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Summary

Recent developments in high-throughput reverse genetics 1,2 have revolutionized our ability 

to map gene function and interactions 3–6 . The power of these approaches lies on their 

ability to discover functionally-associated genes, which elicit similar phenotypic changes across 

multiple perturbations (chemical, environmental, or genetic) when knocked out 7–9 . However, 

due to the large number of perturbations, these approaches have been limited to growth or 

morphological readouts 10 . Here, we have used a high-content biochemical readout, thermal 

proteome profiling 11 , to measure proteome-wide abundance and thermal stability of 121 genetic 

perturbations in Escherichia coli. We observed that thermal stability, and therefore the state and 

interactions of essential proteins is commonly modulated, opening up the possibility to study a 

protein group that is particularly inaccessible to genetics. We show that functionally-associated 

proteins have coordinated abundance and thermal stability changes across perturbations, due to 

their co-regulation and physical interactions (with proteins, metabolites, or co-factors). Finally, we 

provide mechanistic insights into previously determined growth phenotypes 12 that go beyond the 

deleted gene. These data, available at http://ecoliTPP.shiny.embl.de, represent a rich resource for 

inferring protein functions and interactions.
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Understanding the function of genes is one of the main goals of molecular biology. While 

genetic approaches provide insights into protein function and interactions, biochemical 

readouts bring us closer to their molecular mechanism. Mass spectrometry (MS) has enabled 

a view of the entire proteome and, when coupled with traditional biochemistry tools, such 

as affinity purification 13 or size exclusion chromatography 14 , it can directly detect protein-

protein interactions. While powerful, these approaches are performed after cell lysis, which 

can alter the protein environment and interactions 15 . Recently, we have developed thermal 

proteome profiling (TPP) 11 , which couples the cellular thermal shift assay (CETSA) 16 

with multiplexed quantitative proteomics 17 . Protein thermal stability offers new insights 

into protein state in situ 18 , since it reflects interactions with metabolites 19 , other 

proteins 15,20,21 , and nucleic acids 21 , and post-translational make-up 22–24 . Here, we 

combine reverse genetics with TPP in Escherichia coli to profile the effect of genetic 

perturbations on protein abundance and thermal stability.

High-throughput thermal proteome profiling

We used two-dimensional thermal proteome profiling (2D-TPP) 25 in 121 E. coli strains 

(the majority of which were single-gene deletion mutants from the Keio library 26 ; 

Supplementary Data 1). Mutants were selected to perturb diverse cellular processes 

(Extended Data Figure 2a), by leveraging chemical genetics data 12 . Each mutant was 

grown in duplicate to exponential phase, and heated to ten temperatures to induce protein 

denaturation, followed by cell lysis and collection of the soluble protein fraction at each 

temperature (Figure 1a). This generated 2,420 samples (121 mutants×2 replicates×10 

temperatures) that were multiplexed with tandem mass tags (TMT) 27 and measured by 

quantitative MS-based proteomics 17 (Supplementary Figure 1). In total, we detected 2,586 

proteins with at least two unique peptides (Extended Data Figure 1a; Supplementary Data 

2). For each protein in each mutant, we calculated the ratio of the signal intensity to the 

median signal intensity of the respective protein in the same MS run (Supplementary Data 

3). Measurements were largely consistent across biological replicates (Extended Data Figure 

1b-d), with differences in clone behavior reflecting biological phenomena, such as mutations 

that activate the flagellar master regulator (FlhDC) in only one of the clones 28 (Extended 

Data Figure 1e-f; Supplementary Data 4; Supplementary Discussion).

Abundance (corresponding to the average changes at the two lowest temperatures 20 ) 

and thermal stability (corresponding to changes remaining at higher temperatures after 

correcting for protein abundance changes) were determined for 1,764 proteins across the 

genetic backgrounds (Figure 1b; Supplementary Data 5). We observed significant changes 

in 1,213 proteins in at least one mutant (|z-score| >1.96 and q-value <0.05; Figure 1c), with 

840 proteins affected in abundance, 886 proteins in thermal stability, and 513 proteins in 

both. However, abundance and thermal stability were only weakly anti-correlated (r=-0.12; 

Extended Data Figure 1g).

Multiple mechanisms can lead to these changes, such as the deletion of protein complex 

members leading to the thermal destabilization of other proximal complex members 

(Extended Data Figure 2b), or regulatory mechanisms of envelope stress responses 

(Extended Data Figure 3; Supplementary Discussion). Proteins were also affected in the 
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absence of cofactors, as illustrated by the thermal destabilization of iron-sulfur cluster 

binding proteins in ΔiscA, ΔiscS, and ΔiscU (Figure 1d; Extended Data Figure 4a), or the 

thermal destabilization of the periplasmic copper oxidase CueO in ΔtatB (Extended Data 

Figure 4b). CueO is translocated from the cytosol to the periplasm after recognition of 

its signal peptide by the Tat system 29 . By deleting the signal peptide (Δ28-CueO), we 

could trap CueO in the cytosol in wildtype cells (Extended Data Figure 4c), and phenocopy 

the thermal destabilization observed in ΔtatB (Extended Data Figure 4d-f). Interestingly, 

Δ28-CueO was thermally stabilized by the addition of copper in lysate, which suggests 

that the lack of copper in the cytoplasm prevents CueO from being thermally stabilized 

(Extended Data Figure 4g; Supplementary Discussion).

In summary, we generated a comprehensive dataset of protein abundance and thermal 

stability changes in more than one hundred E. coli mutants. Nearly 70% of the proteins were 

altered in at least one perturbation (Extended Data Figure 1h-i), and abundance and thermal 

stability were largely orthogonal. The proteome changes observed can help in dissecting the 

physiological state of each mutant.

Essential proteins mostly change in thermal stability

Since the function of essential genes (i.e., genes that cannot be deleted) is difficult to 

study by genetic approaches, we explored how essential genes behaved across the genetic 

perturbations included in this study. We observed that proteins coded by essential genes 30 

were generally more abundant (Figure 2b), but less often altered in their abundance than 

those coded by non-essential genes (Figure 2a). However, essential proteins were more often 

hits in thermal stability than non-essential ones (Figure 2a), suggesting that their activity or 

interactions might be modulated in some genetic backgrounds.

To gain insights into the consequence of changes in thermal stability of essential proteins, 

we used CRISPRi 31,32 to reduce the levels of FtsK (a cell division DNA translocase) and 

ParC (a subunit of topoisomerase IV) in different genetic backgrounds. Reducing the levels 

of FtsK (by ~6-fold) or ParC (by ~8-fold; Figure 2c) only mildly impacted cell growth in 

wildtype cells (Figure 2d-e). However, cells could not tolerate the depletion of the essential 

proteins in mutants in which these were affected in thermal stability (e.g., ΔclpS for ParC, 

or ΔphoP for both FtsK and ParC; Figure 2d-e; Extended Data Figure 5). Importantly, in 

mutants for which we did not observe thermal stability changes in the essential proteins, 

the growth phenotype was similar to wildtype cells (with the exception of ΔamiA and 

ΔenvC, both affecting cell division, and the latter being a genetic perturbation which by 

itself causes growth defects; Figure 2d-e). We confirmed by proteomics that the essential 

protein downregulation remained similar in all mutants tested (Figure 2c).

