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Abstract

Over the past few years, growing evidence suggests direct crosstalk between thyroid hormones (THs) and the immune 
system. Components of the immune system were proposed to interfere with the central regulation of systemic TH 
levels. Conversely, THs regulate innate and adaptive immune responses as immune cells are direct target cells of 
THs. Accordingly, they express different components of local TH action, such as TH transporters or receptors, but 
our picture of the interplay between THs and the immune system is still incomplete. This review provides a critical 
overview of current knowledge regarding the interaction of THs and the immune system with the main focus on local 
TH action within major innate and adaptive immune cell subsets. Thereby, this review aims to highlight open issues 
which might help to infer the clinical relevance of THs in host defence in the context of different types of diseases such 
as infection, ischemic organ injury or cancer.

Introduction

Thyroid hormones (THs) are critical regulators of various 
physiological processes within the human body, which 
become particularly evident in case of imbalance. Both 
deficiency and excess of THs are associated with severe 
disorders affecting different organs. Interestingly, 
hypothyroidism has been associated with increased 
susceptibility to infectious diseases. Initial studies in the 
1970s and 1980s suggested that THs directly act on human 
leukocytes during bacterial pneumonia and promote 
leukocyte function given an increased phagocytic activity 
of neutrophils and augmented lymphocyte proliferation 
upon TH administration in vivo (1, 2). Moreover, 
hypothyroidism was identified as a risk factor for 
periprosthetic joint infections based on a meta-analysis of 
institutional databases on patients with arthroplasty (3). 

In line with this, increased mortality of hypothyroid rats 
was observed in a caecal ligation and puncture model of 
sepsis (4). Over the past years, evidence for a direct impact 
of THs on the immune system is growing. Specifically, 
different TH transporters (THTs), deiodinases (DIOs) and 
TH receptors (THRs) were shown to be expressed within 
immune cells (5, 6). Yet, a comprehensive understanding 
about the local control of TH action within the different 
components of the immune system is still missing. 
Furthermore, data on how THs impact the function of 
different immune cells are incomplete or controversial. 
For example, increased production of reactive oxygen 
species (ROS) by neutrophils was observed during 
subclinical hypothyroidism and upon in vitro stimulation 
of neutrophils with THs, indicating stimulatory and 
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inhibitory actions of THs within the same immune  
cell (7, 8).

This review will provide an overview of current 
concepts and knowledge regarding the interplay of THs 
and the immune system. To this end, the review briefly 
discusses changes of systemic TH homeostasis induced 
by the immune system and addresses in detail the local 
action of THs within major immune cell subsets including 
resident and recruited cells in the course of inflammation/
infection. With this, we aim to highlight open issues, 
which need to be addressed for a better understanding of 
TH action during inflammatory and infectious diseases 
and ultimately to harness local TH action to open up new 
avenues for diagnosis, prognosis and treatment.

Local action of THs

The secretion of THs by the thyroid gland is controlled 
at two levels of the hypothalamus-pituitary-thyroid 
(HPT) axis (for review see (9)). In short, thyrotropin-
releasing hormone (TRH) is secreted by the hypothalamus 
stimulating the release of the thyroid-stimulating 
hormone (TSH) from the pituitary which in turn drives 

the production and secretion of THs by the thyroid gland. 
Homeostasis of systemic TH levels is achieved by negative 
feedback to the hypothalamus and the pituitary (Fig. 1). 
Interestingly, the human thyroid gland mainly secretes 
thyroxine (T4), whereas triiodothyronine (T3) is mostly 
generated by deiodination in peripheral tissues (10, 11). 
On the contrary, in rodents, which are commonly used 
in basic endocrine research, the thyroid gland secrets 
significant amounts of T3 underlining the relevance 
of species-specific differences in TH synthesis and 
metabolism (12, 13).

Although in the classical view, TH action in the body 
is largely determined by circulating TH concentrations, the 
concept of local action of THs at the tissue- or cell-specific 
level has gained increasing interest in recent years. Local 
action of THs depends on three steps: (i) TH transport into 
the target cell; (ii) TH metabolism into active or inactive 
hormone; (iii) TH binding to THRs, which mediate TH 
signalling by canonical or noncanonical modes of action. 
These distinct aspects of local TH action may occur in a 
tissue and cell-specific manner and vary in health and 
disease leading to an overall highly dynamic modulation 
of TH effects in an organism (Fig. 2).

