beyond the puta-
men.

Summary

We performed a CB meta-analysis of local activity using RS-fMRI
in PD patients and healthy controls and also a validation study
using a novel dataset in a frequency-dependent manner. The
most consistent result was abnormal ALFF in the left putamen,
as evidenced by decreased ALFF in the CB meta-analysis and de-
creased ALFF of PD in our independent dataset. However, owing
to the limited number of original studies that were suitable for
CB meta-analysis, our results need to be further validated.

Potential implications

The consistent finding in the current study is the abnormally
decreased ALFF in the left putamen. The precise localization of
abnormal brain activity is helpful to identify new targets of fo-
cused stimulation, such as deep brain stimulation, transcranial
magnetic stimulation, and focused ultrasound stimulation.
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