Overall, we observed that the levels of essential proteins are high and rarely modulated, 

consistent with their housekeeping roles. Although bacterial cells can tolerate fluctuations in 

the levels of these proteins, they seem to prefer maintaining them above the levels required 

for optimal growth 33 . In contrast, the thermal stability of essential proteins, a trait that 

is impervious to expression proteomics, was regularly affected. Remarkably, cells became 

more vulnerable to changes in levels of essential proteins in conditions that affected their 
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thermal stability. Hence, cells may maintain higher levels of essential proteins to buffer 

changes in their activity across different conditions. Overall, this synthetic lethality of 

essential and non-essential genes could provide new paths for combinatorial drug therapies.

Functionally-related proteins are co-regulated

We assessed which pairs of proteins co-changed across the 121 genetic perturbations at the 

ten different temperatures, by calculating Spearman’s rank correlation (rS) for all protein 

pairs (Figure 3a; Supplementary Data 6). As previously shown for gene and protein co-

expression analysis 14,34–37 , we observed an enrichment of strong correlations for proteins 

with known biological associations (Extended Data Figure 6a). Importantly, our ability to 

measure protein thermal stability further contributed to capturing functional associations. 

For example, the essential core subunits of RNA polymerase (RNAP; RpoA, RpoB and 

RpoC) were correlated (rS>0.68; Figure 3b) mostly due to changes at higher temperatures 

(Figure 3e). Although it is currently unclear how these thermal stability changes link to 

RNAP states (in eukaryotes, increase in RNAP II thermal stability correlates with DNA-

bound active holoenzyme 21 ), these changes were unrelated to upregulation of the flagellar 

sigma factor (FliA) in a large number of mutants 28 —as we did not observe a correlation 

between flagellar protein abundance (e.g., FliC) and RNAP thermal stability (e.g., RpoB; 

rS=-0.22, n=121 mutants). Other functionally-related proteins also clustered closely, such as 

all the enzymes of the L-histidine biosynthesis pathway (Figure 3c), or proteins involved in 

protein folding (Figure 3d).

A receiver operating characteristic (ROC) analysis revealed that strongly correlated protein 

pairs captured previously described functional associations (Figure 3f), particularly for 

proteins expressed from the same operon (area under the ROC (AUROC)=0.86; strongly 

driven by protein abundance changes, Extended Data Figure 6c), part of the same protein 

complex (AUROC=0.81; mostly driven by protein abundance changes, since 38% of 

proteins that belong to the same complex are also in the same operon, Extended Data 

Figure 6d), or belonging to the same metabolic pathway (AUROC=0.70; driven to a large 

extent by thermal stability, Extended Data Figure 6e-h; Supplementary Discussion). Further, 

we compared our data with STRING associations and found that the higher the confidence 

of interactions in STRING the better they were recapitulated by our data (Extended Data 

Figure 6b). For the highest confidence interactions (combined STRING score ≥0.999; 

n=1,493), we obtained an AUROC of 0.90, recovering 47% true positive interactions at 

1% false positive rate (corresponding to |rS|≥0.45).

In addition to the overall strong correlation of proteins belonging to the same complexes 

or metabolic pathways, we also captured complex (see Supplementary Discussion for 

examples of the ribosome, ATP synthase and respiratory complex I; Extended Data Figure 

7) or pathway substructures (next section; Figure 4a). For protein complexes, strongly 

correlating subunits were generally at a shorter physical distance from each other (Extended 

Data Figure 7h), confirming that physically interacting proteins melt coherently across 

perturbations 15,20,21 . Therefore, the data presented here might aid future structural biology 

efforts for other protein complexes, by constraining which subunits should be spatially close 

to each other.
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Having established that our data recapitulated known biology, we looked into our ability to 

provide new insights into the function of proteins of unknown function (orphan proteins). 

To facilitate this, we performed gene ontology (GO) enrichment of the highly correlated 

proteins (|rS|≥0.45) for each protein in our dataset (Supplementary Data 7). In total, 140 

orphan proteins 38 could be associated with known biological processes. For several of these, 

we found corroborating evidence that they are involved in the process we link them to 

(Supplementary Discussion; Extended Data Figure 8).

Overall, we demonstrate that co-changes in protein abundance and thermal stability are 

strong identifiers of functional associations in the cell, and provide organizational insights 

into large protein complexes. Importantly, many functional associations identified by us are 

not previously described (only 6,116 of the 16,995 correlations with |rS|≥0.45 are reported 

in STRING). This could uncover new cellular links between proteins of known function, 

and provide leads for the function of orphan genes (see Supplementary Discussion on how 

integrating data from this study can be used to suggest molecular mechanisms).

Enzyme thermal stability reflects activity

Our data recapitulated pathway organization, as highlighted by the glycolysis and citric 

acid cycle enzymes, which clustered in three major groups (with sub-clusters in each of 

them; Figure 4a), corresponding to enzymes involved in glycolysis (orange-yellow cluster), 

the citric acid cycle (green cluster), or enzymes belonging to the glyoxylate shunt (AceA, 

AceB, GlcB) or performing anaplerotic (Ppc), reversible (PpsA, GpmA, GpmI), or parallel 

reactions (Mdh) (purple cluster).

As the thermal stability of proteins can be altered by ligand binding 11,39 , we wondered 

whether our ability to recapitulate the structure of metabolic pathways was linked to changes 

in enzyme activity, and hence in metabolite levels. Therefore, we quantified relative levels 

of metabolites from glycolysis (glucose/fructose-6-phosphate, phosphoenolpyruvate, and 

pyruvate) and citric acid cycle (2-oxoglutarate, succinate, and malate) in 19 of the mutants 

included in this study and in wildtype E. coli cells (as a reference; Extended Data Figure 

9c). We observed large changes in metabolite levels, from a 4-fold reduction of succinate in 

ΔiscS to a 5.7-fold increase of glucose/fructose-6-phosphate in Δdam (Supplementary Data 

8). The low levels of succinate in ΔiscS might be attributed to defects in iron-sulfur cluster 

biosynthesis, which would impair the function of SdhAB (thermally destabilized).

Interestingly, ΔiscS also showed increased thermal stability of GlcB and an increase in 

malate levels, which might indicate flux rearrangements, such as the glyoxylate shunt being 

more active.

We then asked if abundance or thermal stability of enzymes directly upstream or 

downstream of each of the metabolites correlated with the metabolite levels across the 

mutants (Extended Data Figure 9a-b). We found a significant correlation between metabolite 

levels and enzyme thermal stability (median (interquartile range): 0.19 (-0.05–0.43); 

p=0.005 that the median correlation coefficient is not different from zero using a bootstrap 

hypothesis test), but not for enzyme abundance (median (interquartile range): 0.016 (-0.19–
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0.18); p=0.22; Figure 4c; Extended Data Figure 9d). For example, 2-oxoglutarate levels 

were correlated with the thermal stability of SucB (r=0.55). In some cases, the levels of 

metabolites were anti-correlated with the thermal stability of isoenzymes that utilized them

—e.g., malate levels and MaeA (r=-0.51)—, indicating more complex interdependencies 

(e.g., the thermal destabilization being caused by some mechanism that leads to reduced 

enzyme function and therefore substrate accumulation).

Overall, enzyme thermal stability reflected the levels of intracellular metabolites that 

directly interacted with the enzymes as substrates or products. Thus, TPP captures 

enzymatic activity in vivo, offering a unique view into the metabolic state of the cell and the 

ability to generate metabolic pathway associations.

Proteome changes explain mutant phenotypes

We investigated if proteome changes could explain growth phenotypes of the mutants in 

different chemical and environmental stresses. For this, we used data from chemical genetics 

studies, in which the fitness of all E. coli single-gene deletion mutants has been measured in 

nearly one thousand conditions 7,9,12,40 . In general, mutants with a larger proportion of the 

proteome affected, had a larger number of phenotypes in chemical genetics screens (r=0.57, 

p<0.001; Extended Data Figure 10a).

