
The public health impact of fetal alcohol spectrum 
disorders is underestimated
Fetal alcohol spectrum disorders (FASD) are charac
terized by a continuum of structural and neuro develop
mental anomalies following a history of in utero alcohol 
exposure. Clinical diagnostic guidelines have been 
developed to aid accurate diagnosis [13] and to differ
entiate between fetal alcohol syndrome (FAS) at the most 
severe end of the spectrum, and partial fetal alcohol 
syndrome, alcoholrelated birth defects and alcohol
related neurodevelopmental disorder. FAS manifests with 
a set of characteristics, including craniofacial dys morph
ology (such as a thin upper lip, smooth philtrum and 
small eye openings), pre and postnatal growth retarda
tion, and abnormal growth and development of the 
central nervous system, resulting in lifelong mental, 

cognitive and behavioral disabilities. FASD is the com
mon est preventable cause of mental disability. In most 
countries the prevalence of FAS ranges between 0.5 and 
2.0 per 1,000 live births [4], but it is strikingly higher in 
some communities. In South Africa, a prevalence as high 
as 65.2 per 1,000 children of schoolgoing age was 
reported in a mixed ancestry community in the Western 
Cape [5] and 67.2 per 1,000 children in similar commu
nities in the Northern Cape Province [6].

The global burden of alcoholrelated disease accounted 
for 4% of all disabilityadjusted life years as reported in 
2004, with striking regional differences [7], up from 3.5% 
in 1990. Although it is estimated that only between 5% 
and 10% of offspring exposed in utero are likely to have 
alcoholrelated deficits [8], this is probably an under
estimate [9]. It is possible that many idiopathic neuro
developmental disorders, including some cases of autism 
and attention deficit hyperactivity disorder (ADHD), may 
also be attributable to transgenerational effects of alcohol 
exposure. In the USA, it is estimated that FASD may 
affect up to 1% of the population [10] and incur con
siderable costs [11], but the prevalence, especially in 
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middle to low income countries, may be considerably 
higher than reported estimates [12,13].

Lessons from early studies in humans and in 
animal models
The deleterious effects of parental alcohol use on their 
offspring have been recognized and documented for 
centuries, including observations during the ‘gin epidemic’ 
in England (1720 to 1750) and reports during the 19th and 
early 20th centuries (summarized by Warner and Rosett 
[14]). The term fetal alcohol syndrome (FAS) and the 
formal medical description is as recent as 1973 [15].

Many animal studies have shown that clinical severity 
following in utero ethanol exposure correlates with the 
developmental stage (timing), the dose and the frequency 
of exposure (chronic versus acute) [16,17]; it is the result 
of complex geneenvironment interactions that alter gene 
expression patterns, especially during development. The 
first trimester is considered the most vulnerable period, 
but fetal damage occurs throughout gestation. Rodent 
models have been used most often (especially the mouse 
and rat) and various regimens of alcohol administration 
have resulted in remarkable phenotypic similarities with 
the features of FASD in humans, including distinctive 
craniofacial alterations, stunted growth and behavioral 
abnormalities. What has become clear, however, as 
demonstrated by crosses between inbred mouse strains 
that were similarly exposed to alcohol, is that the parental 
genomic contributions to the fetus are important in 
attributing risk.

The role of genetic variation in FASD remains 
poorly understood
There is no question that genetic variation has a role in 
susceptibility to adverse effects following in utero alcohol 
exposure. The question is, therefore, what is the nature 
and magnitude of the genetic effect and how does genetic 
variation interact with environmental factors (for example, 
nutrition and environmentally induced epigenetic 
remodeling) to cause teratogenic effects. Many studies in 
rodent models have indicated that genetic background is 
crucial in understanding risk, as there are recognized 
susceptible inbred mouse strains and other inbred strains 
that remain unaffected despite similar exposure to 
ethanol [1820]. Differences among these strains relate to 
alcohol preference, alcohol metabolism and behavior. For 
example, mouse studies demonstrated an inverse 
relationship between maternal alcohol dehydrogenase 
activity and maternal blood alcohol levels and consequent 
fetal abnormalities, but suggested that other inherited 
factors from both the mother and the fetus were also 
important [19,2123].

