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Abstract: Alterations in head and trunk kinematics during activities of daily living can be difficult to
recognize and quantify with visual observation. Incorporating wearable sensors allows for accurate
and measurable assessment of movement. The aim of this study was to determine the ability of
wearable sensors and data processing algorithms to discern motion restrictions during activities
of daily living. Accelerometer data was collected with wearable sensors from 10 healthy adults
(age 39.5 ± 12.47) as they performed daily living simulated tasks: coin pick up (pitch plane task),
don/doff jacket (yaw plane task), self-paced community ambulation task [CAT] (pitch and yaw
plane task) without and with a rigid cervical collar. Paired t-tests were used to discern differences
between non-restricted (no collared) performance and restricted (collared) performance of tasks.
Significant differences in head rotational velocity (jacket p = 0.03, CAT-pitch p < 0.001, CAT-yaw
p < 0.001), head rotational amplitude (coin p = 0.03, CAT-pitch p < 0.001, CAT-yaw p < 0.001), trunk
rotational amplitude (jacket p = 0.01, CAT-yaw p = 0.005), and head–trunk coupling (jacket p = 0.007,
CAT-yaw p = 0.003) were captured by wearable sensors between the two conditions. Alterations
in turning movement were detected at the head and trunk during daily living tasks. These results
support the ecological validity of using wearable sensors to quantify movement alterations during
real-world scenarios.

Keywords: wearable sensors; turning; activities of daily living; head–trunk kinematics

1. Introduction

Successful participation in daily life activities are critical components of a person’s
functional status and should be the goals for rehabilitative interventions. To understand
limitations experienced by an individual with a health condition, rehabilitation profes-
sionals rely on varied types of functional assessments typically performed in constrained
clinical or laboratory settings. They provide insight into a person’s functional status; how-
ever, accepting the presumption that functional assessments are replicating the necessary
mobility, coordination, and strength required to complete activities of daily living (ADL) [1]
would be overlooking a large part of patients’ function.

Another major limitation to clinic-based functional assessments is the tendency for
patients to perform at a higher level during clinic or laboratory assessments than during
normal daily activity [2,3]. These studies suggest that patients’ performance may be
affected by observation, masking their true representative mobility throughout the day.
Rating a patient based on their laboratory assessment may give insight to their mobility
capacity but may not represent the strategies a patient chooses during ADL. Standardized
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functional assessments often rely on restrained scoring criteria [4–6], do not measure how
a patient truly performs daily life activities, and are still vulnerable to inaccuracies [7,8].
Inertial measurement units (IMUs) are a recently available tool that may be able to measure
differences in movements that are not detected through visual observation or clinical scales.
For example, IMUs detected significant differences in postural stability and functional
assessment performance between healthy controls and people with mild impairments
when standardized assessments were unable to discern between the groups [7,9–11].

Head turning and head–trunk coupling metrics have been of interest in clinical popula-
tions [12–15]. Limiting head motion and alteration of head and trunk coupling is often seen
to minimize the provocation of symptoms such as dizziness and unsteadiness [14,15]. Head
turn metrics captured by IMUs allow for quantification of head kinematic differences found
between individuals with vestibular hypofunction and controls [13,16], as well as between
those with mild traumatic brain injury and controls [10]. Evaluating individuals with
vestibular hypofunction or sensory integration deficits during ADL tasks allows for a more
realistic assessment of head and trunk kinematics than clinic based visual observation. For
example, during ADL tasks, head turn metrics were altered in a vestibular hypofunction
population compared to healthy controls [17].

It would be unreasonable to expect clinicians to be able to visually recognize sub-
tle and complex metrics captured with wearable technology such as IMUs. IMUs have
demonstrated sensitivity in capturing subtle movement disruptions that are important
clinical differences [10,18,19]. They are reliable and accurate in quantifying head and trunk
control [20–23] and sensitive in identifying physically induced restriction [24]. IMU-based
measurements possess ecological utility (i.e., usefulness in real world natural scenarios
that can characterize clinical populations during ADL). Given the evidence that wearable
sensors provide clinically relevant information that can improve rehabilitation, additional
work is necessary to validate the tasks and metrics that reflect daily life function. This brief
report sought to determine if IMUs and our data processing algorithms were capable of
discerning differences in head and trunk rotation during ADL with a physically-induced re-
striction of range of motion. We hypothesized rotational velocity, amplitude, and head and
trunk coupling would differ between an unrestricted control condition and a mechanical
restriction of the neck during ADL.

