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The oral ecosystem is a very complex environment where more than 700 different bacterial species can be found. Most of them
are organized in biofilm on dental and mucosal surfaces. Studying this community is important because a rupture in stability can
lead to the preeminence of pathogenic microorganisms, causing dental decay, gingivitis, or periodontitis. The multitude of species
complicates biofilm analysis so its reproduction, collection, and counting are very delicate.Thedevelopment of experimentalmodels
of dental biofilms was therefore essential and multiple in vitro designs have emerged, each of them especially adapted to observing
biofilm formation of specific bacteria within specific environments. The aim of this review is to analyze oral biofilm models.

1. Introduction

The oral cavity is a complex environment harboring more
than 700 bacterial taxa. One major player in this ecosystem
is dental plaque which develops naturally on hard and
soft tissues of the mouth. Most oral bacteria are found in
this biofilm whose complex organization remains relatively
stable over time despite regular environmental changes [1–
4]. Pathologies such as dental caries or periodontitis may
arise when the equilibrium is compromised and when an
imbalance occurs among the indigenous bacteria [5].

For many years, the oral ecosystem was studied with
a reductionist approach, microbiologists studying bacterial
species individually. This strategy made it possible to review
and understand all the different components of this ecosys-
tem, but without being able to explain how bacteria can form
biofilms or to understand their functioning.Thedevelopment
of experimental models of dental biofilms was therefore
essential and multiple in vitro models have emerged, each of
them especially adapted to observing biofilm formation of
specific bacteria within specific environments.

The aim of this review is to present currently available
oral biofilmmodels. Various experimental designs have been

developed from simple ones with a single bacterium to more
complex multispecies designs.

Interests and limits of each model described below are
given in Table 1.

2. Saliva and Medium

2.1. Saliva. Adhesion of bacteria to solid substratum is often
mediated by a conditioning film of molecules adsorbed to
the surface. In the oral cavity, the dental pellicle needs to be
deposited on tooth surfaces for oral biofilm to develop. It is
mostly composed of salivary proteins.

In order to mimic this coat, some authors recommend
using artificial saliva, the major advantage being that it is
reproducible.

Pratten compared various artificial saliva compositions:
basic saliva first described by Russell and Coulter [6], hybrid
saliva (with modified proportions), modified saliva (with-
out lab-lemco), and complete saliva (with more mucins).
Complete saliva seems to be the most reasonable compro-
mise [7]. Basic saliva has also been used in other works
that aimed to test the effect of antimicrobial agents on
orthodontic bonding materials [8], the effect of manganese
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on Streptococcus mutans biofilm [9], or the effect of various
oral rinses on the detachment of an artificial oral biofilm
[10]. Wong and Sissons compared two different types of
saliva: BMM (Basal Medium Mucin) and DMM (Defined
Medium Mucin) [11]. BMM is a complex mucin-containing
but chemically undefined medium, while DMM is based on
the Shellis artificial saliva [12] and contains various ions,
vitamins, amino acids, and growth factors at the same rate
as in human saliva. Other authors also supplied their biofilm
with DMM in order to test the effect of nutrient variations on
the formation of biofilms [12–15].

All these artificial media have a simpler composition
than natural human saliva. Particularly, they do not contain
the various proteins present in the acquired pellicle (e.g.,
histatins, proline rich proteins) which play an important role
in the mechanisms of bacterial adherence. For this reason,
human saliva was used in many other studies in order to
be closer to oral conditions [16–18]. Human saliva can be
collected from only one or several healthy volunteers [19, 20].
It is obtained by splitting at least 1 hour and a half after
eating, drinking, and tooth cleaning. Samples are pooled
and centrifuged, and the supernatants are pasteurized and
recentrifuged before being stored at −20∘C [21].

In order to grow biofilms, media have to reach all the
complex nutritional requirements to allow the growth of
bacteria. Saliva only or its combination with selective media
can be used. Regarding selective media, in case of mono-
species biofilms, each bacterium has its preferred medium
that eases its growth.

In case of plurispecies biofilms, the Fluid Universal
Medium, described by Guggenheim et al. [21], can generally
allow the growth of many bacterial species, so it has been
used as a support for multispecies biofilms. This FUM
went through modifications and created the modified FUM
(supplementedwith 67mmol/L Sorensen’s buffer, pH 7.2), the
enriched FUM (+0.15% sucrose, 0.15% glucose). 50% heat
inactivated horse serum can be added to help the growth
of certain bacteria, as well as N-acetylmuramic acid for T.
forsythia, of 0.34mM hemin for P. gingivalis [22].