In contrast, relatively few studies have investigated the 
role of genetic variation in humans in determining 

predisposition and clinical severity. It has, however, been 
documented that siblings of FAS children have a 
dramatically increased risk for FAS (170 per 1,000 among 
older sibs and 771 per 1,000 in younger sibs compared 
with 1.9 per 1,000 in the population studied as a whole) 
and there is higher concordance between monozygotic 
twins than between dizygotic twins [24,25]. Genetic 
studies have primarily explored the role of alcoholmeta
bo lizing enzymes, including alcohol dehydrogenases 
(ADH), aldehyde dehydrogenases (ALDH) and cyto
chrome P450 2E1 (CYP2E1), in the mothers and their 
FAS offspring; these studies have used relatively small 
sample sizes [26,27]. Functionally significant non
synony mous variants at the ADH1B locus (ADH1B*2 and 
ADH1B*3), which result in faster and more efficient 
ethanol clearance, have been associated with a mild 
protective effect in casecontrol and cohort studies in 
several populations, including African Americans [28,29] 
and South Africans of mixed ancestry [30], although in 
association with different alleles [26,27,31]. The mode of 
action is unclear but a recent study in a large European 
population demonstrated a strong association between 
one of these ADH1B nonsynonymous variant alleles 
(ADH1B*2; rs1229984) and lower alcohol consumption 
before and during pregnancy [32]. Excessive alcohol 
exposure can induce CYP2E1 expression, another route 
for alcohol metabolism. Some CYP2E1 allelic variants are 
associated with enhanced metabolic capacity and may 
modulate the risk for FAS. Furthermore, CYP2E1 is 
expressed in the placenta, fetal liver and fetal brain 
during organogenesis, where the CYP2E1catalyzed 
oxidation of ethanol may cause oxidative stress (reviewed 
in Gemma et al. [27]). No genomewide association 
studies have been done for FAS or FASD, probably 
because of the recognition of multiple common environ
mental risk factors that are difficult to quantify and a 
paucity of large sample sizes and appropriate controls.

The impact of alcohol on biological pathways and 
the mechanisms of teratogenesis
Efforts to understand the effects of alcohol exposure on 
the adult and developing brain, as well as other physio
logical impacts, have led to a vast literature describing 
the effects of alcohol on cells, organs and organisms 
(reviewed in [3335]). Genetic contributions to pre dispo
sition have been explored to a limited extent, but 
important insight has come from investigating gene 
expression, biochemical markers and physiological 
effects of pre and postnatal alcohol exposure. These are 
mediated through pathogenic mechanisms that involve 
many pathways that have been extensively studied in the 
liver (the main site of ethanol metabolism and its toxic 
metabolites, including acetaldehyde) and the nervous 
system (including the brain). The origins and mechanisms 
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of craniofacial dysmorphism following fetal exposure 
have been examined and compounds that exacerbate or 
ameliorate the teratogenic effects of alcohol have been 
shown to include antioxidants, sonic hedgehog protein 
and retinoids (summarized by Sulik [36]).

Common functional deficits following in utero alcohol 
exposure in mouse and rat models include cell prolifera
tion, differentiation and apoptosis, affecting tissue 
growth and remodeling and specifically neuronal growth 
and survival. Preliminary global gene expression studies 
have corroborated some of these findings and have 
revealed the involvement of groups of genes related 
through function or common pathways. Each experi
mental design was different, making it difficult to 
compare the studies, but the main conclusions are sum
marized in Table 1 [3741].