2. Materials and Methods
2.1. Study Participants

Based on the large effect sizes for head rotation velocity (Cohen d of 1.3–2.0) between
vestibular hypofunction patients and healthy controls [13], our power analysis revealed a
sample size of 10 participants would have 95% power to detect a difference between groups
on our primary outcome. Study participants were a subset of healthy adults between 19 and
55 years old, able to walk without assistance, who were voluntarily recruited as controls
for a larger study. Participants were excluded if they had sustained a lower extremity
injury within the past 12 months or had any neurological or vestibular conditions. Written
informed consent was obtained from all participants prior to data collection. This study
was approved by the University of Utah Institutional Review Board.

2.2. Experimental Protocol

Ten participants performed tasks twice in a standardized order during one day of
testing, once without restriction (our control condition) and again with a rigid cervical
collar (Aspen Medical Products, Irvine, CA, USA) to limit cervical motion (Figure 1). The
order of task was not randomized as these tasks were part of a larger study protocol and
selected for this analysis for their rotational component in the yaw or pitch planes. Data
were collected simultaneously by two Opal inertial sensors (APDM Inc., Portland, OR,
USA) worn by participants on the forehead and sternum (Figure 1). The location of IMUs
was consistent, and elastic straps were adjusted for a secure fit to avoid excessive motion
and ensure that the IMUs did not restrict the participant’s movement. The IMUs recorded
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the participants performing three tasks chosen to represent ADL that required head and
trunk rotational motions that are known to be challenging for individuals with vestibular or
sensory integration deficits: don/doff a jacket, coin pick up, and a community ambulation
task (CAT). To allow for natural performance, directions for tasks were kept simple, and
researchers avoided specific instruction on how to perform tasks.
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and rigid cervical collar.

2.2.1. Don/Doff Jacket

The don/doff jacket task began with the participant in a standing position, a jacket
placed on a table to their left, and a researcher standing to their right. When instructed, the
participant reached for the jacket, donned and doffed the jacket, and returned the jacket to
the researcher. Instructions for participants were, “pick up the jacket on your left, put it on,
take it off, and hand it to the person on your right”. This task was selected for its required
movement in the yaw plane or the anatomical transverse plane.

2.2.2. Pick Up Coin

The coin task began with the participant and researcher facing each other in a standing
position and a coin placed on the ground about 12 inches directly in front of the participant.
When instructed, the participant bent forward, picked up the coin and placed it in the hand
of the researcher. Instructions for participants were, “pick up the coin on the floor in front
of you, and place it in the hand of the person in front of you”. This task was selected for its
required movement in the pitch plane or the anatomical sagittal plane.

2.2.3. The Community Ambulation Task (CAT)

The CAT consisted of an established 10-min walking route through a university
building and the surrounding area. Participants performed the CAT at a self-selected pace
while negotiating hallways, stairwells, elevators, and navigating pedestrian and vehicular
traffic. A research staff member accompanied the participant and provided landmark-based
directions to guide participants throughout the route. At predetermined locations in the
route, the staff member asked questions about the surrounding environment that resulted
in the participant performing yaw and pitch place head rotations (e.g., what is the name of
the room on your right; what color is the tape on the floor). The purpose of the CAT was to
mimic a real-world scenario that included both body turns and head turns in the yaw and
pitch planes.

2.3. Data Acquisition and Outcomes

Wearable IMUs (Opal Wearable Sensors, APDM Inc., Portland, OR, USA) with on-
board accelerometers, gyroscopes, and magnetometers were utilized to track head and
trunk movement characteristics. Following data collection, gyroscopic data reflecting
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angular motion of the head and trunk were exported and processed using a custom
MATLAB (Mathworks, Natick, MA, USA) algorithm. This processing involved registration
of all three sensors to a global reference frame aligned with the z-axis to gravity to ensure
planar motion was consistent regardless of the angle of the sensor. Processing sensor
data in the global reference frame allowed measurement of head and trunk kinematics
independent of the anatomical variability in participants. In the event that measuring
head and trunk kinematics expanded into the clinical setting, we chose to apply one data
processing algorithm to all tasks. The reasoning for this decision was to apply an algorithm
that was generalizable to tasks in different planes and, therefore, could be useful to those
without advanced coding experience. Additionally, all sensors were filtered using a 6-Hz
low pass Butterworth filter.