3. Substrates

3.1. Experimental Oral Biofilms Are Developed on
Various Supports

3.1.1. Glass Surfaces. Hamada and Torii described a very
simple device for testing biofilm formation on an inert
surface [23]. Briefly, an overnight culture was added to a
glass tube containing specific medium and sucrose 1%. The
cultures were incubated at 37∘C with an angle of 30 degrees.
Biofilm formation was evaluated after 24 to 48 hours with
the Murchison scale from 0 (no adhesion) to 4 (strongly
adhesive) [24]. Hasan et al. used this support to study
the effect on sucrose-dependent and sucrose-independent
adherence of S. mutans and the inhibitory effect of a plant
extract on these bacteria [25, 26].

This model also enabled the investigation of the adher-
ence capacities of oral lactobacilli for potential probiotic pur-
poses [27] and the antiadherence properties of polyphenolic

compounds on oral bacteria [28]. However, this design
does not include the formation of the acquired pellicle: the
bacteria directly adhere on the glass surface. For the authors,
the ability of S. mutans cells to colonize various smooth
surfaces may be due to the insoluble glucans synthesized
from sucrose by the bound glucosyltransferase. Therefore,
this experimental model makes it possible to quickly screen
the biofilm formation capacity of various strains that possess
this enzyme.

3.1.2. Dentin. Most studies carried out on dentin have
focused on endodontic infection. Endodontic disease is a
biofilm-mediated infection in which Enterococcus faecalis
is commonly found [29]. The dentin discs used can be of
human [30–32] or bovine origin [33–36]. Some other studies
have also been performed on human whole teeth [37]. Many
studies aimed to evaluate the antimicrobial activity of various
solutions and their capacity to eradicate E. faecalis biofilm
[30, 31, 34, 36]. Unlike the above-mentioned studies, Li et
al. worked on the dentin-composite interface subjected to
multispecies biofilm [35]. Bovine dentin discs have also been
used in a continuous culture model to study the effects of
shiitake mushrooms on biofilms composition and cariogenic
properties [33].

3.1.3. Enamel. Enamel is mostly used as a substratum for
cariogenic biofilm models. Like dentin, it may be of human
or bovine origin [38, 39]. The role of sucrose as a cariogenic
molecule has been widely investigated using this substratum
in batch models [39, 40] or in an artificial mouth [38].

3.1.4. Polystyrene Surfaces. Polystyrene microtiter plates pro-
vide a convenient and sterile abiotic surface for studying bac-
terial biofilm formation. Loo et al. used this support to study
Streptococcus gordonii biofilm and particularly to identify
the genes that code for biofilm phenotypes [41]. Oettinger-
Barak et al. as well as Izano et al. used static 96-well plates
to investigate the effect of antibiotics on biofilm formation
[42, 43]. The biofilms were highlighted with crystal violet
staining after a 24-hour incubation. To analyze the effect of
the xylitol and ursolic combination or a synthetic peptide, 24-
well plates were used to grow biofilms of various Streptococcus
species [44, 45]. Other species have also been investigated
using this medium: for example, Actinomyces naeslundii [46]
and E. faecalis [47]. A comparison between mono-species
and duo-species biofilm combining S. mutans and Veillonella
parvula was made by Kara et al. on 96-well plates [48].

In all these studies, bacteria adhered directly on poly-
styrene surfaces. Other authors have used microtiter plates
coated with various substrates. Human saliva was found to
allow the growth of mono-species biofilms [49]. Saito et
al. inoculated periapical microorganisms on plates coated
with collagen to confirm the stimulation of Fusobacterium
nucleatum biofilm formation by Porphyromonas gingivalis
[50]. The effect of Kaempferia pandurata on multispecies
biofilm was investigated by Yanti et al. by coating it on the
plates before growing the biofilm [51].
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3.1.5. Hydroxyapatite. The use of hydroxyapatite allows stud-
ies on synthetic media mimicking dental tissues, thereby
avoiding the search for extracted teeth. Many authors have
used this medium in form of either beads or discs. Saliva-
coated hydroxyapatite beads have been used in various
studies. The growth rate and biofilm thickness of a dual
biofilm of S. mutans and Streptococcus sobrinus were studied
by Rozen et al. [52]. The adherence properties of bacterial
strains as oral probiotic candidates have also been processed
on saliva-coated hydroxyapatite beads [53] or discs [27].
Furthermore, hydroxyapatite has been used to investigate the
effects of various molecules on S. mutans biofilm formation
on both beads [50, 54–56] and discs [57–59].

Other authors have investigated dual-species biofilms. Li
et al. tested the effect of nicotine on dual-species biofilms of
S. mutans and Streptococcus sanguinis [60]. Ali Mohammed
et al. worked on the DNase I and proteinase K treatment
of F. nucleatum and P. gingivalis biofilms [61]. Dual-species
biofilms allowed the observation of differences in growth and
acid formation between S. mutans andV. parvula strains [48].