Bioinformatic analyses of gene expression microarray 
data from fetuses exposed and unexposed to alcohol have 
examined upstream regulatory regions for common 
transcription binding sites and 5’ untranslated regions for 
potential microRNA (miRNA) binding sites for 
differentially expressed genes. The results suggest that 
alterations in miRNA functions may have a role in 
alcoholrelated teratogenicity [41]. In addition, fetal 
alcohol exposure was shown to alter common signaling 
pathways linking receptor activation to cytoskeletal 
reorganization, causing altered cell motility and mobility 
as well as metabolic capacity [40]. More focused rodent 
gene expression studies have explored central nervous 

system development and neuronal migration, gluco
corticoid signaling, and nitric oxide, insulin and retinol 
levels following in utero alcohol exposure (for example, 
[4244]).

Gene expression is known to be altered by DNA 
methylation status and by chromatin remodeling 
following histone modification, including methylation, 
acetylation and phosphorylation. Given that abnormal 
neuronal development and neurodegeneration are charac
teristics of FASD and alcoholism, it is important to 
understand how these molecular processes are altered in 
affected tissues. Particular emphasis has been placed on 
understanding the effect of alcohol on the methyl donor 
pathway, including Sadenosylmethionine (a methyl 
donor) and the DNA methyltransferases [45,46]. One of 
the early studies demonstrated that acute alcohol 
exposure in pregnant mice (from gestation day 9 to 11) 
resulted in reduced methylation of fetal DNA and levels 
of DNA methyltransferase [47]. Another study in male 
rats showed significantly decreased cytosine methyl
transferase (Dnmt1) mRNA levels in their sperm, 
suggest ing that this may be one of the mechanisms 
leading to altered gene expression levels after conception 
[48]. Ethanol has also been demonstrated to be associated 
with posttranslational histone modification in a rat 
model [4951]. Significant changes in DNA methylation 
were observed during early embryonic development of 
the nervous system involving genes known to have a role 
in the cell cycle, growth and apoptosis, with increased 

Table 1. Global gene expression studies after in utero alcohol exposure in mouse models

  Key upregulated Key downregulated Functional   
Alcohol exposure* Tissue genes/pathways genes/pathways pathway References

GD7-9  Fetal brain  Timp4, Bmp15, Rnf25, Tulp4 and Cell proliferation, cell [37]
(daily intraperitoneal    Dexras1 differentiation and apoptosis; 
dose 2.9 g/kg)     affecting tissue growth and  
    remodeling and neural growth  
    and survival

GD8  Head fold, 3 h B6N†: glycolysis and B6N†: ribosomal proteins Common signaling pathways [40]
(2 doses, 4 h apart,  after alcohol  pentose phosphate and proteasome; B6J†: none linking receptor activation to 
2.9 g/kg) exposure  pathway; B6J† and B6N†:  detected cytoskeletal reorganization 
  tight junction, focal  
  adhesion, adherens junction  
  and regulation of the  
  actin cytoskeleton

GD8.25  Whole embryo All 3’ miRNA motifs Most 5’ cis-acting regulatory Developmental deficit of  [41]
for 46 h (peak  culture showed upregulatory motifs (transcription binding growth, neuronal axis and   
alcohol concentration  effects‡ sites) showed down regulatory  neural patterning,  
88 mM)   effects hemopoiesis and apoptosis 

GD8.25  Whole embryo Decreased methylation:  Increased methylation:  Metabolism (Cyp4f13);  [38]
for 46 h (peak  culture Nlgn3, Elavl2, Sox 21, Sim1,  Cyp4f13 imprinting (Igf2r); chromatin 
alcohol concentration  Igf2r and Histh3d  (Histh3d); and development 
88 mM)    (other genes)  

GD0.5-8.5  Liver from  D14ertd449e, Ly6e Lima1, Socs2, Cables1 Growth; nervous system [39]
 28-day-old males and Rrm2 and Vidir development 

*GD, gestational day. †C57BL/6 substrains: B6J embryos had a higher incidence of FASD features than B6N. ‡A possible interpretation is that many highly expressed 
genes were not appropriately downregulated because of delayed expression of miRNAs that would normally reduce expression.
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methylation in some genes and decreased methylation in 
others [38].