Figure 1
Schematic view of the hypothalamic–
pituitary–thyroid (HPT) axis during health 
and infectious disease. (A) At steady-state 
thyroliberin (TRH) released from the 
hypothalamus stimulates the secretion of 
thyroid-stimulating hormone (TSH) by the 
pituitary gland which in turn drives 
thyroxine (T4) and triiodothyronine (T3) 
secretion from the thyroid gland. The 
resulting thyroid hormones have negative 
feedback on the hypothalamus as well as 
the pituitary gland. (B) During infectious 
disease pro-inflammatory cytokines locally 
augment the negative feedback of thyroid 
hormones (TH) on the hypothalamus via 
elevated deiodinase 2 (DIO2) expression 
and thereby diminish TRH and TSH 
secretion. Moreover, inflammatory stimuli 
shape peripheral TH metabolism limiting 
DIO1 expression in the liver. As a result, 
reduced serum T3 and /or T4 levels are 
observed during severe illness whereas 
reverse T3 (rT3) concentrations may be 
elevated.
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TH transporter

For a long time, transmembrane transport of THs has been 
assumed to occur via passive diffusion. However, since 
2004 several THTs were identified that actively mediate TH 
uptake from a cell (for review see (14)). Of these transporters, 
monocarboxylate transporter 8 (MCT8) is best-known 
as it is highly specific for TH transport and inactivating 
mutations of MCT8 result in the X-linked Allan-Herndon-
Dudley Syndrome in humans. Other known THTs include 
MCT10, large neutral amino acid transporters (LATs) and 
organic anion transporter polypeptides (OATPs). Cellular 
availability of THs is regulated by the cell’s equipment 
with THTs and their specific TH transport characteristics. 
For example, MCT8 can transport T4 and T3 with similar 
efficiency, whereas OATP4A1 preferentially transports T3 
into target cells and LAT2 displays higher affinities for the 

TH metabolite 3,3’ T2 (15, 16, 17, 18). In addition to TH 
influx, THTs also control the efflux of THs from cells with 
MCT8 exerting a prominent role in TH secretion from the 
thyroid gland (14, 19).

TH deiodinases

Within the target tissue/cell, local TH concentrations are 
further adjusted by different DIOs (for review see (20)). 
Three different DIOs are known, of which DIO1 and DIO2 
can catalyse the conversion of T4 into T3 with DIO2 being 
more efficient (21). Inactivation of THs is mediated by 
DIO1 and DIO3 converting T4 and T3 into reverse-T3 (rT3) 
and 3,3’-T2, respectively. Similar to THTs, DIOs display 
different affinities for THs (21, 22, 23), and interestingly, 
THs may directly regulate the expression of DIOs. For 

Figure 2
Local action of thyroid hormones in the 
immune system. (A) Various immune cells 
were described to express different types 
of thyroid hormone transporters (THTs) 
facilitating the uptake of THs into the cell. 
Within the cell deiodinases (DIOs) convert 
THs either promoting or limiting TH 
activation. Intracellular T3 can 
subsequently bind to TH receptors (THRs) 
in the cytoplasm or the nucleus initiating 
noncanonical or canonical signalling 
pathways, respectively. In addition to 
noncanonical THR action, which relies 
among others on PI3K signalling 
pathways, T4 can bind to integrin αVβ3 on 
the cell surface initiating several pathways 
such as PI3K signalling. (B) Local action of 
THs was detected in different innate and 
adaptive immune cells such as 
neutrophils, natural killer (NK) cells, 
macrophages, monocytes, dendritic cells, 
T cells and B cells. Here, T3 and T4 were 
described to directly regulate various 
functional aspects including activation, 
differentiation, proliferation and/or 
migration. Moreover, TH signalling in 
monocytes and dendritic cells indirectly 
affects macrophage and dendritic cell 
responses as well as T cell activity, 
respectively.
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example, T3 drives the expression of DIO1 and DIO3 
whereas T3 and T4 downregulate DIO2 mRNA expression 
and activity, respectively (24, 25, 26, 27, 28).

TH receptors

Signalling of THs within the cell is mediated by different 
THRs, which act as ligand-modulated transcription factors 
and exert a dual mode of action (for review see (29)). 
THRs are linked to TH response elements and binding of 
T3 induces a switch in transcription factor activity for 
positive and negative TH target genes based on a ligand-
triggered replacement of corepressors and coactivators, 
respectively. Three main T3-binding THR isoforms have 
been identified to date, THRa1, THRb1 and THRb2. In 
addition to this classical concept of canonical mode of 
action, THRs may additionally act via noncanonical 
signalling (30, 31, 32, 33, 34, 35). Here, activation 
of rapid cytosolic signalling cascades, for instance 
phosphatidylinositol-3-kinase (PI3K) or extracellular-
signal-regulated kinase (ERK) pathways, are mediated by 
ligand-bound THRs. Independent of THRs, THs can also 
interact with integrin αVβ3 (vitronectin receptor) which 
was found to be expressed on the cell surface of different 
cells such as endothelial cells or T cell lymphomas (29, 36). 
The binding of THs to integrin αVβ3 was shown to initiate 
signalling via PI3K or ERK, however integrin αVβ3 does not 
solely bind THs (29, 37). Both, canonical and noncanonical 
TH signalling cascades are associated with various cellular 
processes such as proliferation, metabolism or migration.

