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Abstract

Rationale: Variation in hospital mortality has been described for
coronavirus disease (COVID-19), but the factors that explain these
differences remain unclear.

Objective: Our objective was to use a large, nationally
representative data set of critically ill adults with COVID-19 to
determine which factors explain mortality variability.

Methods: In this multicenter cohort study, we examined adults
hospitalized in ICUs with COVID-19 at 70 U.S. hospitals between
March and June 2020. The primary outcome was 28-day mortality.
We examined patient-level and hospital-level variables. Mixed-
effect logistic regression was used to identify factors associated with
interhospital variation. The median odds ratio was calculated to
compare outcomes in higher- versus lower-mortality hospitals. A
gradient-boosted machine algorithm was developed for individual-
level mortality models.

Measurements and Main Results: A total of 4,019 patients were
included, 1,537 (38%) of whom died by 28 days. Mortality varied
considerably across hospitals (0–82%). After adjustment for patient-
and hospital-level domains, interhospital variation was attenuated
(odds ratio decline from 2.06 [95% confidence interval (CI),
1.73–2.37] to 1.22 [95% CI, 1.00–1.38]), with the greatest changes
occurring with adjustment for acute physiology, socioeconomic
status, and strain. For individual patients, the relative contribution of
each domain tomortality risk was as follows: acute physiology (49%),
demographics and comorbidities (20%), socioeconomic status
(12%), strain (9%), hospital quality (8%), and treatments (3%).

Conclusions: There is considerable interhospital variation in
mortality for critically ill patients with COVID-19, which is mostly
explained by hospital-level socioeconomic status, strain, and acute
physiologic differences. Individual mortality is driven mostly by
patient-level factors.
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AsofApril2021,coronavirusdisease(COVID-
19) has killedmore than 500,000 people in the
United States (1).When patients develop
severe disease, they are typically transferred to
the ICU, which provides more intensive
monitoring together with potentially life-
saving critical care therapies such as
mechanical ventilation, vasoactive agents, and
extracorporeal membrane oxygenation (2, 3).
Studies conducted before the pandemic
demonstrated that outcomes of critically ill
patientsvaryacrosshospitals,whichmayrelate
to differences in patient characteristics and the
quality of care provided at different hospitals
(4).Emergingdata suggest similarvariability in
outcomes across hospitals for critically ill
patients admitted with COVID-19 (5–8). The
causes of this variability are unclear and could
include differences in demographics,
comorbidities, the physiologic severity of
illness, socioeconomic status, resource strain,
hospital quality, and treatments provided. It is
also unknown how each of these domains
impacts mortality risk for individual patients.
A better understanding of the patient- and
hospital-level factors impacting death
could lead to insights into the reasons for
the wide variation in reported outcomes,
the determinants of individual
patient outcomes, and improved healthcare
delivery.

Our objective was to use a large,
nationally representativedatasetofcritically ill

adults with COVID-19 to determine which
factors explain the variability in mortality at
both the hospital and the patient level. To do
this, we linked detailed patient information
withhospital-leveldataandthenexploredhow
different domains explained variations in
28-day mortality.

Methods

Study Design, Setting, and Population
We used the database of the multicenter
STOP-COVID (Study of the Treatment and
Outcomes in Critically Ill Patients with
COVID-19), a cohort study of 5,154 patients
with COVID-19 admitted to ICUs across the
United States (see Table E1 in the online
supplement for the sites included in this study)
(5).We included consecutive adults (age> 18
yr) admitted to the ICU with laboratory-
confirmed COVID-19 admitted between
March 4 and June 29, 2020. Patients were
followed until the first of hospital discharge,
death, or at least 28 days after ICU admission.
Patients transferred to the ICU from other
hospitals, admitted to a hospital not linked to
theMedicare Hospital Compare ratings, or
admitted to a hospital with fewer than 10
COVID-19 ICU admissions in the data set
were excluded. A sensitivity analysis was
performed by including patients transferred
from outside hospitals. The study was
approved by institutional review boards at
each site, with a waiver of informed consent
being given.

Data Collection and Outcome
Manual chart review was performed at each
site by using a standardized case report form,
as previously described (5). Patient-level data
collected included admission day,
demographic information, comorbidities,
vital signsat ICUadmission, laboratoryvalues,
medications, nonmedication treatments,
organ support in the first 2 weeks of ICU
admission, and outcomes, including
in-hospitalmortality.TheSTOP-COVIDdata
set also included what type of ICU bed the
patient was admitted to (e.g.,
medical–surgical), whether the patient was
admitted to a COVID-19–specific ICU or
surgeunit, andthenumberof ICUbedsateach
hospital before the COVID-19 pandemic.