Turns at the head and trunk were calculated based on peaks in angular velocity data in
the respective sensors. During the coin task, the pitch plane was assessed. During the jacket
task, the yaw plane was assessed. Both yaw and pitch plane motions were assessed for
the CAT. Initial processing involved identifying whether individual peaks in the angular
rotation data constituted a turn. A peak was considered a turn if it had an amplitude
(1) greater than 20◦/s and (2) greater than 35% of the mean amplitude of all peaks for
that participant. Once individual turns were identified, the direction, frequency, velocity,
and amplitude were gathered for each head turn. The absolute values of each head turn’s
velocity and amplitude were calculated, and overall means were calculated to represent
the average peak amplitude and velocity of head turns occurring for each participant for
each task. To determine the degree of the head and trunk coupling during the study tasks,
correlation coefficients were also calculated between the head and trunk angular velocity
signals. The Pearson correlation coefficient was defined as:

ρ(A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA
)(

Bi − µB
σB

) (1)

N is the number of observations for each variable, and µ and σ are the mean and standard
deviation, respectively. A high correlation of 1 represented a perfect match in the velocity
signal and substantial coupling of head and trunk motion, while a low correlation of 0
represented a case where there was little coupling between the segments.

Based on previous research examining head movements in individuals post mild
traumatic brain injury (mTBI) and controls [10], we selected peak head rotational velocity
(degrees/s) as the primary outcome of interest. Secondary outcomes of interest were trunk
rotational velocity(degrees/s), head and trunk amplitude of rotation (degrees), and head–
trunk coupling correlation. Rotational velocity and amplitude of rotation were gathered in
both the pitch and yaw planes. Head–trunk coupling (correlation between head and trunk
velocities) was only calculated in the yaw plane. This measure was chosen as previous
research has shown increased coupling of the head and trunk in the yaw plane with
vestibular hypofunction [13]. To better characterize our participants, functional capacity
was assessed with a distance covered during 2-min walk test (2MWT) [25].

2.4. Statistical Analysis

Paired t-tests were used to assess differences in outcomes between task conditions
(with a cervical collar and without). Holm-Bonferroni correction was applied to the analysis
of the primary outcome, head rotational velocity, for all tasks.

3. Results

Ten healthy participants consented and performed all tasks with and without a cervical
collar. Participant demographic information is displayed in Table 1. The gait speed of each
participant was within normal range per normative values [26]. There were no missing
data, and all participants’ data was included in the analysis.
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Table 1. Demographic characteristics of healthy participants.

Characteristics (n = 10) Mean ± Standard Deviation

Female/male 5/5
Age (years) 39.5 ± 12.47
Height (cm) 174.75 ± 9.37
Weight (kg) 75.02 ± 15.48
2MWT (m) 228.26 ± 15.23

The results from the paired t-tests are listed in Table 2. Peak head rotational velocity
was significantly decreased when wearing the collar in all but the coin task. Head–trunk
coupling was significantly increased with the cervical collar application in all tasks (coin
task p < 0.001; jacket task p = 0.007; and the CAT p = 0.003). Overall, there was an increase
in trunk rotation amplitude with the addition of the cervical collar.

Table 2. Mean, median standard deviation, and t-test results of rotational outcomes with and without
cervical collar.

Turning
Characteristics

Plane of
Motion

No
Collar Collar

Head Rotational Velocity
(Degrees/Second) Mean SD Mean SD

Coin task Pitch 110.63 22.27 122.09 25.86
Jacket task Yaw 150.6 47.58 112.1 20.63

CAT Pitch 83.18 10.08 67.56 4.94
CAT Yaw 138.68 14.03 89.2 7.91

Head Rotation Amplitude
(degrees) Mean SD Mean SD

Coin task Pitch 41.18 10.87 61.16 22.56
Jacket task Yaw 54.06 17.46 50.14 16.94

CAT Pitch 17.74 3.5 12.83 3.06
CAT Yaw 41.6 4.16 28.78 4.85

Trunk Rotational Velocity
(degrees/second) Mean SD Mean SD

Coin task Pitch 139.07 22.56 145.21 13.13
Jacket task Yaw 94.43 18.48 107.46 20.74

