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Abstract

 

Adaptive and innate immunity have been implicated in the pathogenesis of atherosclerosis.
Given their abundance in the lesion, lipids might be targets of the atherosclerosis-associated
immune response. Natural killer T (NKT) cells can recognize lipid antigens presented by CD1
molecules. We have explored the role of CD1d-restricted NKT cells in atherosclerosis by using
apolipoprotein E–deficient (apoE

 

�

 

/

 

�

 

) mice, a hypercholesterolemic mouse model that develops
atherosclerosis. ApoE

 

�

 

/

 

�

 

 mice crossed with CD1d

 

�

 

/

 

�

 

 (CD1d

 

�

 

/

 

�

 

apoE

 

�

 

/

 

�

 

) mice exhibited a
25% decrease in lesion size compared with apoE

 

�

 

/

 

�

 

 mice. Administration of 

 

�

 

-galactosylceramide,
a synthetic glycolipid that activates NKT cells via CD1d, induced a 50% increase in lesion size
in apoE

 

�

 

/

 

�

 

 mice, whereas it did not affect lesion size in apoE

 

�

 

/

 

�

 

CD1d

 

�

 

/

 

�

 

 mice. Treatment
was accompanied by an early burst of cytokines (IFN

 

�

 

, MCP-1, TNF

 

�

 

, IL-2, IL-4, IL-5, and
IL-6) followed by sustained increases in IFN

 

�

 

 and IL-4 transcripts in the spleen and aorta. Early
activation of both T and B cells was followed by recruitment of T and NKT cells to the aorta
and activation of inflammatory genes. These results show that activation of CD1d-restricted
NKT cells exacerbates atherosclerosis.
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Introduction

 

Atherosclerosis is a slowly progressive disease that develops
at sites of lipid accumulation in large- and medium-sized
arteries, which can ultimately lead to infarction of the heart
and brain. Studies in man and experimental models have
shown an involvement of innate and adaptive immune
mechanisms in the disease process (1, 2). Indeed, athero-
sclerotic lesions are infiltrated by activated T cells and pro-
fessional APCs. It has been proposed that the cell-mediated
immune response in atherosclerosis is directed against peptide
antigens (2). However, given their abundance in the athero-
sclerotic plaque, lipid antigens may also be targets of disease-
associated immune responses. The apolipoprotein E–deficient
(apoE

 

�

 

/

 

�

 

) mouse suffers from hypercholesterolemia and
develops atherosclerosis spontaneously (3). The distribution

of the atherosclerotic lesions and their composition is similar
to those observed in humans, and lesion formation proceeds
from fatty streak to advanced atheroma with infiltrating
inflammatory cells (2, 4).

Lipid antigens can be presented to T cells as part of a
complex with the CD1 molecule, which is displayed on
certain APCs (5). CD1d-restricted NKT cells constitute a
unique subpopulation of T cells with surface expression of
proteins commonly expressed by NK cells, such as the
NK1.1 receptor (CD161) (6). NKT cells in mice express
TCRs with a semiinvariant V

 

�

 

14-J

 

�

 

281 

 

�

 

-chain associated
with either V

 

�

 

2, 

 

�

 

7, or 

 

�

 

8 

 

�

 

-chains. Upon stimulation,
these cells have the capacity to rapidly secrete large
amounts of cytokines, including IL-4 and IFN

 

�

 

 and to
cause bystander activation of NK cells, B cells, DCs (7),
and CD4

 

�

 

 and CD8

 

�

 

 T cells (8). The natural ligand(s) for
CD1d-restricted NKT cells remains to be characterized,
but the synthetic glycolipid 

 

�

 

-galactosylceramide (

 

�

 

GalCer)
(9) has been shown to specifically activate these cells, influence
the Th effector response (6), and modulate T cell–dependent
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autoimmune diseases (10–12). Atherosclerosis bears several
features of such diseases and is affected by Th modulation
(2, 13). An oligoclonal expansion of V

 

�

 

14

 

�

 

 (also called
V

 

�

 

34s) cells has been observed in the lesions of apoE

 

�

 

/

 

�

 

mice (14), and both CD1

 

�

 

 and NKT cells have been de-
tected in human lesions (15, 16), underlining their possible
involvement in the disease. These findings, and the capac-
ity of NKT cells to produce large amount of cytokines,
suggest that inflammation in the atherosclerotic plaque, and
thus atherogenesis, might be modulated by CD1d-restricted
NKT cells.