Hydroxyapatite discs were also the medium used in the
Zürich model described below [21].

4. Incubation Conditions

Bacterial oral biofilm model systems can be divided into two
groups: closed batch culture and open continuous culture
models.

4.1. Batch Models. One commonly used model developed
by Guggenheim et al. is called the Zürich model [21].
This multispecies model allows the study of interactions in
bacterial communities.

The first version of this model contained five different
species (A. naeslundii, Veillonella dispar, F. nucleatum, S.
sobrinus, and Streptococcus oralis). Biofilms are developed on
hydroxyapatite discs coated with pasteurized human saliva
for 64 hours in anaerobic conditions before collection. This
model was subsequently improved by adding more bacterial
species [62]. Using this more recent model, Ammann et al.
demonstrated the importance of nutritional conditions for
biofilm development and brought some changes to the cul-
ture conditions. The Zürich model has been used extensively
to test the effect of various components like plant extracts,
polyphenolic compounds, and mouthwashes [28, 59, 63, 64].
Furthermore, it has been used to study the effect of xylitol on
a growing biofilm [65]. While various studies have described
biofilm formation in static systems, bacteria in the oral cavity
are subject to constantly changing environmental conditions
(e.g., saliva flow conditions). Static models are not able to
simulate these conditions so dynamic models are required.

4.2. Continuous Culture Models

4.2.1. Constant Depth Film Fermenter. The Constant Depth
Film Fermenter is a dynamic biofilm model that allows the
control of environmental factors such as the substratum, the
nutrient source, and the gas flow [66]. Even biofilm thickness
can be controlled [67]. Mono-species biofilm can be studied

in this apparatus [68], but the principal advantage is to work
with multispecies biofilm mimicking in vivo conditions as
closely as possible. For example, Ready et al. assessed the
resistance of a multispecies oral biofilm to tetracycline with
this model [69].

The concept consists in a glass cylinder that contains a
stainless steel plate linked to an electric motor that allows the
plate rotation. Pores at the cylinder summit enable gas and
medium to enter and exit. On the plate, wells are dug into
which discs or substratum can be dropped. Temperature and
gas flow are controlled and medium and saliva are injected
with a pump. Excessive medium is absorbed. The Constant
Depth Film Fermenter is a complex system allowing only
one antimicrobial formula to be tested at a time so it has
been improved, and two different treatments can now be
performed at the same time [33, 70].

4.2.2. Flow Cell Chamber System. This model consists in a
glass slide coated with saliva that is placed in a chamber and
is crossed by a continuous flow of medium [71, 72]. Schlafer
et al. tested the effect of osteopontin on amultispecies biofilm
using this model [73]. Furthermore, by allowing the evalua-
tion of biofilm development under flow and shear conditions,
it has been used to assess antibiotics [42]. Periodontal biofilm
can also be developed with it [74].

5. Biofilm Collection and Analysis

The methods used to identify different microorganisms in
a microcosm biofilm vary according to the models. There
are two approaches: cultivation-based and non-cultivation-
based.

5.1. Cultivation-Based Methods. This technique needs the
biofilm to be collected. Some authors recommend vigorous
vortexing to remove cells from the biofilm [64, 75]. Ready
et al. add a sonication step after vortexing the biofilm [69].
Wirtanen et al. harvest the biofilm by scratching the surface
of the tray with a swab and then immersing it in a dilution
medium [76]. In their Zürich model, Guggenheim et al.
scratch the surface of the disc with a sterile curette to
harvest all the cells of the biofilm, even those that are firmly
attached [21]. The collected biofilm is then plated on various
selective agar media. The distinct colony morphology and
gram staining allow the species to be differentiated. This
technique of counting colony forming units makes it possible
to investigate the effect of various components on the viability
of bacteria both on mono-species biofilms [44, 45, 56] and
on plurispecies ones [63, 65, 77, 78]. However, it is a time-
consuming method and noncultivable species cannot be
included in the biofilm. Moreover, scratching of biofilms on
hydroxyapatite surfaces may not be easily reproducible.

5.2. Non-Cultivation-BasedMethods. Since oral diseases have
a complex etiology and because only around 50% of
oral biofilm can be grown at present, culture-independent
molecular-based approaches have been developed that give
a more comprehensive assessment of the presence of a
range of putative pathogens in samples [78]. In studies on
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E. faecalis biofilms, dentin specimens were stained with
BacLight and observed with a fluorescence microscope [30].
In multispecies models, fluorescence in situ hybridization
(FISH) in combination with epifluorescence and confocal
laser scanning microscopy (CLSM) are other standard meth-
ods for the visualization and identification of species.