CAT Pitch 77.36 9.23 74.25 7.05
CAT Yaw 88.31 8.92 89.62 8.23

Trunk Rotation Amplitude
(degrees) Mean SD Mean SD

Coin Pitch 72.92 17.40 77.12 17.36
Jacket Yaw 37.22 14.94 52 13.3
CAT Pitch 9.49 1.94 8.86 1.4
CAT Yaw 25.65 2.27 29.97 4.81

Head–Trunk Correlation CC mean/SD CC mean/SD

Coin Pitch 0.65/0.13 0.87/0.12
Jacket task Yaw 0.66/0.12 0.90/0.13

CAT Yaw 0.52/0.05 0.93/0.03
Mean and standard deviation (SD) for turning characteristics are listed for each task and the plane of motion.
Significance level was set at 0.05. Significant changes in the collared task from no collar are bolded. CC =
Correlation Coefficient.

4. Discussion

As part of an effort to validate the utility of wearable sensors to accurately characterize
limitations of head and trunk angular motions during daily life tasks that may be induced
by vestibular injury or sensory integration deficits [10,13,20,21], we examined head and
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trunk kinematics during two conditions: a control condition with unconstrained cervical
motion and a condition with constrained cervical motion. We utilized wearable sensors to
quantify movements. As hypothesized, the suite of wearable sensors and data processing
algorithms successfully distinguished between our control and constrained cervical motion
condition on rotational velocity, amplitude, and head and trunk coupling.

4.1. Peak Turning Velocity

Peak head turn velocity was also significantly reduced during the jacket task (yaw
plane) but not during the coin task (pitch plane). Such findings indicate that the IMU
presents ecological utility in capturing differences in head turn velocity in some but not all
ADL. This likely reflects the variability in task performance, as a task such as picking up the
coin can be performed without isolated head movement and very little rotational velocity
at the head (e.g., squatting rather than bending over). Similarly, Paul and colleagues [24]
found a significant reduction in head rotation velocity during walking with directed
horizontal head turns when participants wore a cervical collar compared to without. They
demonstrated the sensitivity of the IMUs in measuring a rotation restriction created by the
cervical collar during a pronounced stereotypical head turning task. Similar reductions
in peak turning velocity have also been found in people following vestibular impairment
during stereotyped turning tasks [13].

4.2. Head–Trunk Coupling

Head and trunk coupling significantly increased with the application of the collar
(jacket p = 0.007, CAT p = 0.003) inferring that the IMUs were able to capture a common
compensatory turning strategy, en bloc turning (head and body turning as one unit). Such
results suggest that IMUs may be able to capture alterations in head–trunk coupling in
individuals with varied types of vestibulopathies who often demonstrate alterations in head
and trunk coordination during turning. Participants with a recent vestibular schwannoma
resection increased head and trunk coupling compared to controls [13], while those with
chronic mTBI symptoms performed turns with decreased head–trunk coupling [15].

4.3. Peak Turn Amplitude

The addition of the cervical collar to our participants decreased peak head turn
amplitude during the CAT task, both in the pitch (head: p < 0.001) and yaw plane (head:
p < 0.001, trunk: p = 0.005). However, unexpectedly, peak head turn amplitude increased
with the collar during the coin task. This is possibly due to an alteration in the overall
strategy to complete the task. Trunk rotation amplitude increased with the addition of the
collar in yaw plane tasks (jacket and CAT), indicating that the IMUs were able to detect
an increase in range of motion in the trunk to complete the task when cervical range of
motion was limited. Aside from turning velocity, other turning metrics may be useful
in distinguishing individuals with vestibular impairment from healthy controls [16,17].
Wang and colleagues [16] reported vestibular schwannoma patients generated similar head
turning velocities to healthy controls; however, their head turns were greater in amplitude.
Mijovic et al. [17] reported patients with a vestibular lesion utilized different strategies
during ADL; some tasks were performed with faster rotational head velocities and other
tasks were performed slower than the controls. These findings warrant further examination
of an array of turning metrics in populations with turning difficulties to understand their
compensatory turning strategies.