Epigenetic remodeling and vulnerability to the 
teratogenic effects of alcohol: preconception, early 
development and transgenerational effects
In 1920 Lord D’Abernon set the scene by writing in the 
preface to the second edition of Alcohol: Its Action on the 
Organism [52] a list of research questions that should 
receive priority, including: ‘Does parental alcoholism 
affect injuriously the health and development of off
spring, and if so, are the resultant conditions trans
missible to subsequent generations?’

The previous section provided some evidence support
ing the involvement of epigenetic remodeling in alcohol 
teratogenesis, and this hypothesis is further summarized 
in a recent review supporting an epigenetic dimension as 
one of the key molecular mechanisms in FASD [53]. 
During development there are essentially three main 
stages of generalized global epigenetic remodeling: first, 
during gametogenesis, when there is a wave of demethyl
ation followed by sexspecific genetic imprinting and 
generalized methylation; second, during preimplantation, 
which is characterized by generalized DNA demethyl
ation in the zygote (with the exception of imprinted loci); 
and third, another wave of de novo methylation during 
gastrulation [54]. Each of these stages therefore charac
terizes a time of particular vulnerability for the disruption 
of normal epigenetic signals and the adverse effects of 
alcohol exposure. There is ample evidence to suggest that 
epigenetic perturbations are subtle and not allornothing 
responses, resulting in shifts towards increased or 
decreased gene expression, a phenomenon that would be 
in line with the broad range of clinical manifestations 
reflecting a dynamic and individual response to alcohol 
exposure.

The consequences of epigenetic remodeling can be 
studied at a genomic level [55] but to thoroughly explore 
cause and effect would require additional biochemical 
and proteomic studies to understand the complex, inter
related molecular underpinnings of alcohol effects in 
FASD. Several reviews have documented the teratogenic 
effects of alcohol in animal models [56,57]. Below I 
summarize current knowledge regarding the effects of 
alcohol exposure from the preconception stage to 
preimplantation and gastrulation on fetal and postnatal 
development. The evidence for transgenerational effects 
of environmental alcohol exposure is briefly summarized.

Despite an emphasis on maternal alcohol consumption 
as the major driver of fetal alcohol effects, the role of 
alcohol in the preconception period in men and its effect 
on their offspring, even in the absence of gestational 
alcohol exposure, has long been recognized [58]. The 
deleterious effects of paternal preconception alcohol 

exposure have now been well documented in humans 
and include reduced birth weight and impaired cognitive 
functioning [59,60]; however, the mechanisms remain 
poorly understood. In an attempt to establish a link 
between alcohol consumption in men and epigenetic 
changes in sperm DNA, paternally imprinted loci were 
examined and compared between different alcohol
consuming groups. In a modest study [61], a trend 
toward CpG hypomethylation in moderate to heavy 
drinkers was observed and reached statistical significance 
for one differentially methylated region (DMR), but not 
for another. The effects of alcohol on sperm DNA methyl
ation need further exploration, as do other epigenetic 
mechanisms, including histone modification and the 
transmission of RNA species that may affect gene expres
sion in the gametes and early zygote.

It is not surprising that there have been a variety of 
outcomes in rodent studies exploring paternal precon
ception effects, as the experimental approaches have 
differed in design, including dosage (chronic or acute, the 
latter mimicking binge drinking behavior), administration 
regime (inhalation, intraperitoneal injection and gavage) 
and the length of exposure. However, and some excep
tions aside, a definite trend is evident with increasing 
exposure that reflects reduced birth weight in the 
offspring [6264], fewer offspring [64,65], and an 
increased number of malformations [64,66], including 
dysmorphic craniofacial features and behavioral or 
cognitive effects [6770].