Interplay of THs and the immune system

The immune system facilitates the defence against a 
wide range of microorganisms facing the human body. 
Initially, the innate immune compartment affords a fast, 
albeit unspecific response, while later adaptive immunity 
takes over host defence, providing a slow though specific 
response. Several types of immune cells can be allocated 
either to the innate or the adaptive immune compartment, 
differentially facilitating pathogen recognition, 
elimination and immunological memory. However, 
excessive immune responses can be seriously deleterious 
and thus immunity needs to be tightly regulated.

The interplay of THs and the immune system involves 
a bidirectional crosstalk. On the one hand, pathological 
conditions related to severe illness or autoimmunity interfere 
with TH homeostasis. On the other hand, THs were depicted 
as regulators of innate and adaptive immune cells (2, 8).

Non-thyroidal illness syndrome

During severe illness, for example, related to surgery or 
infection, serum T4 and T3 concentrations decrease despite 
normal or reduced TSH levels (38). Low T4 levels correlate 
with disease severity and are associated with increased 
mortality (39, 40). Although these hormonal changes 
resemble those observed in central hypothyroidism, the 
decline of circulating TH levels is transient as serum TH 
concentrations restore when the patients recover. Moreover, 
unlike central hypothyroidism, rT3 serum concentrations 
are frequently elevated in critically ill patients. Hence, this 
condition is referred to as non-thyroidal illness syndrome 
(NTIS) (38, 39).

Despite vast literature, the mechanisms of NTIS 
are not fully understood, but one main feature is the 
central downregulation of the HPT axis via TRH which 
leads to reduced TSH and TH levels as demonstrated in 
a lipopolysaccharide (LPS)-induced NTIS model (41, 
42). Furthermore, alterations in TH metabolism due to 
a decreased expression of DIO1 in the liver are thought 
to account for reduced T3 and elevated rT3 levels (43). 
Interestingly, attenuated TRH expression during severe 
disease has been associated with increased DIO2 activity 
in the hypothalamus due to NFκB activation as a result 
of inflammatory stimuli ((42, 44), Fig. 1). Likewise, 
inflammatory cytokines were proposed to attenuate 
DIO1 expression in the liver during critical illness 
(45, 46). Different cytokines, for example, interleukin-
1β (IL1β), IL6 or TNFα, were shown to correlate with 
diminished TH levels during NTIS (38, 47, 48), however 
blockade of a single cytokine such as IL1β or TNFα failed 
to identify a distinct cytokine as the primary driver of 
NTIS pathology.

Interestingly, besides the role of immune responses 
during NTIS pathology, the immune system per se might 
exert an important function in recovery (38). The secretion 
of TSH by immune cells has been proposed to support the 
restoration of TH homeostasis; however, the role of TSH in 
the immune system will be discussed in detail later on.

Autoimmune thyroid disease

In addition to NTIS and much more frequent in the general 
population, autoimmunity can lead to thyroid gland 
dysfunction which may present as either primary hypo- 
or hyperthyroidism. Since a detailed discussion of these 
pathological conditions would go beyond the scope of this 
review, we only briefly highlight some core aspects here 
(for review see (49)).
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Autoimmune thyroiditis is the major cause of non-
surgical hypothyroidism and is characterised by infiltration 
of thyroid tissue with autoreactive T lymphocytes and 
measurable autoantibodies against two main thyroid 
gland proteins, thyroid peroxidase and thyroglobulin. 
As a result, of mostly chronic cellular immune processes, 
thyroid cells are destroyed, which over time may result 
in the critical reduction of functional thyroid tissue and 
thus hypothyroidism (49). In contrast, autoimmune 
hyperthyroidism, that is Graves’ disease, is characterised 
by autoreactive B cells secreting autoantibodies against 
the TSH receptor (TSHR). These biologically active 
antibodies mostly cause TSHR stimulation resulting in 
excessive TH production and secretion with a much more 
clinical manifestation than autoimmune thyroiditis (49). 
Typically, Graves’ disease patients exhibit a spectrum of 
different TSHR antibodies, in rare cases also with receptor 
blocking properties, which may change in the course of 
the disease and in sum determine thyroid gland activity.