4.4. Limitations/Future Directions

There are several limitations in this study. First, the order of the turning tasks was not
randomized. Second, the same data processing algorithm was applied to all tasks. Using
the same algorithm was intended to simulate scenarios when head and trunk kinematics
are assessed without advanced algorithm coding knowledge. However, the consequence
of utilizing a generalizable algorithm is that we risk overlooking differences between
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conditions that a customized algorithm may detect. Lastly, despite the fact that we were
adequately powered to see statistical differences between the conditions, the results of this
study should be interpreted with caution considering the number of participants and their
varied ages. Within this study, because of the functional relevance of yaw plane and pitch
plane movements of the head to daily life, we constrained our analysis to these planes. In
future studies, the use of IMUs provides the opportunity to calculate three-dimensional
head kinematics as a means of characterizing deficits in head coordination during mobility
tasks. In addition, future studies should examine refinement of data processing algorithms
in capturing head and trunk kinematics in a variety of real-world scenarios (e.g., household
chores, walking outside). This study provides a means to calculate appropriate sample size
for head and trunk motion during ADL. Many studies have applied IMUs to capture gait
and balance characteristics in populations with movement disorders with impaired turning
mechanics [7,13,14,17,23,27]; however, capturing turning during ADL and meaningful tasks
(e.g., dressing, preparing meals) in these populations without direct researcher observation
would increase understanding of what daily activities lead to compensatory movements
and challenge head and trunk control.

5. Conclusions

Wearable sensors are a feasible method of detecting the mechanical effects of cervical
spine immobilization on rotational velocity, amplitude, and head and trunk coupling during
ADL. These results complement existing research and provide the foundation for future
investigations which quantify head and trunk kinematics in populations with vestibular
and sensory integration impairments during real-world scenarios.

Author Contributions: Conceptualization and design, A.R.W., L.E.D. and B.J.L.; data analysis, A.R.W.
and C.T.; writing—original draft preparation, A.R.W. and C.T.; writing—review and editing, A.R.W.,
L.E.D., B.J.L. and C.H.; project administration, L.E.D.; funding acquisition, L.E.D., B.J.L. and C.H. All
authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by the Telemedicine and Advanced Technology Research Center
(TATRC) through the Army Medical Department Advanced Medical Technology Initiative (AAMTI),
2018. Brian J. Loyd was supported in part by the Foundation for Physical Therapy Research New
Investigator Fellowship Training Initiative (NIFTI).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the University of Utah (#00125069, 19 September 2019).

Informed Consent Statement: Written informed consent was obtained from all patients involved in
the study.

Data Availability Statement: The data presented in this study are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reuben, D.B.; Siu, A.L. An Objective Measure of Physical Function of Elderly Outpatients: The Physical Performance Test. J. Am.

Geriatr. Soc. 1990, 38, 1105–1112. [CrossRef] [PubMed]
2. Renggli, D.; Graf, C.; Tachatos, N.; Singh, N.; Meboldt, M.; Taylor, W.R.; Stieglitz, L.; Daners, M.S. Wearable Inertial Measurement

Units for Assessing Gait in Real-World Environments. Front. Physiol. 2020, 11, 90. [CrossRef] [PubMed]
3. Mancini, M.; Schlueter, H.; El-Gohary, M.; Mattek, N.; Duncan, C.; Kaye, J.; Horak, F.B. Continuous Monitoring of Turning

Mobility and Its Association to Falls and Cognitive Function: A Pilot Study. J. Gerontol. Ser. A 2016, 71, 1102–1108. [CrossRef]
[PubMed]

4. Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther.
2008, 88, 559–566. [CrossRef]

5. Dibble, L.E.; Lange, M. Predicting Falls in Individuals with Parkinson Disease: A reconsideration of clinical balance measures.
J. Neurol. Phys. Ther. 2006, 30, 60–67. [CrossRef]

6. Behrman, A.L.; Light, K.E.; Flynn, S.M.; Thigpen, M.T. Is the functional reach test useful for identifying falls risk among
individuals with Parkinson’s disease? Arch. Phys. Med. Rehabil. 2002, 83, 538–542. [CrossRef]

http://doi.org/10.1111/j.1532-5415.1990.tb01373.x
http://www.ncbi.nlm.nih.gov/pubmed/2229864
http://doi.org/10.3389/fphys.2020.00090
http://www.ncbi.nlm.nih.gov/pubmed/32153420
http://doi.org/10.1093/gerona/glw019
http://www.ncbi.nlm.nih.gov/pubmed/26916339
http://doi.org/10.2522/ptj.20070205
http://doi.org/10.1097/01.NPT.0000282569.70920.dc
http://doi.org/10.1053/apmr.2002.30934