Additional hospital-level variables were
collectedby linking each studyhospital to data
from the following sources: the American
Hospital Association Annual Survey 2020
database for hospital strain and capacity

variables, the 2017Medicare Hospital
Compare ratings for hospital quality ratings,
the Healthcare Cost Report Information
System, and the 2015 American Community
Survey socioeconomic status data, which
incorporates information from communities
surrounding each hospital by using a
previously described methodology (Table E2)
(9–11). Furthermore, time-varying variables
describing hospital-level strain were collected
from the STOP-COVID data set (i.e., number
of other patients with COVID-19 currently in
the ICU at a given hospital when a patient was
admitted) and from publicly available data on
the number of newCOVID-19 cases from the
past30days for thecountywhereeachhospital
was located (1).

The primary outcome of the study was
in-hospital death within 28 days of ICU
admission. If a patient was discharged alive
beforeDay28, theywere assumed tobealive at
Day 28. This assumption was confirmed in a
sample of patients in a previous study (5). A
sensitivity analysis was performed using
in-hospital mortality as the outcome.

Statistical Analysis
Explanatoryvariableswerecategorizedintosix
domains, including three patient-level
domains and three hospital-level domains.
The individual variables and domains were
chosen a priori on the basis of prior literature
and availability. Patient-level domains
included acute physiology and severity of
illness in the first 48 hours of ICU admission
(e.g., vital signs, laboratory values, ventilatory
support, number of vasopressors, and renal
replacement therapy); demographics and
comorbidities (e.g., age, sex, race, body mass
index, smoking status, and preexisting
conditions); and treatments provided in the
first 48 hours of ICU admission (e.g.,
corticosteroids, remdesivir, tocilizumab,
prone position ventilation). Hospital-level
treatment intensity was also included as a
variable in the treatment domain by
calculating the percentage of mechanically
ventilatedpatientswith aPaO2

/FIO2
ratio,150

who were treated with extracorporeal
membrane oxygenation, inhaled pulmonary
vasodilators, tocilizumab, prone positioning,
or neuromuscular blockade. Hospital-level
domains included socioeconomic factors at
the hospital level (e.g., percentage with a high
school diploma, percentage unemployed,
percentage who were English speaking,
percentage with a travel time to work.45
min),hospital strain (e.g., numberof ICUbeds
before COVID-19, time-varying number of

At a Glance Commentary

Scientific Knowledge on the
Subject: Considerable variation in
hospital mortality has been described
for patients admitted to the ICU with
coronavirus disease (COVID-19).
However, the factors that explain
these differences remain unclear.

What This Study Adds to the Field:
In this study of 4,019 patients in 70
hospitals, we found significant
interhospital variation in mortality for
critically ill patients with COVID-19.
This hospital-level variation was
mostly explained by hospital-level
socioeconomic status, strain, and
physiologic differences, although
individual mortality was driven
mostly by patient-level factors.
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ICUbedsfilledwith patients withCOVID-19,
whether thepatientwasadmittedtoaCOVID-
19–specific ICUor surge unit, total number of
medical–surgical beds, prepandemic ICU
occupancy rate,numberofhospital beds in the
county, number of COVID-19 cases in the
county from the prior 30 d), and hospital
quality scores (mortality, readmission, safety,
timeliness, patient experience, and
effectiveness). The ICU admission day was
used to create a variable that denotes the “days
sincestudystart” thatapatientwasadmittedto
the ICU,whichwas assigned to eachpatient to
account for possible longitudinal changes in
hospital quality (12). The full variable list for
each domain, together with additional
descriptions, is provided in Table E2. Missing
values were imputed by using bagged forests
from the caret package in R, which builds
ensembles of decision trees, with each tree
being fit to a randomly selected, bootstrapped
sample of the data set by using nonmissing
variables to impute missing variables (see
Table1 for theamountofmissingdata foreach
variable). This approach has the advantage of
automatically modeling nonlinearities and
interactions that may be important for
accurate variable imputation (13).
Comparisons between patients who survived
and those who diedwithin 28 days weremade
for all study variables by usingWilcoxon rank
sum tests and chi-square tests.