To gain insights into possible causal effects, we correlated protein abundance or thermal 

stability of each detected protein across all mutant backgrounds with the fitness of the 

same mutants in all chemical genetic conditions. This highlighted examples of proteome 

changes that explain growth phenotypes that are not solely related to the deleted gene 

(Supplementary Data 9), such as the abundance of the multidrug efflux pump MdtK 

explaining the resistance to metformin 12 (Extended Data Figure 10b-d), or the abundance of 

the DNA repair protein RecR explaining sensitivity to UV 7 (Extended Data Figure 10e-g; 

Supplementary Discussion).

Discussion

We systematically measured the abundance and thermal stability of nearly 1,800 proteins 

in 121 mutants of E. coli. We detected significant changes in more than 1,200 proteins, 

with thermal stability and abundance measurements being largely orthogonal. Only 61 of 

the 273 (22%) detected essential proteins changed in their abundance, most of them being 

altered in a single mutant. Recently, CRISPRi has provided a way to knockdown genes 31 . 

However, levels of knockdown and polar effects still present complications, especially for 

bacterial genomes 33,41,42 . Since we detected changes in the thermal stability of 164 (60%) 

essential proteins, our approach provides a unique view into their regulation and activity. 

Inspired by our ability to probe protein state and activity, we confirmed the power of our 

data to identify functional associations and identified more than 10,000 potentially new 

interactions, with 3,655 of these interactions involving 253 orphan proteins. These could 

provide new hints for the function of these orphan proteins. Having the largest perturbation 

dataset for TPP, we also investigated the underlying reasons for why proteins change melting 

behavior in living cells. It has been previously observed that protein thermal stability can 
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be affected by drug 11,20,25,39 , nucleic acid 21 and metabolite 19 binding, as well as protein 

interactions 15,20,21 and post-translational modifications 22–24 . Here, we show that protein 

thermal stability can also be affected by levels of cofactors and metabolites that directly bind 

the protein. TPP thus provides a way for surveying metabolic activity. Finally, we combined 

our data with existing large-scale phenotyping data 7,9,12,40 to gain mechanistic insights into 

the causes of conditional growth phenotypes that lie beyond the knocked out gene, providing 

foundational information for thousands of such causal protein-phenotype connections. In 

conclusion, the dataset here presented can be used to gain insights into protein function and 

associations (with all data available at http://ecoliTPP.shiny.embl.de), and the approach is 

readily expandable to other organisms.

Online methods

Strains

All the E. coli mutants used in this study come directly from the Keio collection 26 , with 

the exception of bamA 43 , ftsA 44 , bamD 45 and lptD mutants 46 (Supplementary Data 

1; described also in Nichols et al. 7 ). All mutants used have been made in the E. coli 
BW25113 strain background 47 . When possible, we used two independent clones from 

the Keio collection to maximize variability and to spot effects that might originate from 

secondary mutations. For CRISPRi experiments, we transferred the chromosomal dCas9 

expression cassette from Lawson et al. 32 into the BW25113 strain using P1 transduction. 

For all follow-up work involving specific mutants, the gene deletions were retransduced into 

the wildtype or CRISPRi strain.

Mutant selection and multiplexing for thermal proteome profiling

In order to select 121 E. coli mutants that target diverse cellular processes, we first 

calculated the Pearson correlation coefficient of the chemical genetics fingerprint (S-scores 

across hundreds of chemical and environmental stresses 12 ) of all pairs of mutants. We then 

clustered the mutants based on their correlation coefficient profile, cut the tree at eleven 

clusters, and manually selected approximately eleven mutants per cluster—using previous 

knowledge of gene function to guide our selection.

For thermal proteome profiling experiments, we used tandem mass tags that allow 

multiplexing of 11 different conditions (TMT11plex). We decided not to use the wildtype 

strain in each mass spectrometry (MS) run to maximize the number of genetic perturbations 

tested. Instead, we considered that, in most mutants, proteins will not change abundance 

or thermal stability and hence the median of the 11 perturbations on each protein would 

work as control for each MS run (see below for details). Therefore, it was important 

that the cellular processes perturbed within each MS run were as diverse as possible. 

For this, the 121 mutants were randomly sampled to an 11×11 matrix, with the aim of 

running the first biological replicate of the mutants row-wise, and the second biological 

replicate column-wise—in this way, each perturbation was probed against a background 

of 20 different perturbations (Supplementary Figure 1). The Pearson correlation coefficient 

of the chemical genetic fingerprints of each mutant against the 20 different background 

perturbations was calculated as a proxy for the processes targeted (mutants with weak 
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correlation target different processes 7 ). The randomization procedure was repeated 1,000 

times and the solution in which the sum of all absolute correlation coefficients between the 

mutants within an experiment was minimal was considered optimal (Supplementary Figure 

1; Supplementary Data 1).

Thermal proteome profiling

Thermal proteome profiling was performed as previously described 20 . Briefly, each mutant 

was streaked out from two independent glycerol stocks on lysogeny broth (LB) agar plates 

and incubated overnight at 37°C. The next day, single colonies were picked and incubated 

in 2 mL LB for ~6 hours, after which 50 μL of bacterial culture were transferred to 5 mL 

of LB and further incubated at 37°C overnight (~16 hours). Overnight cultures were diluted 

to OD578 0.001 in 50 mL LB medium and further incubated at 37°C, 220 rpm until OD578 

~0.1 (range: 0.084-0.176; Supplementary Data 1). Cells were pelleted at 4000 × g for 5 

min, washed with 10 mL PBS, and resuspended in PBS in a volume in mL equal to 12× 

OD578 (equivalent to resuspending to an OD578 of 4). The cell suspension (100 μL) was 

then aliquoted to ten wells of a PCR plate, which was centrifuged at 4000 × g for 5 min. 

Most of the supernatant (80 μL) was removed and cells were subjected to a thermal gradient 

(42°C, 45.4°C, 49°C, 51.9°C, 54.8°C, 57.9°C, 60.5°C, 63.6°C, 67°C, 71.3°C) for 3 min in 

a PCR machine (Agilent SureCycler 8800) followed by 3 min at room temperature. Cells 

were lysed with 30 μl lysis buffer (final concentration: 50 μg/ml lysozyme, 0.8% NP-40, 

1× protease inhibitor (Roche), 250 U/ml benzonase, and 1 mM MgCl2 in PBS) for 20 

min, shaking at room temperature, followed by three freeze–thaw cycles (freezing in liquid 

nitrogen, followed by 1 min at 25°C in a PCR machine and vortexing). The plate was then 

centrifuged at 2,000 × g for 5 min to remove cell debris, and the supernatant was filtered 

at 500 × g for 5 min through a 0.45-μm 96-well filter plate (Millipore, ref: MSHVN4550) 

to remove protein aggregates. The flow-through was mixed 1:1 with 2× sample buffer (180 

mM Tris pH 6.8, 4% SDS, 20% glycerol, 0.1 g bromophenol blue) and kept at -20°C until 

prepared for mass spectrometry analysis. To verify the effect of the heat treatment, the 

soluble protein concentration at each temperature for each experiment was determined using 

the BCA assay, according to the manufacturer’s instructions (ThermoFisher Scientific).