Preconception effects in women are more difficult to 
study as they are invariably influenced by alcoholic 
behavior that persists into pregnancy and by malnutrition 
and socioeconomic status [53,71]. The effect on female 
mice exposed chronically for 10 weeks before conception, 
but not during pregnancy, showed increased transcrip
tional silencing of the agouti yellow viable allele (Avy) in 
the offspring, in a similar trend to those exposed during 
pregnancy [39]. These effects are indirect because the 
transcriptional signaling comes from altered methylation 
of the Avy allele, which was paternally derived in this 
experimental model. In earlier mouse studies, fetuses and 
offspring of females exposed only in the preconception 
period had significantly retarded growth [7274].

In humans the preimplantation period relates to the 
first 2 weeks following fertilization, and in mice up to the 
first 6 days; this is followed by implantation and 
gastrulation, which is characterized by the formation of 
the three primary germ layers (mesoderm, ectoderm and 
endoderm). Some studies have particularly addressed the 
effects of alcohol during these early stages and have 
demonstrated that it produces adverse outcomes on the 
placenta, the fetus, newborn and adult [75,76]. An 
imprinting mechanism was explored in two recent mouse 
studies. Preimplantation ethanol exposure resulted in 
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decreased placental and fetal weight, and it significantly 
decreased DNA methylation of the paternal allele of the 
H19 imprinting control region of the placenta of 
midgestation embryos, but not the embryos themselves 
[77]. Using the Avy allele as a reporter gene, gestational 
exposure during days 1 to 8 after fertilization was shown 
to result in a significant shift to an increased proportion 
of pseudoagouti offspring mediated through transcrip
tional silencing of the agouti locus [39]. Both studies 
investigated the methylation status of individual loci; the 
first [77] showed a shift towards hypomethylation and 
the other [39] to hypermethylation, indicating that there 
are locusspecific responses to the teratogenic effects of 
alcohol. Other studies have examined the postimplan
tation effects of alcohol teratogenesis during a period of 
rapid cell growth and differentiation, when one would 
expect extreme sensitivity to environmental insults, as 
reported in many studies (reviewed in [57]).

The first study to show a direct epigenetic effect of 
alcohol exposure in the fetus was by Garro et al. [47], in 
which the authors demonstrated reduced methylase 
activity and hypomethylation of fetal DNA. A later study 
[78] showed CpG hypomethylation associated with 
upregulation of NMDA receptor 2B (NR2B) gene expres
sion in mouse fetal cortical neurons following chronic 
ethanol treatment. Many studies have demonstrated that 
maternal ethanol consumption during fetal development 
affects mouse and rat offspring, as reflected in phenotypic 
characteristics such as stunted growth and craniofacial 
anomalies analogous to the FASD clinical features. 
Exposure of mouse embryo cell cultures undergoing early 
neurulation (during the period of gastrulation) demon
strated DNA methylation mediated alterations in gene 
expression that are proposed to contribute to the FASD 
phenotype [38].

Transgenerational effects of alcohol (as well as of 
nutritional supplements and endocrine disrupters) must, 
of necessity, be mediated through the process of gameto
genesis and can be modulated by the maternal 
environment during pregnancy. There is little evidence to 
explain the mechanisms involved, but the consequences 
are beginning to be documented. Studies from a region in 
northern Sweden, using meticulous birth, medical, 
lifestyle and mortality records and meteorological and 
agricultural records reflecting food availability, have 
demonstrated significant correlations between environ
mental exposures at critical periods and crossgenera
tional outcomes [79,80]. These have been attributed in 
part to transgenerational epigenetic effects. Nutrition 
supplementation in pregnant mice is known to shift 
mouse coat color towards transcriptional silencing of the 
Avy allele, mediated through DNA methylation, as 
reflected by an increase in the proportion of pseudoagouti 
offspring [81,82]. In a rat model, exposure of pregnant 