The development of autoimmune thyroid diseases has 
been attributed to multiple intrinsic and extrinsic factors, 
with genetics playing a major role in disease susceptibility. 
In particular, several polymorphisms have been identified 
prominently in genes related to co-stimulation of immune 
cells (e.g. CD40), antigen presentation (e.g. HLA-DRβ-
Arg74), or immune tolerance (e.g. FOXP3) (50).

In summary, these findings in NTIS and autoimmune 
thyroid diseases illustrate that the immune system has a 
crucial impact on TH homeostasis affecting the HPT axis 
and the thyroid gland itself.

Local action of THs in innate immune cells

Macrophages

Tissue-resident macrophages are among the first cells to 
respond to invading pathogens or inflammatory stimuli 
and can be found in various tissues (51). Upon pathogen 

encounter, tissue-resident macrophages are classically 
described to adopt either a pro-inflammatory M1 or 
anti-inflammatory M2 phenotype (52). In short, M1 
macrophages facilitate the clearance of foreign microbes 
via phagocytosis and the generation of ROS, while M2 
macrophages are involved in tissue repair (53). Both, 
M1 and M2 macrophages can be seen as the extremes 
of a spectrum of phenotypes. Moreover, tissue-resident 
macrophages orchestrate subsequent immune responses 
via the secretion of cytokines (e.g. IL1β, IL6 and TNFα) and 
chemokines (e.g. CCL2, CXCL1 and CXCL10) attracting 
further immune cells to the site of infection (51, 52).

Importantly, several proteins involved in local TH 
action were identified in macrophages (Table 1). For 
example, MCT10 expression was detected in the RAW264.7 
murine macrophage cell line via real-time quantitative 
PCR (qRT-PCR) (54). Additionally, OATP4a1 and LAT2 
mRNA and protein expression was demonstrated in tissue-
resident macrophages in the brain (55). Based on qRT-PCR 
analyses, DIO2 was assumed to be related to intracellular 
TH metabolism in murine macrophages, and both THRa 
and THRb expression were detected (54, 56). Interestingly, 
in vitro analyses of bone marrow-derived macrophages 
(BMDMs) in a murine atherosclerosis model suggested 
that THs can activate both canonical and noncanonical 
THRa signalling in macrophages. Moreover, TH action 
via integrin αVβ3 was shown by in vitro stimulation of 
RAW264.7 cells. Here, PI3K or ERK inhibitors as well as 
tetraiodothyroacetic acid (Tetrac) interfered with TH 
signalling in RAW264.7 macrophages (57, 58).

Functionally, THs may drive pro-inflammatory 
macrophage responses as they triggered phagocytic 
activity and nitric oxide production in murine and 
human macrophage cell lines (58). In line with this, 
DIO2 deficient BMDMs exhibited impaired phagocytosis 
and bacterial killing in vitro (54, 59). Moreover, THs were 
described to drive M1 polarization of murine BMDMs in 
vitro while limiting M2 polarization (56, 58). Interestingly, 

Table 1 Expression pattern of proteins involved in local TH action in immune cells.

Cell type THT DIO THR NCS TSH receptor Reference

Neutrophil MCT8, MCT10 (h) DIO3, DIO1 (h) THRa (h) Yes (5, 69, 70)
Macrophage MCT8, MCT10, LAT2, OATP4a1 DIO2 THRa >> THRb Yes (54, 55, 56, 57, 58)
Monocyte DIO2 (h) Yes Yes (54, 81, 108)
Dendritic cell MCT10 >> LAT2 DIO3 >> DIO2 THRa, THRb Yes (6, 65, 110)
Natural killer cell MCT8 (h), MCT10 (h) THRa (h), THRb (h) Yes (87, 108)
T cell THRa, THRb Yes Yes (97, 98, 109, 110)
B cell THRa, THRb Yes Yes (104, 108)

If not indicated data are from mice.
DIO, deiodinase; h, human; NCS, noncanonical signaling; THR, TH receptor; THT, TH transporter; TSH, thyroid stimulating hormone. 
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THRb mRNA expression was significantly augmented 
in M2 macrophages compared to M1 or unpolarised 
macrophages (56), suggesting that the pro-inflammatory 
polarisation is mediated by THRa signalling. In contrast 
to the pro-inflammatory action of THs, lack of THs, that 
is hypothyroidism has been associated with exacerbated 
inflammatory responses during an unilateral ureteral 
obstruction (UUO) model of kidney injury and in 
atherosclerosis in mice. Here, signalling of THs via THRa 
was described to limit the secretion of pro-inflammatory 
cytokine by macrophages (57, 60). In line with this, DIO2 
deficient mice displayed an increased susceptibility to 
acute lung injury indicated by elevated inflammatory 
chemokine and cytokine levels which could be in part 
reversed by T3 treatment (61). Thus, the current concept of 
local TH action within macrophages is at best incomplete 
and conflicting (Fig. 2).