Next, mixed-effect logistic regression
modelswerefit,firstwithanemptymodelwith
a random effect for each hospital and then by
sequentially adjusting for variables from each
domain in the order described above, which
moves from patient-level to hospital-level
factors. This ordering allowed for the
separation of patient- and hospital-level
variables to determine their contributions to
interhospital variation in mortality. The
change in the adjusted variation of 28-day
mortality was calculated, moving from one
model to the next, by examining the median
odds ratio for each model. The median odds
ratio can be interpreted as the difference in
odds between a randomly selected lower-risk
hospital and a randomly selected higher-risk
hospital. It can be conceptualized as the
increasedrisk that a subjectwouldhave if heor
shewereadmittedtoahigher-riskhospital (14,
15). Pseudo-R2 values were also calculated for
each individual domain by using Efron’s R2,
which is calculated by taking the sum of the
squared model residuals divided by the total
variability in the dependent variable.

Finally, to calculate the contributionof the
domains to an individual’s risk of mortality, a

gradient-boosted tree machine learningmodel
was fit by using all of the variables from each
domain(16).Tenfoldcross-validationwasused
to optimize themodel’s area under the receiver
operating characteristic curve. Shapley values,
which estimate the contribution of each
variable for that individual patient’s risk of
28-daymortality (17), were then calculated for
each individual patient. The individual Shapley
valueswere thencombinedacrossallpatients in
the data set by using themean of their absolute
value to determine the percent mortality risk
explained by each domain. All analyses were
performed by using Stata version 16.1
(StataCorp) and R version 4.2 (R Foundation
for Statistical Computing) with the caret,
XGBoost, and iml packages. A two-sided P
value of,0.05 denoted statistical significance.

Results

Patient Characteristics
A total of 4,019 patients (median age
[interquartile range (IQR)], 63 [53–72]; 63%
male [n=2,532]) from 70 hospitals were
included in the analysis after exclusion criteria
were applied (Figure E1 and Table E1), and
1,537 patients (38%) died by 28 days. The
median number of patients at a given hospital
was 34 (IQR, 20–79; Figure E2). Patients who
died were older (median [IQR], 68 [59–76] yr
vs. 60 [49–68] yr),more likely to bemale (66%
vs. 61%), andmore likely to be current or
former smokers (30% vs. 23%) andhadhigher
frequencies of most comorbidities than those
who survived at 28 days (Table 1). Most vital
signs and laboratory results were significantly
different during the first 48 hours of ICU
admission between those who died and those
who survived (Table 1). Patients who died
were alsomore likely to have received invasive
mechanical ventilation (80% vs. 58%) and
renal replacement therapy (9% vs. 5%) during
the first 48 hours of ICU admission. Finally,
certainmedicationsweremoreoftenprovided
to those who died, such as neuromuscular
blocking agents (25% vs. 17%),
hydroxychloroquine (63% vs. 59%), and
corticosteroids (35% vs. 21%) (Table 1).

Hospital-Level Analysis
Compared with patients who survived,
patients who died were admitted to hospitals
withahigherpercentageof ICUbedsoccupied
by patients with COVID-19 (48% vs. 31%), a
higher percentage of the population traveling
.45 minutes to work (23% vs. 18%), a lower
prepandemic ICU occupancy rate (69% vs.

74%), a lower number of pre-COVID-19 ICU
beds (median [IQR], 53 [47–98] vs. 98
[54–115]), a higher number of COVID-19
cases in the county in the prior 30 days
(median [IQR], 2,279 [640–7,268] vs. 1,416
[398–4,585]), and a lower hospital quality
score (Table 2).

Twenty-eight–day mortality varied
widely across hospitals, from0% at the lowest-
risk hospital to 82% at the highest-risk
hospital. In themixed-effect regressionmodel,
the median odds ratio decreased from 2.06
(95% confidence interval [CI], 1.73–2.37) in
the unadjusted model to 1.22 (95% CI,
1.00–1.38) in the fully adjusted model (Figure
1). This was associated with a change in the
range of mortality across hospitals from
12–91% (random effects only) to 32–44%
(fullyadjustedmodel).Modeladjustmentwith
variables from the physiology, socioeconomic
status, and strain domains were associated
with the greatest change in the median odds
ratio (all with a.0.20 change in the point
estimate). The fully adjusted model explained
nearly all the variability across hospitals (P
value for random effect term=0.73; see Table
E3 for model coefficients). Pseudo-R2 values
for each individual domain demonstrated
similar results, with physiology (0.2),
demographics (0.11), socioeconomic status
(0.10), and strain (0.09) having the highest
values, followed by quality (0.06) and
treatments (0.04).