In this report, we studied the effect of CD1d-dependent
stimulation of NKT cells on atherosclerosis by using 

 

�

 

Gal-
Cer treatment in apoE

 

�

 

/

 

�

 

 and apoE

 

�

 

/

 

�

 

CD1d

 

�

 

/

 

�

 

 mice.
The present results show that CD1d deficiency reduces
atherosclerosis, whereas 

 

�

 

GalCer treatment significantly in-
creases disease in apoE

 

�

 

/

 

�

 

 mice. Together, these data imply
that CD1d-restricted NKT cell activation promotes devel-
opment of atherosclerosis and suggests that lipid antigen
presentation may be an important contributor to the patho-
genesis of the disease.

 

Materials and Methods

 

Animals.

 

Double deficient apoE

 

�

 

/

 

�

 

CD1d

 

�

 

/

 

�

 

 mice were gen-
erated by crossing CD1d

 

�

 

/

 

�

 

 mice (17), backcrossed at least six
times to the C57BL/6J background, with apoE

 

�

 

/

 

�

 

 mice (Taconic
M&B). The offspring was intercrossed to produce mice with ho-
mozygous deletion in both apoE and CD1d genes (apoE

 

�

 

/

 

�

 

CD1d

 

�

 

/

 

�

 

). For experiments, 5-wk-old female apoE

 

�

 

/

 

�

 

 and
apoE

 

�

 

/

 

�

 

CD1d

 

�

 

/

 

�

 

 mice were injected twice a week with PBS
(controls) or 

 

�

 

GalCer (Kirin Brewery Company). The first injec-
tion was performed i.v. and the following i.p. For the long-term
protocol (20 injections), 12 mice per group were used. For shorter
protocols (one, three, or five injections), groups of five to six mice
received 

 

�

 

GalCer and groups of three to five mice received PBS.
Animals were kept on chow diet, and all experiments were ap-
proved by the institutional ethical committee for animal welfare.

 

Sample Preparation and Lesion Analysis.

 

Animals were anesthe-
tized with carbon dioxide and killed by exsanguination through
cardiac puncture. After vascular perfusion with sterile RNase-free
PBS, the heart, spleen, and liver were removed. The descending
aorta was immediately and carefully dissected free from surround-
ing tissue under a dissection microscope and snap frozen for
mRNA analysis. Lipoprotein profiles were determined in serum
by fast protein liquid chromatography (18). The heart and proxi-
mal aorta were embedded in OCT compound (Tissue-tek) and
frozen. 10-

 

�

 

m cryosections of the aortic root were analyzed for
lesion size. Lesion size was defined as the cross section surface area
of Oil Red O staining within the aortic intima plus media. Mean
lesion size for each mouse was calculated from measurement of
cryosections taken from every 100 

 

�

 

m of the first 600 

 

�

 

m in the
ascending aorta, starting from the aortic cusps. Sections were also
used for immunohistochemistry to identify I-A

 

b

 

 (KH74; BD Bio-
sciences), VCAM-1 (429; BD Biosciences), and 

 

�

 

SM-actin
(A5691; Sigma-Aldrich). The expression of VCAM-1 was quan-
titated by dividing the stained surface area by the total surface area
of the vessel. The expression of I-A

 

b

 

 was quantitated by dividing
the number of I-A

 

b

 

�

 

 cells by the total number of hematoxylin-
stained cells per lesion. All histological analyses were done in a
blinded fashion.

 

Flow Cytometry.

 

Spleen and hepatic mononuclear cells were
prepared as described previously (13, 19). NKT cells were de-
tected either by immunofluorescent double staining with PE–
anti-NK1.1 (PK136) and FITC–anti-TCR

 

�

 

 (H57–597) antibodies
or double staining with 

 

�

 

GalCer-loaded CD1d-dimer (PE-
labeled) (Becton Dickinson) and FITC–anti-TCR

 

�

 

. Activated T
cells were detected by staining spleen mononuclear cells with
PE–anti-CD69 (H1–2F3) and FITC–anti-TCR

 

�

 

 antibodies,
whereas activated B cells were detected by PE–anti-CD19 (1D3)
and FITC–anti-B7.2 (GL1) antibodies. All antibodies were from
BD Biosciences, and the analyses performed on a FACSCalibur

 

®

 

(Becton Dickinson).

 

Cytometric Bead Array.