dams to vinclozolin and methoxychlor (endocrine 
disruptors) during the period of gonadal sex differen
tiation in the fetus led to decreased spermatogenic 
capacity in the male offspring and an increased 
susceptibility to adultonset diseases and hypercholes
terol emia in the F1 to F4 generations [83,84]. Given that 
the phenotypic effects of the gestational environmental 
interventions (nutritional supplementation and exposure 
to endocrine disruptors) were shown to persist into 
unexposed subsequent generations, this could be 
mediated through epigenetic mechanisms.

Further indirect evidence for transgenerational effects, 
which could lead to an increased prevalence of FASD in 
communities, come from behavioral and epidemiological 
studies. Behavioral studies in humans, rats and mice 
suggest that in utero alcohol exposure may confer 
increased vulnerability to substance misuse (including 
alcohol misuse) or addiction in young offspring and 
adolescents, which sometimes persists into adulthood 
[8590]. Studies in South Africa have documented a 
signifi cant increase in FAS prevalence in a specific 
community studied at two different times, though not a 
generation apart. A minimal prevalence of 40.5 per 1,000 
was reported in 2000, rising to 65.2 in a report from 2005, 
using the same diagnostic criteria [48,91].

The studies presented in this section are consistent 
with the transmission of environmentally acquired 
changes in epigenetic status, which persist to variable 
extents in subsequent generations and depend on both 
the stochastic deposition of epigenetic marks during 
develop ment and a changing environment.

Implications for prevention and treatment
FASD results in lifelong disability and there is no cure. 
The complex molecular basis leading to the development 
of FASD and the mechanisms that induce the teratogenic 
effects remain poorly understood. There is compelling 
evidence that, in addition to the environmental trigger, 
genetic variation and epigenetic remodeling are 
important risk factors (Figure 1). There is no safe alcohol 
dose during pregnancy and, because susceptible genomic 
attributes in the mothers and their fetuses remain poorly 
understood, there is no sliding scale that can be 
administered to reassure pregnant women of their risks. 
It remains unclear to what extent the damage that occurs 
during fetal development and growth can be ameliorated 
through the process of early detection and educational, 
nutritional and physiological intervention, as has been 
suggested in some studies [2,92,93]. The burden of 
disease, the high prevalence of FASD and the 
vulnerability of affected individuals has led to the 
introduction of protective legislative guidelines in North 
American countries, but not yet in other parts of the 
world [94,95].
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In highrisk communities and individual pregnancies, 
prevention strategies not only need to target the pregnant 
mother, but also need to focus on preconception alcohol 
use in both parents as well as attitudes surrounding a 
culture of drinking. To develop effective prevention 
strategies it is important to understand the molecular 
processes underlying FASD and the physiological and 
social consequences that lead to excessive alcohol con
sump tion before and after conception. Preventative 
strategies for FASD will therefore need to include a long
term program, emphasizing abstention during the pre con
ception period as well as during pregnancy, with an under
standing that immediate benefits are likely to be subtle but 

will accrue over subsequent generations. However, in the 
absence of effective preventative strategies the prevalence 
of FASD would increase and the burden of disease in 
future generations would be magnified accordingly.
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Figure 1. In communities where alcohol abuse is common there is a high risk for FASD. This risk and the severity of the outcome depend 
on specific environmental triggers, genetic variation in the parents and the resulting combination in the fetus, and several critical time periods 
for epigenetic remodeling in a vulnerable fetus. The figure illustrates the complex interactions that affect the risk for developing a FASD/FAS 
phenotype. In the mother, alcohol metabolism and enzymes involved in epigenetic remodeling may be particularly important, as well as alcohol 
metabolism by the placenta and fetus. In the fetus, genes involved in alcohol metabolism, epigenetic remodeling and development, particularly in 
the central nervous system and brain, are probably important.
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