5.2.1. In Situ Hybridization Fluorescence (FISH). A sequential
FISH approach allows multiple populations to be detected
in a biofilm sample [79]. Indeed, FISH is a recognized tool
for the specific identification of targeted bacteria within mul-
tispecies biofilms [62]. Moreover, Thurnheer et al. showed
that it is possible to perform several consecutive FISH
procedures with multiple rRNA to identify simultaneously
many members of biofilms [80]. FISH can also be combined
with CLSM [62, 64].

5.2.2. EpifluorescenceMicroscopy andConfocal Laser Scanning
Microscopy (CLSM). The LIVE/DEAD� BacLight� fluores-
cence solution can be used to differentiate viable cells from
nonviable ones in terms of membrane integrity. Viable cells
are stained with SYTO9� which fluoresces green, while the
nonviable ones are stained with propidium iodide which
fluoresces red. Using BacLight LIVE/DEAD, Standar et al.
inspected cells by fluorescencemicroscopywhen theyworked
on the biofilm behavior of mixed-species cultures with dental
and periodontal pathogens [81]. Chávez de Paz also used this
technique to assess cell viability within multispecies biofilms
in root canals [82].

CLSM has also been widely used to observe biofilms
in three dimensions. It allows the systematic collection of
high-quality biofilm images suitable for digital image analysis
[79]. After 15mn dark incubation, de Carvalho et al. use an
excitation wavelength of 488 nm to collect all light emitted
between 500 and 550 nm and over 560 nm by various filters.
They use the scan mode time series to take a series of time-
lapse scans at intervals of 10 s during 590 s in continuous
scanning mode with a 10x objective lens [83]. Hobby et al.
incubate the wells for 18mn before using a Zeiss LSM 510
Meta confocal scanning system [84].

Some models combine non-cultivation-based and
cultivation-based methods. According to Blanc et al., it is
thus possible to determine the presence of all the species
within the biofilm structure, the volume occupied by the
bacteria, and the distribution of live and dead cells at the
different biofilm development times [85].

5.2.3. Scanning Electron Microscopy (SEM). Standar et al. use
SEM to observe their multispecies biofilms models. Biofilms
are fixed for 24 hours in a 2.5% glutaraldehyde solution
and the supports are rinsed with 0.1M Na-acetate buffer
and dehydrated with a graded ethanol series. Then they are
subjected to critical point dryingwithCO

2
, coveredwith gold

(10 nm thickness) and examined with a Zeiss DSM 960 A
electronmicroscope [81]. Howlin et al. also use this technique
to visualize biofilms after their removal with an ultrasonically
activated water stream [86]. Thurnheer et al. also use SEM to
study the role of red complex bacteria in the colonization of
gingival epithelia by subgingival biofilms in vitro [74].

5.2.4. PCR. Until recently, PCR was mostly used to identify
and count bacterial species in vivo or in dental plaque samples
in connection with oral diseases (caries, periodontitis) [87,
88]. However, in more recent studies, it has also been used
to identify species in in vitro models either after culture
or directly within the biofilm. For example, Zaura et al.
used quantitative real-time PCR (qPCR) to observemicrobial
shifts due to the effect of shiitake mushroom on an in vitro
caries model [33].

In 2013, Ammann at al. compared a qPCR assay with
fluorescence microscopy and colony forming unit counting
on selective agars. They found that all ten species included in
their in vitro biofilmwere successfully quantified using qPCR
and FISH or immunofluorescence as well as the eight species
culturable on selective agar plates. They concluded that CFU
counts yielded lower values than the othermethods.The same
authors also used qPCR combined with CLSM following
FISH to compare the quantitative distribution of bacteria and
the three-dimensional structure of biofilms either with or
without early colonizing species added at a later time point
[22]. For a very close purpose, Karched et al. using only
qPCR showed that six periodontal species were able to form
multispecies biofilm up to eight days in vitro without pioneer
plaque bacteria [89].

The limitation of qPCR is its inability to discriminate
between live and dead cells. Extracellular DNA present in the
matrix of the biofilm can also be quantified. To overcome this
problem, propidiummonoazide has been used in association
with qPCR [90, 91].The results of these studies demonstrated
the efficiency of PMA for differentiating viable and dead
strains of various species.

6. Conclusion

Because biofilms constitute a privileged way of life for oral
bacteria, a clear understanding of the processes involved in
their formation, their pathogenicity, and their resistance in
various biocides is essential for their control. While several
experimental models have been proposed to date, differences
in biofilm formation times, growth media, incubation condi-
tions (static or flow, aerobic or anaerobic), and the procedures
for collecting and analyzing biofilms make a comparison
difficult. Choosing the most suitable procedure depends on
the particular objective that is sought and on the laboratory
facilities that are available.
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