Patient-Level Analysis
The Shapley values calculated from the
XGBoost model using variables from all the
domains found that physiology (49%),
demographics and comorbidities (20%),
hospital socioeconomic status (12%), strain
(9%), hospital quality (8%), and treatments
(3%) all contributed to mortality risk (Figure
2). The mean contributions of the individual
variables in each domain are shown in Figures
E3–E8. Thus, for patients in the data set, on
average, theirpresentingphysiology explained
half of their quantifiable individual risk of
mortality, whereas external factors such as
hospital socioeconomic status, hospital
capacity and strain, hospital quality, and the
treatments clinicians provided explained over
one-quarter (31%) of their mortality risk.
Among patient demographics, age had the
highest contribution, explaining 12% of the
mortality risk, whereas comorbidities
explained 4% of a patient’s mortality risk.
Temporal trends captured by the days since
study start variable only explained a small
percentage of a patient’s mortality risk (1%).
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Table 1. Patient Characteristics at Baseline

Variable
All Patients
(N=4,019)

28-Day Survivors
(n= 2,482)

28-Day Nonsurvivors
(n= 1,537)

Demographics and preexisting comorbidities
Demographics

Age, yr, median (IQR) 63 (53–72)* 60 (49–68) 68 (59–76)
Sex, M, n (%) 2,532 (63.0)* 1,520 (61.2) 1,012 (65.8)
Race, n (%)

White 1,527 (38.0%) 950 (38.3%) 577 (37.5)
Black 1,238 (30.8%) 782 (31.5%) 456 (29.7%)
Other 328 (8.2%) 213 (8.6%) 115 (7.5%)
Unknown/not reported 926 (23.0%) 537 (21.6%) 389 (25.3%)

Ethnicity, n (%)
Hispanic 954 (23.7%) 601 (24.2%) 353 (23.0%)
Non-Hispanic 2,600 (64.7%) 1,604 (64.6%) 996 (64.8%)
Unknown/not reported 465 (11.6%) 277 (11.2%) 188 (12.2%)

Current or former smoker, n (%) 1,039 (25.9)* 581 (23.4) 458 (29.8)
BMI, kg/m2, median (IQR) 30.2 (26.3–35.5)* 30.6 (26.5–35.9) 29.7 (26.0–34.9)

Preexisting comorbidities, n (%)
Active cancer 190 (4.7)* 80 (3.2) 110 (7.2)
Congestive heart failure 425 (10.6)* 224 (9.0) 201 (13.1)
Chronic obstructive pulmonary disease 356 (8.9)* 175 (7.1) 181 (11.8)
Coronary artery disease 567 (14.1)* 277 (11.2) 290 (18.9)
Diabetes 1,713 (42.6)* 972 (39.2) 741 (48.2)
End-stage renal disease 153 (3.8)* 79 (3.2) 74 (4.8)
Hypertension 2,476 (61.6)* 1,398 (56.3) 1,078 (70.1)

Physiology
Vital signs†

Altered mental status, n (%) 997 (24.8)* 420 (16.9) 577 (37.5)
Heart rate, beats/min, median (IQR) 105 (91–120)* 103 (90–118) 109 (93–125)
Respiratory rate, breaths/min, median (IQR) 32 (26–39)* 32 (26–39) 31 (26–38)
Systolic blood pressure, mm Hg, median (IQR) 97 (85–111)* 99 (88–112) 94 (82–109)
Temperature, �C, median (IQR) 37.9 (37.2–38.8)* 38.0 (37.2–38.8) 37.8 (37.1–38.7)

Laboratory results‡

Arterial pH, median (IQR) 7.3 (7.3–7.4)* 7.4 (7.3–7.4) 7.3 (7.2–7.4)
Aspartate aminotransferase, U/L, median (IQR) 60 (39–86)* 56 (37–79) 67 (42–105)
Creatinine, mg/dl, median (IQR) 1.2 (0.9–2.1)* 1.1 (0.8–1.6) 1.6 (1.1–2.9)
C-reactive protein, mg/L, median (IQR) 173 (115–238)* 168 (108–229) 185 (127–250)
D-dimer, ng/ml, median (IQR) 2,340 (1,015–6,135)* 2,024 (825–4,340) 3,841 (1,593–9,305)
Ferritin, ng/ml, median (IQR) 1,291 (661–2,214)* 1,177 (622–1,933) 1,588 (776–2,682)
High troponin indicator,§ n (%) 1,769 (44.0)* 820 (33.0) 949 (61.7)
Lactate, mmol/L, median (IQR) 1.7 (1.3–2.4)* 1.6 (1.3–2.1) 2.0 (1.4–2.9)
Lymphocytes, %, median (IQR) 8.9 (5.4–13.3)* 10.0 (6.4–14.6) 7.1 (4.0–11.1)
Procalcitonin,† ng/ml, median (IQR) (1) 1.3 (0.2–4.6)* 0.8 (0.2–2.3) 1.4 (0.5–8.0)
Sodium,† mEq/L, median (IQR) (1) 137 (134–140)* 136 (134–139) 137 (134–141)
Urine output, ml, median (IQR) 716 (436–1,000)* 792 (550–1,050) 579 (300–875)
WBC count per mm3, median (IQR) 9.6 (6.8–13.3)* 9.0 (6.5–12.1) 10.6 (7.6–15.1)