 

IFN

 

�

 

, MCP-1, TNF

 

�

 

, IL-2, IL-4,
IL-5, IL-6, IL-10, and IL-12 concentrations in sera were analyzed
with the Mouse Th1/Th2 Cytokine (no. 551287) and the Mouse
Inflammation (no. 552364) Cytometric Beads Array kits from
BD Biosciences according to the manufacturer’s instructions.
Analyses were run on a FACSCalibur

 

®

 

.

 

RNA Preparation and RT-PCR.

 

RNA was prepared from
spleen and aorta after homogenizing tissue in FastRNA

 

®

 

 Pro
Green (Q-Biogene) with equal volumes of RLT lysis buffer
(QIAGEN) and phenol-CHISAM (Sigma-Aldrich). Purification
of total RNA was performed using the RNeasy system
(QIAGEN) including a DNase step. RNA concentration and
quality were assessed on a Bioanalyzer capillary electrophoresis
system (Agilent). Real-time PCR was performed in a TaqMan
7700 (Applied Biosystems) according to the manufacturer’s in-
structions. cDNA was synthesized from total RNA using Super-
script II (Invitrogen).

 

Statistics.

 

Data are presented as mean 

 

� 

 

SEM. Differences
between the means were evaluated by using the Mann-Whitney
test and were considered significant when P 

 

	 

 

0.05.

 

Online Supplemental Material.

 

The supplemental Materials
and Methods (available at http://www.jem.org/cgi/content/full/
jem.20030997/DC1) provides details on the real-time RT-PCR
analyses.

 

Results and Discussion

 

Two approaches were used in order to determine the
role of the CD1d-NKT cells in atherosclerosis: generation
of double deficient apoE

 

�

 

/

 

�

 

CD1d

 

�

 

/

 

�

 

 mice and specific
NKT cell stimulation by 

 

�

 

GalCer treatment. Total choles-
terol and triglyceride levels did not differ between apoE

 

�

 

/

 

�

 

CD1d

 

�

 

/

 

�

 

 double deficient and apoE

 

�

 

/

 

�

 

 single deficient
mice, treated or not with 

 

�

 

GalCer, nor did plasma lipopro-
tein profiles determined by fast protein liquid chromatogra-
phy (not depicted).

ApoE

 

�

 

/

 

�

 

CD1d

 

�

 

/

 

�

 

 mice exhibited significantly smaller
atherosclerotic lesions in the aortic root than apoE�/� single
knockout mice (74,638 � 5.9 �m2 versus 100,548 � 5.6
�m2; P 
 0.0087) (Fig. 1, a–c). This was apparent through-
out the aortic root (Fig. 1 b). When CD1d-restricted NKT
cells were activated by administration of �GalCer over a 10-
wk period, lesion size increased by 50% in apoE�/� mice
compared with PBS-treated control mice (151,276 � 9.377
�m2 versus 100,548 � 5.572 �m2; P 	 0.0001). In apoE�/�

CD1d�/� mice, �GalCer did not affect lesion size (Fig. 1, a
and c), demonstrating that the effect of �GalCer on athero-
sclerosis depends on CD1d. Together, these findings indicate
that CD1d-dependent activation of NKT cells aggravates
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atherosclerosis and that lack of CD1d, the restriction element
for presentation of lipid antigens to NKT cells, leads to re-
duced lesions in a mouse model of human atherosclerosis.

To assess inflammatory activation, lesions in the aortic
root were stained for the adhesion molecule VCAM-1 and
the MHC class II protein I-Ab. VCAM-1 was expressed in
the lesion and in the media underneath the lesion (Fig. 2,
a–c). �SM-actin staining of adjacent aortic root sections
confirmed that VCAM-1 was mainly expressed by smooth
muscle cells (not depicted). I-Ab was expressed by inflam-

matory cells in the lesions (Fig. 2, d and e). ApoE�/�

CD1d�/� mice expressed significantly less VCAM-1 than
apoE�/� mice (P 
 0.027) (Fig. 2 a). The proportion of
I-Ab–expressing cells did not differ between apoE�/� and
apoE�/�CD1d�/� mice (Fig. 2 d); however, the decrease
in lesion area in the CD1d�/� mice resulted in a reduced
number of I-Ab cells per section when compared with
apoE�/� mice. �GalCer treatment increased VCAM-1 and
I-Ab expression in apoE�/� mice (P 
 0.036) but not in
apoE�/� CD1d�/� mice (Fig. 2, a–e), implying that �Gal-

Figure 1. Effects of CD1d deficiency and �GalCer treatment on atherosclerosis. 5-wk-old female apoE�/� and apoE�/�CD1d�/� mice were injected
twice a week for 10 wk with �GalCer or PBS and killed 48 h after the last injection (n 
 12 for each group). (a) Mean lesion size in Oil Red O–stained
aortic root sections. Mean � SEM (***P 	 0.001 versus apoE�/�-PBS and all apoE�/�CD1d�/�; §§P 	 0.01 versus apoE�/�-PBS mice). (b) Lesion size
at every 100 �m for the first 600 �m of the aortic root in apoE�/� and apoE�/�CD1d�/� mice. (c) Representative Oil Red O–stained cryosections
of aortic roots (magnification �50).