Sensors 2022, 22, 3071 8 of 8

7. King, L.A.; Mancini, M.; Priest, K.; Salarian, A.; Rodrigues-De-Paula, F.; Horak, F. Do Clinical Scales of Balance Reflect Turning
Abnormalities in People with Parkinson’s Disease? J. Neurol. Phys. Ther. 2012, 36, 25–31. [CrossRef]

8. Toro, B.; Nester, C.; Farren, P. A review of observational gait assessment in clinical practice. Physiother. Theory Pract. 2003, 19,
137–149. [CrossRef]

9. King, L.A.; Horak, F.B.; Mancini, M.; Pierce, D.; Priest, K.C.; Chesnutt, J.; Sullivan, P.; Chapman, J.C. Instrumenting the Balance
Error Scoring System for Use with Patients Reporting Persistent Balance Problems after Mild Traumatic Brain Injury. Arch. Phys.
Med. Rehabil. 2013, 95, 353–359. [CrossRef]

10. Fino, P.C.; Wilhelm, J.; Parrington, L.; Stuart, S.; Chesnutt, J.C.; King, L.A. Inertial Sensors Reveal Subtle Motor Deficits When
Walking with Horizontal Head Turns after Concussion. J. Head Trauma Rehabil. 2019, 34, E74–E81. [CrossRef]

11. Spain, R.; George, R.S.; Salarian, A.; Mancini, M.; Wagner, J.; Horak, F.; Bourdette, D. Body-worn motion sensors detect balance
and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 2012, 35, 573–578. [CrossRef]
[PubMed]

12. Spildooren, J.; Vinken, C.; Van Baekel, L.; Nieuwboer, A. Turning problems and freezing of gait in Parkinson’s disease:
A systematic review and meta-analysis. Disabil. Rehabil. 2018, 41, 2994–3004. [CrossRef] [PubMed]

13. Paul, S.S.; Dibble, L.E.; Walther, R.G.; Shelton, C.; Gurgel, R.K.; Lester, M.E. Characterization of Head-Trunk Coordination Deficits
after Unilateral Vestibular Hypofunction Using Wearable Sensors. JAMA Otolaryngol. Neck Surg. 2017, 143, 1008–1014. [CrossRef]
[PubMed]

14. Paul, S.S.; Dibble, L.E.; Walther, R.G.; Shelton, C.; Gurgel, R.K.; Lester, M.E. Reduced Purposeful Head Movements during
Community Ambulation Following Unilateral Vestibular Loss. Neurorehabilit. Neural Repair 2018, 32, 309–316. [CrossRef]

15. Fino, P.C.; Parrington, L.; Walls, M.; Sippel, E.; Hullar, T.E.; Chesnutt, J.C.; King, L.A. Abnormal Turning and Its Association with
Self-Reported Symptoms in Chronic Mild Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1167–1177. [CrossRef]

16. Wang, L.; Zobeiri, O.A.; Millar, J.L.; Schubert, M.C.; Cullen, K.E. Head movement kinematics are altered during gaze stability
exercises in vestibular schwannoma patients. Sci. Rep. 2021, 11, 7139. [CrossRef]

17. Mijovic, T.; Carriot, J.; Zeitouni, A.; Cullen, K.E. Head Movements in Patients with Vestibular Lesion: A novel approach to
functional assessment in daily life setting. Otol. Neurotol. 2014, 35, e348–e357. [CrossRef]

18. Howell, D.R.; Beasley, M.; Vopat, L.; Meehan, W.P. The Effect of Prior Concussion History on Dual-Task Gait following a
Concussion. J. Neurotrauma 2017, 34, 838–844. [CrossRef]

19. Loyd, B.J.; Saviers-Steiger, J.; Fangman, A.; Paul, S.S.; Fino, P.C.; Lester, M.E.; Dibble, L.E. Control of Linear Head and Trunk
Acceleration during Gait after Unilateral Vestibular Deficits. Arch. Phys. Med. Rehabil. 2020, 102, 456–462. [CrossRef]

20. Beyea, J.; McGibbon, C.A.; Sexton, A.; Noble, J.; O’Connell, C. Convergent Validity of a Wearable Sensor System for Measuring
Sub-Task Performance during the Timed up-and-Go Test. Sensors 2017, 17, 934. [CrossRef]

21. Mancini, M.; Chiari, L.; Holmstrom, L.; Salarian, A.; Horak, F.B. Validity and reliability of an IMU-based method to detect APAs
prior to gait initiation. Gait Posture 2016, 43, 125–131. [CrossRef] [PubMed]