MS-based proteomics

Proteins were digested according to a modified SP3 protocol 48,49 . Briefly, approximately 

2 μg of protein (4 μl of frozen samples) was added to 16 μl of water and added to the 

bead suspension (10 μg of beads (Thermo Fischer Scientific—Sera-Mag Speed Beads, CAT# 

4515-2105-050250, 6515-2105-050250) in 10 μl 15% formic acid and 30 μl ethanol). After 

a 15 min incubation at room temperature with shaking, beads were washed four times with 

70% ethanol. Next, proteins were digested overnight by adding 40 μl of digest solution (5 

mM chloroacetamide, 1.25 mM TCEP, 200 ng trypsin, and 200 ng LysC in 100 mM HEPES 

pH 8). Peptides then were eluted from the beads, dried under vacuum, reconstituted in 10 μl 

of water, and labeled for 1 h at room temperature with 17 μg of TMT11plex (Thermo Fisher 

Scientific) dissolved in 4 μl of acetonitrile (the label used for each experiment can be found 

in Supplementary Data 1). The reaction was quenched with 4 μl of 5% hydroxylamine, and 

experiments belonging to the same mass spectrometry run were combined. Samples were 

desalted with solid-phase extraction by loading the samples onto a Waters OASIS HLB 
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μElution Plate (30 μm), washing them twice with 100 μl of 0.05% formic acid, eluting 

them with 100 μl of 80% acetonitrile, and drying them under vacuum. Finally, samples 

were fractionated onto 29 fractions on a reversed-phase C18 system running under high 

pH conditions. This consisted of an 85 min gradient (mobile phase A: 20 mM ammonium 

formate (pH 10) and mobile phase B: acetonitrile) at a 0.1 ml/min starting at 0% B, followed 

by a linear increase to 35% B from 2 min to 60 min, with a subsequent increase to 85% B 

from up to 62 min and holding this up to 68 min, which was followed by a linear decrease 

to 0% B up to 70 min, finishing with a hold at this level until the end of the run. Fractions 

were collected every two minutes from 12 min to 70 min and every sixth fraction was pooled 

together.

Samples were analyzed with liquid chromatography coupled to tandem mass spectrometry, 

as previously described 20 . Briefly, peptides were separated using an UltiMate 3000 

RSLCnano system (Thermo Fisher Scientific) equipped with a trapping cartridge 

(Precolumn; C18 PepMap 100, 5 μm, 300 μm i.d. × 5 mm, 100 Å) and an analytical 

column (Waters nanoEase HSS C18 T3, 75 μm × 25 cm, 1.8 μm, 100 Å). Solvent A was 

0.1% formic acid in LC-MS grade water and solvent B was 0.1% formic acid in LC-MS 

grade acetonitrile. Peptides were loaded onto the trapping cartridge (30 μl/min of solvent 

A for 3 min) and eluted with a constant flow of 0.3 μl/min using 90 min of analysis time 

(with a 2–28% B elution, followed by an increase to 40% B, a washing step up to 90% 

B, followed by re-equilibration to initial conditions). The LC system was directly coupled 

to a Q Exactive Plus mass spectrometer (Thermo Fisher Scientific) or a Fusion Lumos 

Tribrid mass spectrometer (Thermo Fisher Scientific) using a Nanospray-Flex ion source 

and a Pico-Tip Emitter 360 μm OD × 20 μm ID; 10 μm tip (New Objective). The mass 

spectrometer was operated in positive ion mode with a spray voltage of 2.3 kV and capillary 

temperature of 320°C. Full-scan MS spectra with a mass range of 375–1,200 m/z were 

acquired in profile mode using a resolution of 70,000 (maximum fill time of 250 ms or 

a maximum of 3e6 ions (automatic gain control, AGC)). Fragmentation was triggered for 

the top 10 peaks with charge 2–4 on the MS scan (data-dependent acquisition) with a 30-s 

dynamic exclusion window (normalized collision energy was 32), and MS/MS spectra were 

acquired in profile mode with a resolution of 35,000 (maximum fill time of 120 ms or an 

AGC target of 2e5 ions).

Protein identification and quantification

MS data were processed as previously described 20 . Briefly, raw MS files were processed 

with isobarQuant 50 , and the identification of peptide and protein was performed with 

Mascot 2.4 (Matrix Science) against the E. coli (strain K12) UniProt FASTA (Proteome 

ID: UP000000625), modified to include known contaminants and the reversed protein 

sequences (search parameters: trypsin; missed cleavages 3; peptide tolerance 10 ppm; 

MS/MS tolerance 0.02 Da; fixed modifications were carbamidomethyl on cysteines and 

TMT10plex on lysine; variable modifications included acetylation on protein N-terminus, 

oxidation of methionine, and TMT10plex on peptide N-termini).
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Abundance and thermal stability score calculation

We calculated abundance and thermal stability scores for every protein in every mutant by 

combining the data from the two replicates similarly to previously described, using R (ver. 

3.6.1) 20,21 . Briefly, the overall distribution of signal sum intensities was normalized with 

vsn 51 to compensate for slight differences in protein amounts from each TMT channel. 

Then, for every protein, we calculated the ratio of the signal sum intensity of each mutant to 

the median signal sum of the same protein in all the mutants in the same mass spectrometry 

experiments (i.e., this yielded a fold-change relative to control for every protein in each 

mutant at each temperature). The abundance score of each protein in each mutant was 

calculated as the average log2 fold change at the two lowest temperatures weighted for the 

number of temperatures in which the protein was identified for each replicate (requiring that 

there was data for the two biological replicates in at least one of the two temperatures). The 

thermal stability score of each protein in each mutant was then calculated by subtracting 

the abundance score from the log2 fold changes of all temperatures, and summing the 

resulting fold changes weighted for the number of temperatures in which the protein was 

identified for each replicate (requiring that there were at least ten data points to calculate 

this score). To assess the significance of abundance and thermal stability scores, we used 

a limma analysis 52 instead of a previously described bootstrap approach 20,21 , followed 

by an FDR analysis, using the fdrtool package. Abundance and thermal stability scores 

for all mutants were separately transformed to z-scores. Proteins with calculated |z-score| 

>1.96 (corresponding to a global p <0.05 for the effect size) and with q-value <0.05 were 

considered significantly changed.

Highly variable protein analysis

We evaluated which proteins showed consistently different values between the two 

biological replicates. For this, we calculated the difference between replicates for all log2 

fold-changes of each protein at each temperature (Extended Data Figure 1b). We extracted 

all the proteins that were in the top 5% of absolute difference (i.e., 2.5% of each side of the 

distribution) and counted how many times each protein appeared (i.e., from multiple mutants 

and multiple temperatures). We considered the top 10% of these proteins as highly variable 

proteins (Supplementary Data 4). GO enrichment was performed as described below.

flhDC upstream sequence size determination

The promoter of flhDC was amplified by PCR using the forward 

primer 5’- GTAACCGCAACAGCGACAAG-3’ and the reverse primer 5’-

CAATCAAACGCTGTGCAAGTAG-3’ and the product was run on a 1% agarose gel.

CRISPRi experiments

We first designed guide RNAs for each gene that we wanted to knockdown. The guides 

comprised sequences of 20 nucleotides with perfect complementarity towards the open 

reading frame of the target gene and located next to a protospacer adjacent motif (NGG). 

The guides were designed with the guidelines from Cui et al. 53 in mind and using the 

CRISPOR tool 54 . We synthetized the following nucleotides 5’- 

TTCGGGCCCAAGCTTCAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGAT
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AACGGAC TAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-3’ and 5’-

CTAGGTATAATACTAGTNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATA

GCAAGTTAAAATAAGGCTAGTCCG-3’, in which the N’s were replaced by the sequence: 

TGAGACCAGTCTAGGTCTCG (for control); CCGTAAATTCATGTAGCGCA (for parC); 

GGATCAGCAACGCCTCCAGA (for ftsK). These were extended by PCR, digested with 

HindIII and SpeI restriction enzymes, and ligated to pgRNA plasmid 31 digested with the 

same restriction enzymes. Plasmids were sequenced with Sanger sequencing and 

transformed into the strains with dCas9 expression cassette—dCas9 expression was 

repressed by TetR 32 .