Severity of Illness‡

P/F ratio,jj mm Hg, median (IQR) 131 (102–158)* 135 (112–159) 123 (86–155)
Invasive mechanical ventilation, n (%) 2,681 (66.7)* 1,449 (58.4) 1,232 (80.2)
Renal replacement therapy,¶ n (%) 258 (6.4)* 118 (4.8) 140 (9.1)
Vasopressors,** n (%)

One 1,367 (34.0)* 790 (31.8) 577 (37.5)
Two or more 648 (16.1)* 282 (11.4) 366 (23.8)

Treatments,‡ n (%)
Aspirin 696 (17.3)* 389 (15.7) 307 (20.0)
Azithromycin 2,003 (49.8)* 1,270 (51.2) 733 (47.7)
Hydroxychloroquine 2,423 (60.3)* 1,457 (58.7) 966 (62.8)
Neuromuscular blockade 812 (20.2)* 428 (17.2) 384 (25.0)
Prone positioning 1,087 (27.0) 663 (26.7) 424 (27.6)

(Continued)
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Sensitivity Analysis
Performing the analyses using in-hospital
mortality (n=3,904 [97.1%] with complete
hospital follow-up) demonstrated results
similar to those of the main analysis that used
28-day mortality (Figures E9 and E10). For
example, the median odds ratio decreased
from 2.10 (95% CI, 1.76–2.41) in the
unadjustedmodel to 1.18 (95% CI, 1.00–1.36)
in the fully adjusted model, and adjustment
with variables from the physiology,
socioeconomic status, and strain domains
were associatedwith the greatest change in the
median odds ratio. The ordering and
magnitude of the domains regarding their
contribution to individual risk were also
similar.Addingoutsidehospital transfersback
into the cohort also demonstrated results
similar to those of the primary analysis
(Figures E11 and E12).

Discussion

In this multicenter cohort study of 4,019
critically ill adultswithCOVID-19admitted to
ICUs at 70 geographically diverse hospitals
across the United States, we found wide
variation in 28-day mortality across hospitals.
This hospital-level variability was mostly
explained by differences in socioeconomic
status of the hospital population, hospital
capacity and strain, and presenting ICU

physiology. Furthermore, the mortality risk
for individualpatientswas largelyexplainedby
demographic characteristics and
comorbidities as well as acute physiology. To
ourknowledge,this is thefirstmanuscriptof its
kind to investigate both hospital- and
individual-level contributors to variation in
mortality from a large, nationally
representative cohort of critically ill patients
with COVID-19. Our results help explain the
wide variation in publishedmortality rates for
critically ill patients with COVID-19 and
quantify howdifferent factors contribute to an
individual patient’s mortality.

Published reports on the outcomes of
critically ill patients with COVID-19 have
shown wide variations in mortality. For
example, an early report by Arentz and
colleagues (18) reported an in-hospital
mortality rate of 67% for patients admitted to
the ICU at one hospital inWashington State.
In contrast, a study by Cummings and
colleagues(19)reportedamortalityof39%ina
study from two hospitals in New York City.
This variability was summarized in a recent
systematic review by Serafim and colleagues
(8), which reported an in-hospital mortality
rangeof1–62%.Thecauseof this variationhas
been hypothesized to be related to various
factors, such as hospital strain, patient
characteristics, and variability in treatment
practices (5, 20–23).