Dendritic cells

Similar to macrophages, dendritic cells (DCs) can be found 
in various non-lymphoid and lymphoid tissues and are 
critically involved in pathogen surveillance and regulation 
of adaptive immune responses (62). Two main subsets 
of DCs have been described, classical DCs (cDCs) and 
plasmacytoid DCs (pDCs). Upon activation, the latter are 
the main source of type I interferons, which drive antiviral 
immunity, whereas cDCs are the major type of antigen-
presenting cells (APCs), which initiate T cell responses 
with type 1 cDCs activating CD8+ T cells whereas type 
2 cDCs stimulate CD4+ T helper cells (63, 64). For this 
purpose, cDCs migrate into lymphoid tissues and undergo 
maturation after recognition of foreign antigens.

Regarding TH action, MCT10 and LAT2 expression 
on transcript and protein level was found in murine bone 
marrow-derived DCs (BMDCs). In vitro analysis of T3 uptake 
by BMDCs in presence of THT inhibitors implied that TH 
transport was mainly mediated by MCT10. Furthermore, 
murine BMDCs were described to express DIO2 and DIO3 
with DIO3 exhibiting higher enzyme activity in BMDCs 
in vitro (6). Moreover, murine BMDCs were depicted to 
express THRb and to a lesser extent THRa ((65), Table 1).

In vitro treatment with T3 but not T4 was described 
to induce maturation of BMDCs and to increase their 
ability to stimulate T cells via an augmented expression 
of costimulatory molecules, such as MHC class II, CD40 
and CD80 (6, 65). Accordingly, T3 was suggested to direct 
BMDCs towards a pro-inflammatory phenotype driving 
Il17 mediated immune responses as well as cytotoxic 
T cell responses in a murine B16 melanoma model  

(66, 67). Moreover, T3 was shown to reduce the expression 
of inhibitory molecules such as PD-L1 on BMDCs in vitro 
and thus impair their ability to induce regulatory T cells 
(Treg) (66). Additionally, in vivo tracking of fluorescently 
labelled BMDCs revealed a stimulatory effect of T3 on DC 
migration. In line with this, in vitro stimulation of BMDCs 
with T3 increased the expression of migratory marker 
CCR7 (67). Hence, these studies suggest that T3 may act 
as a stimulatory regulator of pro-inflammatory responses 
of DCs in vitro (Fig. 2). Yet, gene expression and functional 
analysis performed in BMDCs only provide insights into 
the action of cDCs, leaving out the impact of THs on pDCs. 
Thus, so far nothing is known about the local action of THs 
in pDCs.

Neutrophils

During infection, neutrophils are the first cells to be 
recruited to the site of inflammation and facilitate 
pathogen clearance via intracellular and extracellular 
killing. Among others, intracellular killing relies on the 
phagocytosis of pathogens and the generation of ROS, 
whereas extracellular killing is exerted by the formation of 
so-called neutrophil extracellular traps (68).

Neutrophils were the first immune cells in which 
conversion of T4 into T3 was shown (69). Later studies 
revealed that MCT8 and DIO3 are expressed in murine 
neutrophils, whereas MCT10, DIO3, DIO1 and THRa 
expression was demonstrated in human circulating 
neutrophils by conventional PCR ((5, 70), Table 1).

Regarding the functional role of THs in neutrophils, 
DIO3 was shown to be essential for optimal neutrophil 
activity, in particular for neutrophil migration and 
intracellular killing mediated by ROS during bacterial 
infection in mice, suggesting that neutrophils function 
well when intracellular T3 levels are low ((71, 72), Fig. 2). 
Moreover, a positive correlation between ROS generation 
via NADPH oxidase and subclinical hypothyroidism 
has been reported in humans suggesting an inhibitory 
TH effect on neutrophil function (7). However, it is still 
unknown whether the impact of DIO3 on ROS production 
depends on TH action or is a TH-independent effect. For 
example, Boelen et al. suggested that DIO3 may serve as a 
source of inorganic iodide required for myeloperoxidase 
function in oxidative stress supporting a TH-independent 
effect (73). Besides, human neutrophils were described to 
exhibit elevated NADPH activity and ROS generation upon 
stimulation with T3 (8, 74). Interestingly, neutrophils 
obtained from a patient with a mutation in THRa that lead 
to TH resistance did not display any functional restraints 
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regarding antibacterial activity, ROS production or 
migration (75). However, reduced numbers of neutrophilic 
granulocytes were detected in THRa-/- mice (76). Regulatory 
effects of THs on ROS production in human neutrophils 
were suggested to be mediated by noncanonical effects 
via a membrane-bound target of THs, i.e. integrin αVβ3 
(77), but a comprehensive concept linking TH transport, 
metabolism and signalling in neutrophils and conclusion 
for neutrophil function is still missing.