Figure 2. Effects of CD1d deficiency and �Gal-
Cer treatment on the expression of VCAM-1 and
I-Ab in atherosclerotic lesions. Experimental
groups were the same as in Fig. 1. (a) VCAM-1
quantitation (VCAM-1� area/vessel area); (b and
c) representative sections of aortic root stained for
VCAM-1 by avidin-biotin-immunoperoxidase
(brown) (�50 and �400). (d) I-Ab quantitation
(I-Ab� cells/total hematoxylin� cells) and (e)
representative sections of aortic roots stained for
I-Ab by avidin-biotin-immunoperoxidase (brown)
(�400). Arrows point at I-Ab� cells. Mean �
SEM (*P 	 0.05 versus apoE�/� treated with PBS
and versus all apoE�/�CD1d�/�; **P 	 0.01 versus
all apoE�/�CD1d�/� mice; §P 	 0.05 versus
apoE�/�-PBS).
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Cer induction of these genes was dependent on CD1d-
restricted NKT cells.

NKT cell activation is likely to enhance activation of
macrophages, endothelial cells, and other cells capable of
secreting proinflammatory cytokines. Such a cascade may
be responsible for the increased expression of VCAM-1
and I-Ab observed in �GalCer-treated mice. VCAM-1 ex-
pression by vascular smooth muscle cells is a characteristic
feature of atherosclerosis, where it reflects inflammatory ac-
tivation of lesion cells; however, its role in the recruitment
and activation of inflammatory cells remains unclear. Endo-
thelial VCAM-1 expression contributes to atherosclerosis
by promoting recruitment of mononuclear cells to forming
lesions (20).

An early burst of inflammatory cytokines was detected
in sera after an injection of �GalCer; both typical Th1
(IFN�, TNF�, IL-2) and Th2 (IL-4, IL-5) cytokines were
increased as well as IL-6 and MCP-1 (Fig. 3 a). However,
neither IL-10, which has antiinflammatory and atheropro-
tective properties (18, 25), nor IL-12 was detected in any
of the groups (not depicted). The increase was remarkable,
e.g., 5,000-fold for IFN� and 250-fold for MCP-1. By-
stander activation of T and B cells was registered by an in-
creased number of cells double positive for CD69/TCR�
and B7.2/CD19, respectively (Fig. 3 b). This early burst of
cytokines might explain the increased expression of
VCAM-1, which can be induced by proinflammatory cy-
tokines, and I-Ab, which is induced by IFN�. The in-
creased levels of circulating MCP-1 might be significant
for the exacerbated lesion development in �GalCer-
treated mice, since this chemokine has important pro-
atherogenic effects (21, 22). High levels of IL-6 could also
have effects on atherosclerosis, since early lesions in
apoE�/� mice are exacerbated by recombinant IL-6 (23).
Elevated circulating IL-6 concentrations is correlated with
increased risk of coronary and peripheral atherosclerosis in
man (24). After repeated injections, serum levels of cyto-
kines fell below the detection limit, and no signs of in-
creased T or B cell activation could be detected anymore.
Real-time RT-PCR analysis (see Supplemental Materials
and Methods, available at http://www.jem.org/cgi/content/
full/jem.20030997/DC1) of spleen mRNA confirmed the
increase in IFN� (85-fold) and IL-4 (25-fold) mRNA in
mice injected once with �GalCer (Fig. 3 c) and demon-
strated that increased IFN� and IL-4 expression in the
spleen was still detectable after repeated injections (Fig. 3 c).