Our findings provide important
insights into the reasons for this wide
variation in hospital-level mortality. We
found that hospital socioeconomic status,
physiology, and hospital strain were the
most important factors explaining this
variability, whereas treatments provided to
patients contributed least. To our
knowledge, we are the first to show that the
socioeconomic status of the community
surrounding a hospital is an important
contributor to hospital-level variability in
outcomes in a geographically representative
sample of critically ill patientswithCOVID-
19. This finding could be due to factors
related to either the impact of
socioeconomic status on the health status of
individual patients in the study or the
unobserved variability in the quality of care
that hospitals provide for a population with
a lower socioeconomic status (22, 24).
Interestingly, themost important individual
variable from the socioeconomic status
domainwas the percentage of patients at the
hospital who traveled.45minutes to work.
This variable has been previously used to
capture the spatial mismatch hypothesis
theory (25, 26), which relates to
discrepancies between the location of low-
income neighborhoods and the locations of
employment opportunities. This variable
was also found to be one of the most

Table 1. (Continued)

Variable
All Patients
(N=4,019)

28-Day Survivors
(n= 2,482)

28-Day Nonsurvivors
(n= 1,537)

Remdesivir 238 (5.9)* 168 (6.8) 70 (4.6)
Statin 913 (22.7) 553 (22.3) 360 (23.4)
Corticosteroid 1,057 (26.3)* 522 (21.0) 535 (34.8)
Tocilizumab 497 (12.4)* 331 (13.3) 166 (10.8)
Vitamin C 281 (7.0)* 148 (6.0) 133 (8.7)

Definition of abbreviations: BMI=body mass index; IQR= interquartile range; PEEP=positive end-expiratory pressure; P/F=PaO2
/FIO2

; WBC=white
blood cell.
Data regarding troponin were missing for 2,544 (63%), data regarding P/F were missing for 1,576 (39%), data regarding PEEP Day 1 were missing
for 1,513 (38%), data regarding procalcitonin were missing for 1,455 (36%), data regarding D-dimer were missing for 1,233 (31%), data regarding
urine output were missing for 1,210 (30%), data regarding lactate were missing for 1,198 (30%), data regarding ferritin were missing for 1,054 (26%),
data regarding CRP were missing for 926 (23%), data regarding arterial pH were missing for 902 (22%), data regarding smoking status were
missing for 745 (19%), data regarding lymphocytes were missing for 36 (11%), data regarding aspartate aminotransferase were missing for 353
(9%), data regarding mental status were missing for 220 (5%), data regarding PEEP Day 2 were missing for 163 (4%), data for BMI were missing for
152 (4%), data regarding WBC counts were missing for 77 (2%), data regarding creatinine were missing for 70 (2%), and data regarding sodium
were missing for 24 (,1%). Missing data were imputed by using bagImpute and are included in the table.
*P value of ,0.05 for difference between survivors and nonsurvivors (Wilcoxon rank sum test for continuous variables and chi-square test for
categorical variables).
†Collected on ICU admission.
‡Worst value or if occurred anytime during Days 1–2 in the ICU.
§Troponin T or I value greater than the 99th percentile upper reference limit of normal for that laboratory test.
jjRefers to the P/F ratio and was only recorded in patients receiving invasive mechanical ventilation. Other values were imputed.
¶Received renal replacement therapy for acute or chronic renal failure.
**Included phenylephrine hydrochloride, epinephrine, norepinephrine bitartrate, vasopressin, dopamine hydrochloride, dobutamine, and milrinone.
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important metrics of social risk in a study
investigating hospital ratings and
neighborhood disadvantage (9). Our
findings of increased mortality related to
hospital population socioeconomic status
suggest that COVID-19 may be
exacerbating existing healthcare disparities
in the United States (27).

The majority of an individual’s risk of
mortality was related to the presenting
physiology, demographics, and preexisting
conditions. Only one-quarter of a patient’s
quantifiablemortality riskwas related to other
factors such as hospital capacity and strain,
hospital socioeconomic status, hospital
quality, and treatments. Prior work suggested
that the number of preexisting ICU beds is an
important predictor of mortality among
critically ill patients with COVID-19 (5),
suggesting a correlationbetween ICUcapacity
and outcomes.

However, additional factors such as the
baseline occupancy rate before the pandemic
and the number of patients with COVID-19
currentlyadmittedto theICUare important to
consider when determining the strain on
critical care resources. By including these
variables and other related factors in one
domain, we were able to show that strain and
capacity contribute to both hospital-level

variability and individual mortality. This
contributiontomortalityriskmayberelatedto
rationing, more aggressive goal-of-care
discussions, and treatment of critically ill

patients outside the normal ICU or by less
experienced providers.Hospital quality scores
also had some explanatory power, albeit they
had less than hospital socioeconomic status or