Monocytes

Following neutrophils, monocytes migrate to the site of 
infection, where they release pro-inflammatory cytokines 
and may differentiate into macrophages or DCs (78). Of 
note, monocyte-derived macrophages and DCs differ 
markedly from their tissue-resident counterparts since 
they display a more pronounced inflammatory phenotype 
and thus are commonly associated with more severe 
immunopathology (79, 80).

TH action in monocytes is rarely studied so far and 
most research focused on monocyte-derived macrophages. 
The human monocyte cell line THP-1 was shown to express 
DIO2 via qRT-PCR and high amounts of integrin αVβ3 ((54, 
81), Table 1). Functionally, THs were described to enhance 
the antibacterial immune response of monocyte-derived 
macrophages indicated by enhanced phagocytic activity 
as well as elevated expression of inducible nitric oxide 
synthase (iNOS) in these cells (58). THs were found to 
limit the differentiation of monocytes into macrophages 
in vitro while promoting the differentiation into DCs (56, 
82). Furthermore, in vitro stimulation of THP-1 monocytes 
with THs impaired their migration in response to several 
chemoattractant proteins (83). In line with this, elevated 
frequencies of monocyte-derived macrophages were found 
during LPS-induced endotoxemia in hypothyroid mice and 
T3 application restored normal macrophage frequencies 
(56). Moreover, inflammatory responses of THP-1-derived 
macrophages to silica were attenuated in presence of THs 
in vitro ((84), Fig. 2). Thus, little is known about the impact 
of THs on monocytes whereas the current understanding 
of local TH action in monocyte-derived macrophages is 
conflicting.

Natural killer cells

Natural killer (NK) cells represent a unique group of 
innate lymphocytes within the immune system (85). 
Upon infection, NK cells are readily recruited to the site of 
inflammation to lyse infected cells. Activation of NK cells 

is regulated by the balance of inhibitory and activating 
receptors which interact with their counterparts expressed 
on host cells (86).

Regarding local TH action, human uterine NK cells 
were suggested to express THTs MCT8 and MCT10, as well 
as both types of THRs based on immunocytochemical 
analysis ((87), Table 1). However, the functional role of 
TH signalling within NK cells is controversial (Fig. 2). 
Exogenous T3 was described to augment NK cell activity of 
older individuals with low serum T3 levels in vitro, whereas 
hyperthyroidism due to Graves’ disease was proposed 
to limit NK cell activation (88, 89). Similarly, systemic 
treatment of old mice with T4 increased NK cell activity 
and sensitivity to IFNγ, while hyperthyroid mice displayed 
impaired NK cytotoxic function (90, 91).

Local action of THs in adaptive 
immune cells

T cells

Cellular immune responses of the adaptive immune system 
are mediated by T lymphocytes, which can be divided into 
CD4+ and CD8+ T cells (92). Upon activation in lymphoid 
tissues by DCs, CD8+ T cells migrate to the site of infection to 
clear infected cells via the induction of apoptosis, whereas 
CD4+ T cells differentiate into various types of T helper cell 
subsets supporting distinct cellular immune responses (93, 
94). Importantly, following pathogen clearance a small 
fraction of effector T cells differentiate into memory T cells 
accelerating immune responses upon reinfection (95, 96).

So far little is known about the expression of proteins 
involved in local TH action in T lymphocytes (Table 1). 
THRa and THRb were described to be expressed by T cells on 
mRNA and protein levels, respectively (97). Moreover, TH 
deiodination was observed within human lymphocytes, 
but the expression or activity of DIOs in T cells has not been 
addressed yet (98). Furthermore, analyses of TH transport 
into T cells are still missing.