For growth inhibition experiments, strains were grown overnight at 37°C in the presence 

of 100 μg/ml ampicillin. Cells were then diluted to OD578=0.1, serially diluted in 10-fold 

steps in LB, and spotted on LB agar plates containing 100 μg/ml ampicillin to maintain the 

pgRNA plasmid and 1 ng/μl anhydrotetracycline to induce dCas9 expression. Plates were 

incubated at 37°C overnight and imaged in the morning.

To check the levels of downregulation of the proteins, strains were grown overnight at 

37°C in the presence of 100 μg/ml ampicillin. Cells were then diluted to OD578=0.01 and 

grown to approximately OD578=1 in the presence of 100 μg/ml ampicillin, and 1 ng/μl 

anhydrotetracycline. Cells (2 ml) were pelleted at 4000 × g for 5 min, washed with 1 mL 

PBS, and resuspended in 100 μl of lysis buffer (final concentration: 50 μg/ml lysozyme, 2% 

SDS, 1× protease inhibitor (Roche), 250 U/ml benzonase, and 1 mM MgCl2 in PBS). Cells 

were lysed by five repeated freeze–thaw cycles (freezing in liquid nitrogen, followed by 5 

min at room temperature while vortexing). Non-lysed cells were removed by centrifuging at 

4000 × g for 5 min and the supernatant was analyzed by MS-based proteomics as described 

above.

Protein correlation profiling and receiver operating characteristic (ROC) analysis

For each protein, we averaged the log2 fold-change at each temperature and in each mutant 

(only if data was available for the two biological replicates), resulting in a maximum of 

1,210 data points. We calculated the Spearman’s rank correlation for all protein pairs that 

overlapped by at least 242 data points (a minimum of 20% of the possible data). In this 

analysis, we kept proteins changing in abundance or thermal stability in only one of the 

two mutant clones (e.g., flagella proteins above), since these were consistently co-regulated 

within the replicate.

These data were then used to perform a receiver operating characteristic (ROC) analysis 

using the pROC package for R 55 , ignoring the sign of the correlation (i.e., the absolute 

correlation coefficient was used). Data were benchmarked against data from Ecocyc 

(operons, protein complexes, and metabolic pathways 56 ) and STRING 57 .

We further calculated the Spearman’s rank correlation based on z-scores of abundance or 

thermal stability, resulting in a maximum of 121 data points (requiring protein pairs to have 

their abundance or thermal stability quantified in a minimum of 60 overlapping mutants).
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For GO enrichment of protein partners, we selected proteins with |rS|≥0.45 for each protein 

and performed GO enrichments as described below.

Physical distance in protein complexes

From the PDB files of the ribosome (PDB: 4YBB), the ATP synthase (PDB: 5T4O) and the 

respiratory complex I (PDB: 4HEA) structures, we retrieved the coordinates of every atom 

along with their subunit identity. We used this information to calculate the center-of-mass 

(assuming the same mass for every atom) of each subunit using the package SDMTools for 

R.

MS-based metabolite quantification

Cells were grown and harvested as described in the ‘Thermal proteome profiling’ section 

to keep the two experiments as similar as possible. After washing with PBS, cells were 

resuspended in a volume in mL equal to 12× OD578 (equivalent to resuspending to an 

OD578 of 4) with an acetonitrile:methanol:water (40:40:20) mixture with 100 ng/ml of 

creatinine-(methyl-13C) and 100 ng/ml phosphoenolpyruvic acid-2-13C potassium salt—

used as internal standards. Samples were subjected to five freeze–thaw cycles (freezing in 

liquid nitrogen, followed by 5 min at 25°C in while vortexing), centrifuged at 20,000 × g for 

15 min at 4 °C to remove cell debris, and the supernatant was collected and kept at -80 °C 

until analysis.

All samples and standards were analyzed on a Vanquish UHPLC system coupled to a 

Q Exactive Plus HRMS (Thermo Scientific, MA, USA) in HESI negative mode. The 

separation of metabolites was carried out on an XBridge BEH Amide column XP (100 

x 2.1mm; 2.5μm) at a flow rate of 0.3 mL/min, maintained at 40°C. The mobile phase 

consisted of solvent A (7.5 mM ammonium acetate with 0.05% ammonium hydroxide) and 

solvent B (acetonitrile). A 16 min chromatographic run comprised a linear gradient from 2 

to 12 min starting at 85% of solvent B and ending at 10%, followed by a hold from 12 to 14 

min and a linear gradient to return to the initial conditions at 14.1 min.

Metabolites were analyzed in HRMS full scan mode at a resolution of 35,000, an AGC 

target of 1e6 ions, and a maximum IT of 100 ms, in the mass range of 60-900 m/z. The mass 

spectrometer was operated with a spray voltage of 3.5 kV, sheath gas 30 and auxiliary gas 5 

units, S-Lens 65 eV, capillary temperature 320°C, and vaporization temperature of auxiliary 

gas 250°C.

Prior to the sample analysis, metabolite standards (D-Glucose 6-phosphate sodium salt, 

D-Fructose 6-phosphate disodium salt hydrate, phosphoenolpyruvic acid monopotassium 

salt, sodium pyruvate, succinic acid, alpha-ketoglutaric acid disodium salt hydrate, and malic 

acid) and a dilution series of a QC sample (prepared by mixing equal volumes of each 

sample) were analyzed on the LC-MS system to determine retention times and an injection 

volume allowing the detection of all metabolites of interest within a linear range. For the 

sample analysis, blank and multiple QC samples were injected at the beginning of the 

sample analysis sequence in order to stabilize the LC-MS system. Samples (8 μL injection 

volume) were randomized during LC-MS analysis and a QC sample was injected after every 

5 samples to track the stability of the instrument and analytical method throughout the 
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analysis sequence. Peak areas of the deprotonated M-H metabolite ions for each metabolite 

were quantified on the smoothed extracted ion chromatograms (15 smoothing points) using 

the XCalibur Quan Browser software (Thermo Scientific) with a mass tolerance of 7 ppm. 

Internal standards were used to detect procedural errors, not for data normalization.

Peak area ratios were calculated for each metabolite in each mutant replicate by dividing the 

peak area of the metabolite in the mutant by the average of the wildtype samples of the same 

mass spectrometry batch. For each mutant, the average of the log2-transformed peak area 

ratios was compared to abundance and thermal stability z-scores of enzymes that directly 

consume or produce each metabolite in glycolysis or citric acid cycle 56 . Correlation 

coefficients were also calculated for random metabolite-enzyme pairs (from the pool of the 

same enzymes)—with this procedure being repeated 1000 times to generate a distribution 

of the median of correlation coefficients. The real median of correlation coefficients was 

compared to the bootstrapped distribution, with the p-value corresponding to the fraction of 

times the bootstrapped median was higher than the real median—i.e., the probability that the 

real median is higher than zero.

CueO experiments

We amplified and FLAG-tagged cueO from the E. coli BW25113 strain genome by PCR 

using the forward primer 5’-

TTCATCATCCCGGGATGCAACGTCGTGATTTCTTAAAATATTCCG-3’ (for full length 

CueO) or 5’-TTCATCATCCCGGGATGGCAGAACGCCCAACGTTAC-3’ (for Δ28-CueO) 

and the reverse primer 5’-

TTCATCATAAGCTTCTACTTGTCATCGTCATCCTTGTAGTCAGAGCCGCCGCCGCCT

ACCGTA AACCCTAACATCATC-3’. The PCR products were digested with XmaI and 

HindIII restriction enzymes, and ligated to pBAD24 plasmid 58 digested with the same 

restriction enzymes. Plasmids were sequenced with Sanger sequencing to check that no 

mutations were introduced in cueO, and transformed into ΔcueO::FRT or 

ΔcueO::FRTΔtatB::kan.