Sequential Adjustment
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Mortality Range: 0.15–0.71
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Mortality Range: 0.18–0.65
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Figure 1. Case mix–adjusted probabilities of 28-day mortality. The graphs illustrate the change in interhospital variation in death as each domain is
added to the unadjusted mixed-effect model (leftmost panel) and end with the fully adjusted model (rightmost panel), which shows that most of the
variation in mortality across hospitals can be explained by the domains included. The x-axis is hospital ranked by increasing probability of death in
28 days, and the y-axis shows the case mix–adjusted probability of death in the mixed-effect regression model, with the red dots denoting the point
estimates and the whiskers denoting the 95% confidence intervals. The median OR and range in mortality are presented for each model.
Demo=demographics; OR=odds ratio; SES=socioeconomic status.
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domains, moving from left to right in the figure, is shown with the line plot (right y-axis).
Demo=demographics; SES=socioeconomic status.
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strain. This suggests that the quality of the
hospitalapatientwithCOVID-19goes tohasa
small but measurable effect on their outcome,
which is consistent with prior work in all
hospitalized patients (28).

Of all the domains studied, the
treatments provided to patients had the least
impact on hospital-level variability and
individual-level mortality risk. This may be
explainedby the fact that few treatmentshave
shown a mortality benefit for critically ill
patients with COVID-19 (29–32). Notably,

the three treatments that contributed the
most to improved mortality—
neuromuscular blockade, aspirin, and
tocilizumab—are all therapies that have
previously been shown to improve
outcomes for patients with COVID-19
or acute respiratory distress syndrome
(33–35).

This study has several strengths. Our
cohort consisted of a geographically diverse
sample of critically ill adults with COVID-19.
We had access to detailed patient

characteristics, physiology, interventions, and
medications during their ICU stay. In
addition, we were able to link the hospitals
where these patients were admitted to quality
scores and hospital-level socioeconomic
status. Furthermore, by linking patients to the
American Hospital Annual Survey data and
time-varyingcounty-levelCOVID-19data,we
wereable tobetterquantifycapacityandstrain.
Finally, in addition to standard mixed-effect
regressionmodels, we also used a state-of-the-
art machine learning approach to determine

Table 2. Hospital Characteristics for Patients Included in the Study

Variable
All Patients
(N=4,019)

28-Day Survivors
(n= 2,482)

28-Day Nonsurvivors
(n=1,537)

Socioeconomics of hospital pop
Commute to work takes .45 min,

% of pop, median (IQR)
18.3 (12.9 to 25.5)* 17.8 (11.8 to 21.0) 23.4 (15.9 to 29.3)

In households speaking English only,
% of pop, median (IQR)

72.6 (62.7 to 80.9)* 72.9 (64.3 to 82.4) 70.9 (61.8 to 78.9)

Uninsured, % of pop, median (IQR) 9.1 (5.7 to 13.0) 9.0 (5.7 to 13.0) 10.0 (5.6 to 13.0)
Of Black race, % of pop, median (IQR) 15.2 (8.9 to 27.0) 16.2 (9.7 to 27.0) 15.2 (8.3 to 28.0)
Dual eligible, % of pop, median (IQR) 2.5 (1.3 to 3.3) 2.6 (1.5 to 3.2) 2.3 (1.3 to 3.3)
High school diploma, % of pop, median (IQR) 88.0 (83.3 to 93.5) 88.1 (83.2 to 92.3) 87.4 (83.3 to 94.5)
Unemployed, % of pop, median (IQR) 7.3 (5.6 to 9.7) 7.3 (5.6 to 9.2) 7.3 (5.3 to 9.7)
In single-parent households, % of pop, median (IQR) 17.4 (12.8 to 22.1)* 17.0 (12.8 to 22.1) 17.5 (13.1 to 22.2)
Mean household size, median (IQR) 2.5 (2.3 to 2.8)* 2.5 (2.2 to 2.7) 2.7 (2.4 to 2.9)
Mean median home value, $, median (IQR) 305,629

(212,487 to 519,842)*
275,506

(206,403 to 519,842)
392,285

(229,155 to 519,842)
Mean median income, $, median (IQR) 63,078

(50,637 to 87,753)*
62,915

(51,208 to 87,754)
64,957

(49,753 to 96,175)
Metro area, n (%) 3,534 (87.9) 2,124 (85.6) 1,410 (91.7)

Hospital strain, median (IQR)
Hospital ICU beds w/ STOP-COVID patients,† % 37.5 (14.4 to 69.6)* 30.6 (12.3 to 53.8) 48.2 (19.0 to 104.3)
County pop 932,202