Different indirect effects of THs on T cell function 
were described, which are mediated via the adjustment 
of DC responses (see above). Yet, THs were also suggested 
to directly modulate T cell proliferation and activation as 
in vivo T4 application enhanced T cell numbers and anti-
tumour immunity in a murine lymphoma model (97, 99). 
Accordingly, reduced tumour rejection was observed in 
murine lymphoma model under chronic stress, which is 
associated with reduced systemic TH levels (100). On the 
contrary, in vitro stimulation of human T lymphocyte cell 
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lines as well as peripheral blood lymphocytes with THs 
were described to increase T cell apoptosis (101), implying a 
negative role of THs on T cell immunity. Thus, our current 
knowledge on the role of THs in T cells in general, in anti-
tumour immunity, and in T cell subsets, is incomplete and 
contradictory (Fig. 2).

B cells

Humoral immune responses of the adaptive immune 
compartment are facilitated by B lymphocytes, which 
can secrete different types of immunoglobulins (Ig) (102). 
Activation of B cells, based on the recognition and affinity 
of foreign antigens to the B cell receptor (BCR), initiates 
activation and differentiation of B cells into short-lived 
plasmablasts or long-lived plasma cells and memory B cells 
in germinal centres (103).

Similar to T cells, only THRa and THRb were found 
to be expressed in B cells ((104), Table 1), whereas other 
components of local TH action have not been identified yet. 
Nevertheless, THs were proposed to be essential for primary 
B cell development since reduced numbers of pro-B cells 
and pro-B cell proliferation was found in absence of THRa 
signalling in a murine model of THRa resistance (76, 104, 
105). In line with this, accelerated B cell proliferation was 
observed upon in vitro stimulation of human peripheral 
blood B lymphocytes with T3 (106). Thus, THs and THRa 
might be important for proper B cell immune responses, 
but further studies are required to study the direct and 
indirect actions of THs in the development, activation and 
differentiation of B cells (Fig. 2).

TSH within the immune system

Although still a matter of debate, TSH itself has been 
proposed as a potential regulator of the immune system 
as different immune cells were shown to express TSHR (for 
review see (107)). In agreement with this, recombinant 
human TSH was shown to promote lymphocyte 
proliferation and activation, including NK, T and B cells 
in thyroidectomised patients in vivo (108). Moreover, TSH 
was suggested to promote thymic T cell development in 
humans and mice, based on the interaction with thymic 
T cell expressed TSHR (109). Furthermore, the phagocytic 
activity and pro-inflammatory cytokine secretion of 
DCs were enhanced in presence of TSH in vitro (110). 
Additionally, lymphocytes and splenic DCs were suggested 
to express TSH with DCs being the primary source. Thus, 
TSH has been proposed to act as a humoral mediator similar 

to cytokines within the immune system. Interestingly, 
murine myeloid progenitor cells in the bone marrow 
produce a specific splice variant, TSHb, which might 
indicate a specific feature of immune cell-derived TSH 
(111). Based on the finding of synthesis of TSH within the 
immune system, immune cells were implied to be involved 
in the restoration of TH homeostasis during recovery of 
NTIS (107). However, evidence for a restoring function of 
the immune system via TSH on systemic TH levels during 
NTIS has yet to be provided.

The unknowns of TH action on 
immune responses

Although many studies have been performed to 
understand the interplay of THs and the immune system, 
the results so far only represent puzzle pieces with many 
unclear aspects, which comprise three major unknowns: 
(i) the components mediating TH action; (ii) the impact 
of THs on immune cell function; (iii) tissue-specific TH 
availability in health and disease.

Components of local TH action

The exact components mediating local TH action within 
distinct immune cells are largely unknown so far due to 
several limitations of previous studies. Firstly, many data 
are based on mRNA analysis whereas the knowledge on 
the ‘functional’ expression of proteins involved in local 
TH action within immune cells is fragmentary, in part due 
to lack of specific antibodies, for example, for THRa and 
THRb (Table 1). Second, a comprehensive analysis on the 
expression of THTs, DIOs and THRs within distinct immune 
cell populations is lacking. For example, THTs involved 
in TH uptake into T or B cells are unknown and in-depth 
analyses of TH action in subpopulations of immune 
cells, such as CD4+ and CD8+ T cells, tissue-resident and 
monocyte-derived macrophages, or cDC and pDC subsets, 
are still missing (Table 1). Third, previous analyses were 
mainly performed in cell lines as well as bone marrow-
derived cells, and thus, obtained results should be viewed 
with caution. Expression levels in cell lines may differ from 
primary immune cells and, similarly, prolonged ex vivo 
culture of progenitor cells might cause alterations in the 
expression of proteins involved in local TH action, which 
are among others controlled in an autoregulatory fashion 
by THs (25, 26, 112). Fourth, although the expression of 
proteins involved in local TH action was studied partly 
in mice and partly in humans, profound comparative 
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analyses of the two species to ensure translational relevance 
are largely lacking. Yet, different expression patterns of 
THTs and DIOs were observed, for example, in murine and 
human neutrophils (5, 70), potentially indicating species-
specific differences.