For periplasm extraction experiments, cells (50 ml) were grown to OD578 ~0.5, as described 

in the ‘Thermal proteome profiling’ section, with the exception that LB medium contained 

100 μg/ml of ampicillin and 0.2% arabinose. Cells were resuspended in wash buffer (10mM 

Tris-Cl, 150mM NaCl, pH 7.3) in a volume in mL equal to 2× OD578 (equivalent to 

resuspending to an OD578 of 25). An aliquot (500 μl) was transferred to a new tube, cells 

were centrifuged at 4000 × g for 5 min, and the supernatant was discarded. The pellet 

was resuspended in 300 μl SET buffer (0.5 M sucrose, 200 mM Tris-Cl, 1 mM EDTA, 

pH 7.3), followed by the addition of 100 μl of 3 mg/ml lysozyme and 300 μl of ice cold 

water. Cells were incubated for 20 min at 37°C without shaking. After incubation, a 50 μl 

aliquot (whole cells) was collected, cells were centrifuged at 10,000 × g for 30 s, and a 

100 μl aliquot of supernatant (periplasm) was collected. Benzonase (final concentration: 250 

U/ml) and MgCl2 (final concentration: 1 mM) were added to the samples, and samples were 

incubated for 10 min at room temperature. Sample buffer (180 mM Tris pH 6.8, 4% SDS, 

20% glycerol, 0.1 g bromophenol blue) was added to the samples, and samples were kept at 

-20°C until analysis by western blot (described below).
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For cellular thermal shift assay (CETSA) experiments, cells were grown as described in the 

‘Thermal proteome profiling’ section, with the exception that LB medium contained 100 

μg/ml of ampicillin and 0.2% arabinose. The CETSA experiment with 4 mM CuCl2 was 

performed in lysate of ΔcueO::FRT cells transformed with Δ28-CueO plasmid. Lysate was 

prepared as previously described 20 . Briefly, cells were grown to OD578 ~0.5 in 100 ml 

LB medium containing 100 μg/ml of ampicillin and 0.2% arabinose, washed with PBS, and 

resuspended in lysis buffer (without NP40) in a volume in mL equal to 2× OD578 (equivalent 

to resuspending to an OD578 of 50). Aliquots of lysate (200 μl) were treated with 4 mM 

CuCl2 (2 μl of 400 mM CuCl2) or water (2 μl), aliquoted (20 μl) to 10 wells of a PCR plate, 

and subjected to the temperature gradient described in ‘Thermal proteome profiling’. NP-40 

was then added to a final concentration of 0.8%, and samples were processed as described in 

‘Thermal proteome profiling’.

Samples were run on SDS-PAGE and CueO was detected by western blot using mouse 

monoclonal anti-FLAG antibody (F3165, Merck, dilution 1:1000) and goat anti-mouse 

IgG-HRP (sc-2005, Santa Cruz Biotechnology, dilution 1:5000). As a loading control, rabbit 

anti-LpoB antibody 3 (dilution 1:5000) and goat anti-rabbit IgG-HRP (sc-2004, Santa Cruz 

Biotechnology, dilution 1:5000) were used.

Metformin and UV sensitivity

Plasmids p-empty, p-mdtK, p-ahpC, p-cpxA were purified from the Transbac library 59 . 

Plasmids p-empty, p-recR, and p-ybaB were purified from the pMOB library 60 . These were 

transformed to wildtype, ΔahpC::kan, ΔcpxA::kan, ΔmdtK::FRT, ΔmdtK::FRTΔahpC::kan, 

and ΔmdtK::FRTΔcpxA::kan strains for metformin experiments, or wildtype, ΔybaB::kan, 

and ΔrecR::kan strains for UV experiments.

For metformin experiments, strains were grown to early stationary phase at 37°C in the 

presence of 10 μg/ml tetracycline. Cells were then diluted to OD578=0.5, serially diluted in 

10-fold steps in LB, and spotted on LB agar plates containing 10 μg/ml tetracycline, 0.1 mM 

IPTG, and metformin to the desired concentration. Plates were incubated at 37°C overnight 

and imaged in the morning.

For UV sensitivity experiments, strains were grown to early stationary phase at 37°C in 

the presence of 50 μg/ml ampicillin. Cells were then diluted to OD578=0.1, serially diluted 

in 10-fold steps in LB, and spotted on LB agar plates containing 50 μg/ml ampicillin 

and 0.1 mM IPTG. Plates were exposed to UV with a total energy of 85 mJ/cm2 in a 

Spectrolinker XL-1500 UV crosslinker. Plates were incubated at 37°C overnight and imaged 

in the morning.

Gene ontology enrichments

Gene ontology (GO) enrichments were performed using the Fisher’s exact test and corrected 

for multiple comparison with the Benjamini-Hochberg procedure.
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Extended Data

Extended Data Figure 1. Biological replicates show good reproducibility, with differences 
revealing biological phenomena.
(a) Rarefaction analysis of the proteome coverage (proteins with at least two unique peptides 

in each mass spectrometry run) as a function of the number of mass spectrometry runs. 

(b) Distribution of log2 fold-change differences between the two biological replicates. (c) 
Scatter plot of protein fold changes between all biological replicate measurements (n= 

1,512,475; all proteins, all temperatures, all mutants). r depicts Pearson correlation. (d) 

Mateus et al. Page 15

Nature. Author manuscript; available in PMC 2022 January 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Reproducibility of protein fold changes between biological replicate measurements at each 

temperature. (e) Examples of replicate correlation for specific mutants, highlighting that 

flagellar proteins are common outliers in one of the two clones (nΔhemX =13,150, nΔybaB 

=12,313, nΔclpA =12,950, nΔmrcB =12,604, nΔfur =12,543, nΔmlaA =12,559, nΔlpp =12,719; 

all proteins, all temperatures). (f) Polymerase chain reaction of the promoter region of 

the flhDC operon (schematic on top) demonstrates the presence of insertions in mutant 

clones (gel on bottom, n=1; for gel source data see Supplementary Figure 2) with high 

flagellar protein expression (FliC fold-changes at the two lowest temperatures of each 

mutant replicate used as a proxy for abundance). (g) Scatter plot of abundance and thermal 

stability z-scores of all proteins in all mutants (n=170,150). r depicts Pearson correlation. (h) 
Distribution of the number of mutants in which a protein is significantly altered (n=1,764 

proteins). Box plots are depicted as in Figure 2a. (i) Distribution of the number of proteins 

that are significantly altered in each mutant (n=121 mutants). Box plots are depicted as in 