(798,975 to 1,628,706)
945,726

(593,490 to 1,628,706)
932,202

(798,975 to 1,628,706)
ICU occupancy rate 75.0 (58.7 to 83.2)* 76.4 (63.2 to 84.2) 69.3 (54.2 to 82.1)
Number of hospital medical–surgical beds 510 (329 to 718)* 555 (358 to 733) 437 (266 to 691)
Hospital total occupancy rate 77.3 (69.5 to 84.6)* 79.5 (69.6 to 84.6) 74.6 (66.8 to 84.5)
Number of ICU beds before COVID-19 88 (48 to 112)* 98 (54 to 115) 53 (47 to 98)
Total number of county COVID-19 cases

in the 30 d before admission†
1,743 (475 to 5,845)* 1,416 (398 to 4,585) 2,279 (640 to 7,268)

Total number of hospital beds 682 (448 to 1,006)* 794 (522 to 1,006) 610 (355 to 937)
Total number of hospital beds in the county 3,411 (2,286 to 5,326)* 3,657 (2,156 to 5,344) 2,768 (2,310 to 5,069)
In COVID-19 ICU or surge, n (%) 3,047 (76) 1,879 (76) 1,168 (76)

Hospital quality, median (IQR)
Standardized outcomes mortality score 0.9 (0.4 to 1.9)* 1.0 (0.4 to 2.0) 0.5 (0.4 to 1.4)
Standardized outcomes readmission score 20.9 (22.0 to 0.4)* 20.9 (21.7 to 0.4) 20.9 (22.2 to 0.4)
Standardized outcomes safety score 20.1 (21.1 to 0.6)* 20.1 (21.0 to 0.7) 20.3 (21.7 to 0.2)
Standardized patient experience score 20.3 (20.7 to 0.4)* 0.0 (20.6 to 0.4) 20.6 (20.9 to 0.2)
Standardized process effect score 20.1 (20.8 to 0.6)* 0.1 (20.5 to 0.6) 20.3 (21.4 to 0.5)
Standardized process time score 21.6 (22.8 to 0.8) 21.6 (22.7 to 0.9) 21.6 (22.8 to 0.4)
Study day 30 (23 to 40) 30 (23 to 41) 30 (23 to 39)

Hospital treatment intensity, n (%)
Patients vented w/ a P/F ratio ,150

receiving more intense therapies, %
60 (47 to 67)* 57 (47 to 67) 63 (43 to 67)

Definition of abbreviations: COVID-19=coronavirus disease; IQR= interquartile range; P/F=PaO2
/FIO2

; pop=population; STOP-COVID=Study of
the Treatment and Outcomes in Critically Ill Patients w/ COVID-19; w/ =with.
Data regarding ICU occupancy rate were missing for 97 (2%). Missing data were imputed by using bagImpute and are included in the table.
*P, 0.05 for difference between survivors and nonsurvivors (Wilcoxon rank sum test for continuous variables and chi-square test for categorical
variables).
†Time varying based on the date of patient admission.
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the contribution of individual variables to
patient mortality (17).

This study also has several limitations.
First, although we were able to identify
variables associated with mortality, our study
design does not lend itself to inferring
causality. In addition, our findings only apply
to patients admitted to the ICU, as we did not
havedataonpatientswhowere critically ill but
were not admitted to an ICU (e.g., because of
bed rationing or goals of care). Furthermore,
there may be additional variables that
contribute to mortality risk that we did not
account for in our study. For example, best
practices and supportive care interventions,
such as low-VT ventilation for patients with
acute respiratory distress syndrome, were not
collected, nor were other hospital-level factors
(e.g., teaching status, intensivist coverage, and
nurse-to-patient ratios) or the duration of

treatments. Similarly, the Shapley values
measure only quantifiable mortality that is
explained by the variables in the model. It is
also possible that some patients were
discharged alive before Day 28 only to die at
homesoonthereafter (e.g., patientsdischarged
to home hospice). Although we verified in 50
patients at six participating hospitals that all
patients discharged alive before 28 days were
still alive atDay 28, thismight not be true at all
centers. In addition, the hospital quality data
were collected in 2017, which may not reflect
quality of care during the present-day
pandemic. Finally, we only had hospital-level
socioeconomic status available as opposed to
individual socioeconomic status, so we could
not determine whether the impact of this
domain was related to the socioeconomic
status of individual patients or the resources
and quality that might be associated with

hospitals that provide care for patients with
varying socioeconomic status characteristics.

In conclusion, we found considerable
interhospital variation in death among
critically ill patients with COVID-19. This
variability is explained by several domains,
including hospital socioeconomic status,
presenting physiology, and hospital capacity
and strain. Similar factors contribute to an
individual patient’s risk of mortality, with
patient-level factors (e.g., physiology,
demographics, and comorbidities)
explaining most of their mortality risk.�
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