22. Khobkhun, F.; Hollands, M.A.; Richards, J.; Ajjimaporn, A. Can We Accurately Measure Axial Segment Coordination during
Turning Using Inertial Measurement Units (IMUs)? Sensors 2020, 20, 2518. [CrossRef] [PubMed]

23. Pham, M.H.; Elshehabi, M.; Haertner, L.; Del Din, S.; Srulijes, K.; Heger, T.; Synofzik, M.; Hobert, M.A.; Faber, G.S.; Hansen,
C.; et al. Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson’s Disease and
Older Adults Using an Inertial Measurement Unit at the Lower Back. Front. Neurol. 2017, 8, 457. [CrossRef]

24. Paul, S.S.; Walther, R.G.; Beseris, E.A.; Dibble, L.E.; Lester, M.E. Feasibility and Validity of Discriminating Yaw Plane Head-
on-Trunk Motion Using Inertial Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2347–2354. [CrossRef]
[PubMed]

25. Shirley Ryan Ability Lab. 2 Minute Walk Test. 2013. Available online: https://www.sralab.org/rehabilitation-measures/2-
minute-walk-test#older-adults-and-geriatric-care (accessed on 29 March 2022).

26. Bohannon, R.W.; Wang, Y.-C.; Gershon, R.C. Two-Minute Walk Test Performance by Adults 18 to 85 Years: Normative Values,
Reliability, and Responsiveness. Arch. Phys. Med. Rehabil. 2015, 96, 472–477. [CrossRef]

27. Haertner, L.; Elshehabi, M.; Zaunbrecher, L.; Pham, M.H.; Maetzler, C.; Van Uem, J.M.T.; Hobert, M.A.; Hucker, S.; Nussbaum, S.;
Berg, D.; et al. Effect of Fear of Falling on Turning Performance in Parkinson’s Disease in the Lab and at Home. Front. Aging
Neurosci. 2018, 10, 78. [CrossRef] [PubMed]

http://doi.org/10.1097/NPT.0b013e31824620d1
http://doi.org/10.1080/09593980307964
http://doi.org/10.1016/j.apmr.2013.10.015
http://doi.org/10.1097/HTR.0000000000000418
http://doi.org/10.1016/j.gaitpost.2011.11.026
http://www.ncbi.nlm.nih.gov/pubmed/22277368
http://doi.org/10.1080/09638288.2018.1483429
http://www.ncbi.nlm.nih.gov/pubmed/29961369
http://doi.org/10.1001/jamaoto.2017.1443
http://www.ncbi.nlm.nih.gov/pubmed/28859201
http://doi.org/10.1177/1545968318770271
http://doi.org/10.1089/neu.2017.5231
http://doi.org/10.1038/s41598-021-86533-3
http://doi.org/10.1097/MAO.0000000000000608
http://doi.org/10.1089/neu.2016.4609
http://doi.org/10.1016/j.apmr.2020.08.005
http://doi.org/10.3390/s17040934
http://doi.org/10.1016/j.gaitpost.2015.08.015
http://www.ncbi.nlm.nih.gov/pubmed/26433913
http://doi.org/10.3390/s20092518
http://www.ncbi.nlm.nih.gov/pubmed/32365573
http://doi.org/10.3389/fneur.2017.00457
http://doi.org/10.1109/TNSRE.2017.2740945
http://www.ncbi.nlm.nih.gov/pubmed/28829312
https://www.sralab.org/rehabilitation-measures/2-minute-walk-test#older-adults-and-geriatric-care
https://www.sralab.org/rehabilitation-measures/2-minute-walk-test#older-adults-and-geriatric-care
http://doi.org/10.1016/j.apmr.2014.10.006
http://doi.org/10.3389/fnagi.2018.00078
http://www.ncbi.nlm.nih.gov/pubmed/29636676

	Introduction 
	Materials and Methods 
	Study Participants 
	Experimental Protocol 
	Don/Doff Jacket 
	Pick Up Coin 
	The Community Ambulation Task (CAT) 

	Data Acquisition and Outcomes 
	Statistical Analysis 

	Results 
	Discussion 
	Peak Turning Velocity 
	Head–Trunk Coupling 
	Peak Turn Amplitude 
	Limitations/Future Directions 

	Conclusions 
	References