Figure 2a.
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Extended Data Figure 2. Cellular processes targeted in this study and changes in thermal 
stability reflect protein complex architecture in E. coli mutants.
(a) Distribution of cellular processes targeted in this study compared to the general 

distribution of the E. coli genome using Clusters of Orthologous Groups (COG) (b-c) 
Schematic representation of protein complexes targeted by genetic perturbations in this 

study. Protein missing (encoded by gene deleted) is highlighted by a dashed line and other 

complex members are colored according to their thermal stability (b) or abundance (c) in 

that mutant. *|z-score| >1.96 and with q-value ≤0.05. ΔtolC data come from Mateus et al. 20 .
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Extended Data Figure 3. Protein co-expression patterns provide insight into gene expression 
regulation.
(a) Correlation of DegP and OmpF log2 fold-changes to control in each of the genetic 

perturbations probed here (n=120, since OmpF is not detected in ΔompF) at each 

temperature (color coded; n=10). Mutants that lead to cell envelope stress (highlighted), 

and therefore activation of stress response (see also panel b) lead to upregulation of DegP 

and downregulation of OmpF. (b) Schematic representation of regulation of degP and ompF 
genes. CpxAR two-component system regulates both genes, while EnvZ/OmpR regulates 

only ompF. Heatmap shows Spearman’s rank correlation (calculated as in Figure 3a) for 

proteins involved in regulation of degP and ompF.
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Extended Data Figure 4. Cofactor binding leads to changes in protein thermal stability.
(a) Distribution of thermal stability z-scores of all proteins in the iron-sulfur cluster 

biosynthesis mutants, ΔiscA, ΔiscS, and ΔiscU according to their gene ontology annotation 

as iron-sulfur cluster binding proteins (nΔiscA =41, nΔiscS =41, nΔiscU =40) or not (nΔiscA 

=1,400, nΔiscS =1,415, nΔiscU =1,314). Box plots are depicted as in Figure 2a. Significance 

assessed with two-sided Wilcoxon signed-rank test (p ΔiscA =3.9· 10-5, p ΔiscS =9.5·10-11, 

p ΔiscU =7.7·10-5). (b) Volcano plot showing proteins that significantly change in their 

thermal stability (highlighted in red) in ΔtatB shows that CueO is thermally destabilized. 

(c) Total and periplasmic protein extraction of different CueO constructs shows that deletion 

of Tat signal peptide (Δ28) and full-length construct in ΔtatB retain CueO protein levels, 
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but only a small fraction makes it to the periplasm. CueO was detected using mouse 

monoclonal anti-FLAG antibody (F3165, Merck) and goat anti-mouse IgG-HRP (sc-2005, 

Santa Cruz Biotechnology) (n=1). An SDS-PAGE gel was run in parallel and stained with 

Coomassie to ensure that periplasmic extraction was successful (n=1). (d) Cellular thermal 

shift assay (CETSA) of CueO fused to FLAG peptide, either using the full length protein 

(WT) or a version lacking the first 28 aminoacids (Δ28; corresponding to the Tat signal 

peptide). Experiments performed in living cells in ΔcueO strain. CueO was detected using 

mouse monoclonal anti-FLAG antibody (F3165, Merck) and goat anti-mouse IgG-HRP 

(sc-2005, Santa Cruz Biotechnology) (n=1). As a loading control, run on the same gel, rabbit 

anti-LpoB antibody 3 and goat anti-rabbit IgG-HRP (sc-2004, Santa Cruz Biotechnology) 

were used (n=1). (e) As in panel d, but comparing the thermal stability of CueO fused to 

FLAG peptide, either in ΔcueO (WT) or ΔcueOΔtatB (Δ) live cells (n=1). (f) As in panel 
d, but comparing thermal stability of Δ28-CueO in ΔcueO strain and full length CueO in 

ΔcueOΔtatB (n=1). (g) CETSA of Δ28-CueO in lysate of ΔcueO strain upon addition of 4 

mM CuCl2 or the same volume of vehicle (n=1). For gel source data see Supplementary 

Figure 2.

Extended Data Figure 5. Thermal stability changes of essential proteins.
(a) log2 fold-change of FtsK protein levels in each mutant compared to control at each 

temperature. FtsK is strongly thermally destabilized in the ΔphoP mutant and the ftsK 
knockdown is synthetically lethal with the phoP deletion (Figure 2d). (b) As in panel a for 

parC. ParC is strongly thermally stabilized in the ΔclpS mutant and thermally destabilized 

in the ΔphoP mutant and the parC knockdown is synthetically lethal with both. Synthetic 

lethality is also apparent in the ΔahpC, ΔamiA and ΔenvC mutants, despite the absence in 

changes in ParC thermal stability (Figure 2e).
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Extended Data Figure 6. Protein correlation profiling recapitulates known biological interactions 
with abundance and thermal stability data having different contribution to functional 
associations.
(a) Distribution of Spearman’s rank correlation of all protein pair comparisons compared 

to known operons, protein complexes, and metabolic pathways. Distribution statistics refer 

to all protein pairs. (b) ROC analysis based on the decreasing absolute Spearman’s rank 

correlation compared to interactions in STRING database at different cut-offs of the 

combined STRING score. (c-e) Spearman’s rank correlation of protein pairs belonging 

to the same operon (c), protein complex (d), or metabolic pathway (e) using solely 
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abundance changes (x-axis) or thermal stability changes (y-axis). Protein pairs belonging 

to the same operon are highlighted in purple. Distribution of Spearman’s rank correlation 

are shown outside the axes. n=446 for operons, n=348 for protein complexes, and n=801 

for metabolic pathways. Proteins belonging to the same operon or complex mostly have 

coordinated abundance changes, while proteins belonging to the same pathway have also 

often coordinated thermal stability. (f) Schematic representation of UDP-N-acetylmuramoyl-

pentapeptide biosynthesis pathway. (g) Example of protein pair (DdlA and MurC) co-

changing in their thermal stability (rS=0.79), but not abundance (rS=-0.13) across 81 

genetic perturbations. Each data point corresponds to the abundance or thermal stability 

z-score in one of the genetic perturbations (color coded). (h) Heatmap of Spearman’s rank 

correlation of all quantified members of UDP-N-acetylmuramoyl-pentapeptide biosynthesis 

pathway based on co-changes in abundance (upper triangle) or thermal stability alone (lower 

triangle).
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Extended Data Figure 7. Protein correlation profiling reflects substructures of protein 
complexes.
(a) Heatmap of Spearman’s rank correlation (lower triangle; based on protein abundance 

and thermal stability data across 121 mutants, as in Figure 3a) and the physical distance 

(upper triangle; based on ribosome structure, PDB: 4YBB, and using the centers of mass 

of each protein) between the ribosome members. At the bottom, 30S and 50S ribosomal 

subunits are shown in purple and green, respectively, and lower triangle data are clustered 

hierarchically. (b-c) High resolution structure of the ribosome colored according to the 
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heatmap clusters from panel a (b) or 30S and 50S ribosomal subunits (c). (d-g) ATP 

synthase members (d-e; PDB: 5T4O) and respiratory complex I (f-g; PDB: 4HEA), as 

in panels a-c. (h) Closely located members of protein complexes are more likely to be 

similarly regulated across different conditions. Spearman’s rank correlation plotted against 

the distance between complex subunits for the three complexes represented in the figure, 

with an apparent negative correlation. Box plots are depicted as in Figure 2a.

Extended Data Figure 8. GO enrichments of co-changing partners of proteins of unknown 
function can reveal their function.
Examples of links between proteins of unknown function and GO terms that their co-

changing proteins are enriched in. Some of these links are supported by external evidence 
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(node color, see Supplementary Discussion). Edges are colored according to the enrichment 

p-value using the Fisher’s exact test after correction for multiple comparison with the 

Benjamini-Hochberg procedure.