Impact of THs on immunity

The precise effect of local TH action on the function 
of individual immune cells is poorly understood. First, 
current results on the functional aspects of THs within the 
immune system are controversial and suggest stimulatory 
as well as inhibitory effects of THs within the same immune 
cell population (Fig. 2). For example, THs were described to 
drive M1 polarization of macrophages in vitro, whereas THs 
were shown to limit inflammatory macrophage responses 
during an UUO model of kidney injury (56, 60). Likewise, 
THs were suggested on the one hand to enhance anti-
tumour immunity and on the other hand, to trigger T cell 
apoptosis (99, 101). Second, similar to expression analysis, 
no in-depth analysis of specific immune cell subtypes 
(e.g. CD4+ T cells, CD8+ T cells) has been performed in 
this context. Likewise, little is known about the impact of 
activation and polarisation on the role of THs in immune 
cell function, although it has been noted, that activation 
and polarisation of, for example, macrophages alters the 
expression of proteins involved in local TH action. Here, 
stimulation of BMDMs with LPS increased the expression 
of DIO2 and THRa (54), while an augmented expression 
of THRb was found in M2 macrophages compared to 
unpolarised or M1 macrophages (56). Thus, the functional 
outcome of TH stimulation might differ in activated 
immune cells between distinct subtypes, such as T helper 
1 and regulatory CD4+ T cells as well as CD8+ T cells. 
Accordingly, the pathological models used to characterise 
the impact of THs on the immune system might have 
gained different and contrasting results, depending 
on the immune cell populations activated within the  
distinct models.

Local TH availability

Our current knowledge about local mechanisms 
controlling TH tissue concentrations in health and disease 
and their influence on proper immune responses is limited. 
For example, the TH status of lymphoid tissues, such as 
lymph nodes and spleen, as well as distinct peripheral 
tissue, such as lung, liver or gut, is largely undefined both 
in health and disease. Interestingly, increased expression 

of DIO2 was observed in a murine model of ventilator-
induced lung injury (VILI) (61, 113), whereas augmented 
expression of DIO3 has been described under hypoxia, 
a hallmark of, for example, healthy intestinal but also 
inflamed tissues (114). Thus, local TH availability to 
resident immune cells might differ and be an additional 
factor involved in immune tolerance and development of 
immune cells at a steady state. Changes in TH environment 
due to immune cell migration or specific alterations in 
TH tissue concentrations upon infection/inflammation 
may be involved in shaping immune responses leading 
to protective or detrimental adaptions. Of note, although 
T3 is in general considered as the active form of TH, other 
TH metabolites such as rT3 and 3,5’ T2 have been recently 
proposed to regulate cellular functions as well (15). Thus, 
the role of THs in immune responses may depend on the 
affected tissue and therefore might explain controversial 
results obtained by several pathological models so far.

A better understanding of local TH action within 
immune cells and its impact on immune cell function 
will be crucial to infer the therapeutic potential of 
TH interventions during different types of diseases. 
Additionally, extending our knowledge of local TH 
environments might help to define the clinical relevance 
as well as being aware of critical issues to optimize the 
therapeutic benefit.

Future implications

Further studies are required to provide a more detailed 
view on the local action of THs in innate and adaptive 
immune cells. These studies should address the 
expression of components involved in local TH action 
in immune cells, taking the effect of activation as well as 
differentiation into account. Likewise, in-depth analysis 
regarding the impact of TH signalling on the function 
of distinct immune cell populations such as naïve and 
effector cells may be performed. Here, basic in vitro 
experiments as well as in vivo studies might shed light on 
the role of THs in different stages of immune responses 
and their mode of action. Consideration of different 
pathological models such as acute and chronic viral 
infections, but also inflammatory diseases such as non-
alcoholic steatohepatitis (NASH), acute on chronic liver 
failure, stroke, or myocardial infarction might extend our 
knowledge on the impact of THs on immune cell function 
and may allow clinical implications for TH modulation in 
different diseases.
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Conclusion

In recent years, there is growing evidence for a direct 
influence of THs on the immune system. Cells of both, the 
innate and adaptive immune systems, express a variety of 
components involved in local TH action and are sensitive to 
THs affecting immune cell function. Yet, further studies are 
necessary to define the impact of THs on different immune 
cells in more detail and to address the clinical implications.
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