Direct evidence for a proatherogenic action of IFN� has
been provided by several studies in gene-targeted mice (2,
26), and analysis of human lesions has revealed expression
of IFN� by activated immune cells (2). Therefore, it is
likely that the early burst of IFN� upon �GalCer treatment
contributed to the proatherogenic effect observed in our
study. The increased expression of IFN�-inducible I-Ab

protein in aortic lesions and the demonstration of elevated
aortic IFN� mRNA (see below) in �GalCer-treated mice
support this notion. The effects of the sustained production
of IL-4 are more difficult to interpret since the role of IL-4

in atherosclerosis is still under debate (24). However, our
data show a correlation between increased IL-4 secretion
and increased lesion size. These findings are in line with
those in a recent study of atherosclerosis in double-defi-
cient apoE�/�IL-4�/� mice (27).

�GalCer injections led to dramatic systemic changes in
the NKT cell population. When comparing apoE�/� mice
injected once or repeatedly with �GalCer, a transient de-
crease followed by recovery was observed for TCR�

NK1.1� cells in the spleen (Fig. 4 a) and liver (not depicted).
This could either be due to activation-induced apoptosis or
down-regulation of the NK1.1 receptor. To address this is-
sue, NKT cells were also detected using CD1d-dimer stain-
ing in mice injected once i.v. with �GalCer and killed 12 or
72 h later. In the spleen, activation through �GalCer injec-
tion led to an initial reduction of NKT cells, but after 72 h
the spleen had five times more NKT cells than spleens from
PBS-injected controls (Fig. 4 b). In the liver, the NKT cell

Figure 3. Systemic effects of �GalCer in apoE�/� mice. 5-wk-old
apoE�/� mice were injected one, three, or five times, twice a week,
with �GalCer or PBS. The first injection was i.v. (n 
 6 for �GalCer
and n 
 5 for PBS) and the following ones i.p (n 
 5 for �GalCer and
n 
 3 for PBS). Mice were killed 12 h after the last injection. (a) Serum
levels of cytokines after one injection of �GalCer or PBS. In control
(PBS) mice, levels of IFN�, TNF�, and IL-6 were not detectable (nd).
(b) Activated spleen T (CD69�TCR���) and B (CD19�B7.2�) cells
determined by flow cytometry. (c) IFN� and IL-4 mRNA in spleens
measured by quantitative real-time RT-PCR and normalized to �-actin
mRNA after one, three, and five injections. The values for IFN� are
represented in a logarithmic scale. Mean � SEM (*P 	 0.05; **P 	 0.01
versus PBS-injected mice).
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population decreased 12 h after the injection but returned to
normal levels after 72 h (Fig. 4 b).

The local NKT cell response in the aorta was detected
by TCR mRNA analysis (see Supplemental Materials and
Methods, available at http://www.jem.org/cgi/content/full/
jem.20030997/DC1). Both total TCR mRNA and NKT
cell–specific V�14-J�281 transcripts were already present in
the aorta of PBS-injected apoE�/� control mice (Fig. 4 c).
This is in line with our previous finding of V�14 (also
called V�34s) when analyzing TCR transcripts in advanced
lesions of apoE�/� mice (14). After one i.v. injection of
�GalCer, an increase in TCR mRNA in the aorta could be
detected as early as 12 h after injection and continued to in-

crease at 72 h. NKT cell–specific V�14-J�281 mRNA in-
creased dramatically 72 h after treatment also. IFN� and IL-4
mRNA increased in the aorta of �GalCer-injected mice
(Fig. 4 d). This rise peaked at 12 h after injection, and tran-
scripts remained elevated after 72 h. The early increases in
IFN� and IL-4 mRNA in the aorta is likely due to the
NKT cells already present in the lesion, which may in turn
activate other cytokine-producing cells such as classical T
cells and macrophages. Our data also suggest that systemic
NKT cell activation induced by �GalCer injection leads to
increased recruitment and, probably, activation of NKT
cells in lesions. Such a scenario is also supported by the in-
creased I-Ab and VCAM-1 expression in lesions of mice
with �GalCer-activated NKT cells.

The finding of a proatherogenic role for NKT cells sug-
gests that antigen-specific activation of these cells could
contribute to disease development. The natural antigens for
CD1d-restricted NKT cells are still unknown, despite nu-
merous studies, but are thought to include lipid antigens.
Atherosclerosis is strongly linked to lipid metabolic distur-
bances, and therefore our results suggest that lipid antigens
may be involved in the disease process (2, 28). Further
studies will be needed to identify such disease-related lipid
antigens, clarify the precise role of NKT cells in the differ-
ent phases of disease development, and determine the role
of the CD1d-NKT cells in human atherosclerosis. In con-
clusion, controlling the activation state of NKT cells may
represent a new therapeutic approach for atherosclerosis.
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