Extended Data Figure 9. Metabolite levels correlate with thermal stability of enzyme producing 
or using the metabolite.
(a-b) Scatter plot of metabolite log2 fold-changes in mutant compared to wildtype strain 

(y axis) and protein abundance (a) or thermal stability (b) in each mutant for enzymes 

that directly interact with the metabolite (x-axis) (n=19 mutants, except for G6P/F6P–PhoA 
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(n=7), 2-oxoglutarate– SucA (n=18), Succinate–SdhD (n=12), Malate–FumA (n=6), and 

Malate–FumB (n=12)). r depicts the Pearson correlation coefficient for each metabolite-

enzyme pair. Black line represents the linear fit and grey shades the 95% confidence interval 

of the fit. (c) Twenty strains used for targeted metabolomics analysis. (d) Distribution 

of Pearson correlation coefficients for metabolite levels in each mutant and abundance 

or thermal stability of enzymes that directly interact with the metabolite (upstream and 

downstream of metabolite, as in panels a and b). Box plots are depicted as in Figure 

2a. With all data represented on top of the box plots (nG6P/F6P=6, nPEP =5, nPyruvate=8, 

n2-oxoglutarate=4, nSuccinate=6, nMalate=9).
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Extended Data Figure 10. Protein abundance and thermal stability changes explain growth 
phenotypes of E. coli mutants.
(a) Scatter plot of number of significantly affected proteins (abundance or thermal stability) 

in each mutant (x-axis) and the number of significant growth phenotypes of the same mutant 

(y-axis; data from Herrera-Dominguez 12 ). p refers to the correlation p-value and n to the 

number of mutants. (b) Scatter plot of MdtK abundance in mutants profiled in this study and 

their sensitivity to 80 mM metformin 12 (r=0.44; n=119 mutants). (c-d) Spot assay for the 

indicated strains overexpressing mdtK, ahpC or cpxA, or a control empty plasmid in plates 

Mateus et al. Page 27

Nature. Author manuscript; available in PMC 2022 January 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



containing 0-80 mM metformin. Cells were diluted to OD578=0.5, serially diluted in 10-fold 

steps, and spotted on LB agar plates containing 10 μg/ml tetracycline (to maintain plasmid), 

0.1 mM IPTG (to induce expression of encoded gene), and metformin as indicated. (e) As 

in panel b, but showing correlation of RecR abundance and UV exposure for 18 s (r=0.53; 

n=99 mutants). (f) Schematic representation of the ybaB-recR operon and protein abundance 

scores in the ΔybaB mutant. (g) Spot assay for the indicated strains overexpressing ybaB, 

recR, or a control empty plasmid after exposure to UV with a total energy of 85 mJ/cm2 

or control non-exposed plate. Cells were diluted to OD578=0.1 and then serially diluted in 

10-fold steps, and spotted on LB agar plates containing 50 μg/ml ampicillin (to maintain 

plasmid) and 0.1 mM IPTG (to induce expression of encoded gene).
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Figure 1. Thermal proteome profiling (TPP) of 121 E. coli mutants.
(a) Experimental layout for TPP experiments. Two biological replicates of each mutant were 

grown to exponential phase and subjected to a short heat treatment. Cells were lysed and 

the soluble protein fraction at each temperature was analyzed by MS-based quantitative 

proteomics, using the multiplexing strategy depicted in panel at the right (for details see 

Online methods). (b) Heatmap of abundance and thermal stability of each protein (rows) 

in each mutant (columns). (c) Rarefaction analysis of the fraction of the proteome affected 

as a function of the number of genetic perturbations probed. Accumulation curves obtained 

after 50 random subsamples without replacement, where line represents the mean of the 

permutations and shaded area the standard deviation. (d) Zoomed inset from panel b 
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demonstrates thermal destabilization of iron-sulfur cluster containing proteins in iron-sulfur 

cluster biosynthesis mutants.
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Figure 2. Essential proteins change state, not abundance, in different genetic backgrounds.
(a) Distribution of the number of times a protein is significantly altered in abundance or 

thermal stability according to its classification as being encoded by an essential (n=273) 

or non-essential protein (n=1,491). Center line in box plots represents the median, box 

boundaries indicate the upper and lower interquartile range (IQR), and whiskers correspond 

to most extreme values, or to 1.5-fold of IQR if the extreme values are above this 

cutoff. ***Significance assessed with two-sided Wilcoxon signed-rank test (p All=0.48, p 

Abundance=6.9·10-22, p Stability=3.2·10-7). (b) Distribution of protein abundance (as measured 

by the three most abundant peptides for each protein; top3) for essential (n=273) or non-

essential proteins (n=1,491). Box plots and statistical test as in panel a (p=1.9·10-99). (c) 
Distribution of proteome changes (n=2,096 proteins) in wildtype and 3 mutant strains when 

ftsK or parC are targeted by dCas9 compared to a scrambled guide RNA. FtsK and ParC 

(red) show the strongest downregulation in all strains. Box plots are depicted as in panel a. 
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(d-e) Spot assay for the indicated mutant strains carrying in addition a guide RNA targeting 

ftsK (d) or parC (e) or a scrambled guide RNA (- in both panels). Abundance or thermal 

stability changes of the essential genes indicated by a heat map (Extended Data Figure 5).
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Figure 3. Co-changes in protein abundance and thermal stability are strong identifiers of 
functional relationships.
(a) Heatmap of Spearman’s rank correlation of all protein pairs using all the acquired 

data across the 121 genetic perturbations at the ten different temperatures. (b-d) Zoomed 

insets demonstrate co-clustering of functionally-related proteins, for members of the RNAP 

(b), L-histidine biosynthesis (c), and proteins involved in protein folding (d). (e) Example 

of protein pair (two subunits of RNA polymerase) co-changing in its thermal stability 

across all the genetic perturbations profiled in this study. Each data point corresponds to 
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the log2 fold-change to control in one of the genetic perturbations at one temperature 

(color coded). (f) Receiver operating characteristic (ROC) analysis based on the decreasing 

absolute Spearman’s rank correlation compared to known operons, protein complexes and 

metabolic pathways.
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Figure 4. Protein thermal stability captures enzymatic activity.
(a) Hierarchically clustered heatmap of Spearman’s rank correlation (as in Figure 3a) of 

enzymes belonging to glycolysis and citric acid cycle. (b) Schematic representation of 

glycolysis and citric acid cycle with enzymes color coded according to the clusters from 

panel a. Metabolites in bold were quantified in 19 mutants and wildtype cells using targeted 

metabolomics. (c) Distribution of Pearson correlation coefficients for metabolite levels in 

each mutant and abundance or thermal stability of enzymes that directly interact with the 

metabolite (n=38 pairs of metabolite-enzyme for each distribution; see also Extended Data 
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Figure 9a-b). Box plots are depicted as in Figure 2a. **p=0.005 that the median correlation 

coefficient is not different from zero using a bootstrap test.

Mateus et al. Page 39

Nature. Author manuscript; available in PMC 2022 January 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Summary
	High-throughput thermal proteome profiling
	Essential proteins mostly change in thermal stability
	Functionally-related proteins are co-regulated
	Enzyme thermal stability reflects activity
	Proteome changes explain mutant phenotypes
	Discussion
	Online methods
	Strains
	Mutant selection and multiplexing for thermal proteome profiling
	Thermal proteome profiling
	MS-based proteomics
	Protein identification and quantification
	Abundance and thermal stability score calculation
	Highly variable protein analysis
	
flhDC upstream sequence size determination
	CRISPRi experiments
	Protein correlation profiling and receiver operating characteristic (ROC) analysis
	Physical distance in protein complexes
	MS-based metabolite quantification
	CueO experiments
	Metformin and UV sensitivity
	Gene ontology enrichments

	Extended Data
	Extended Data Figure 1
	Extended Data Figure 2
	Extended Data Figure 3
	Extended Data Figure 4
	Extended Data Figure 5
	Extended Data Figure 6
	Extended Data Figure 7
	Extended Data Figure 8
	Extended Data Figure 9
	Extended Data Figure 10
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

