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ABSTRACT
Objective  Here, we assess the usage of high throughput 
sequencing (HTS) in rheumatic research and the 
availability of public HTS data of rheumatic samples.
Methods  We performed a semiautomated literature 
review on PubMed, consisting of an R-script and manual 
curation as well as a manual search on the Sequence Read 
Archive for public available HTS data.
Results  Of the 699 identified articles, rheumatoid arthritis 
(n=182 publications, 26%), systemic lupus erythematous 
(n=161, 23%) and osteoarthritis (n=152, 22%) are among 
the rheumatic diseases with the most reported use of 
HTS assays. The most represented assay is RNA-Seq 
(n=457, 65%) for the identification of biomarkers in 
blood or synovial tissue. We also find, that the quality of 
accompanying clinical characterisation of the sequenced 
patients differs dramatically and we propose a minimal set 
of clinical data necessary to accompany rheumatological-
relevant HTS data.
Conclusion  HTS allows the analysis of a broad spectrum 
of molecular features in many samples at the same time. It 
offers enormous potential in novel personalised diagnosis 
and treatment strategies for patients with rheumatic 
diseases. Being established in cancer research and in the 
field of Mendelian diseases, rheumatic diseases are about 
to become the third disease domain for HTS, especially the 
RNA-Seq assay. However, we need to start a discussion 
about reporting of clinical characterisation accompany 
rheumatological-relevant HTS data to make clinical 
meaningful use of this data.

INTRODUCTION
The aim of ‘precision medicine’ is the devel-
opment of novel diagnosis, prevention and 
treatment strategies by taking into account the 
individuality of a patient 1 including the indi-
vidual molecular profile.2 The development 
of high throughput sequencing (HTS) plat-
forms, collectively still called ‘next-generation 
sequencing’ (NGS), allows a comprehen-
sive and multimodal molecular profile of a 
patient. In particular, gene expression anal-
ysis using whole- transcriptome sequencing 
(RNA-Seq) has become state-of-the-art 3 as it 
has been demonstrated to be more accurate, 
sensitive, as well as to have a broader dynamic 
range than DNA microarrays allowing the 
detection of more differentially expressed 

genes with higher fold change.4 In addition, 
this assay provides both: abundance of tran-
scripts and sequence information at base-pair 
resolution, thus allowing a broad spectrum of 
analyses beyond gene and transcript expres-
sion, enabling the detection of a wide variety 
of molecular features, such as alternative 
splicing events, RNA editing events, comple-
mentarity determining region 3 of T cell 
receptors (TCRs), B cell receptors (BCR), 
human leucocyte antigen (HLA) types.5 In 
addition, HTS of exons, such as whole exome 
sequencing (WES) or targeted sequencing 
(gene panels), allows the rapid detection 
of DNA-encoded variants, such tumour cell 
mutations, and is a key technology enabling 
the development of mutanome-based cancer 
immunotherapies.6 Not only has the adop-
tion of HTS has been rapid in oncology, but 
clinical and research laboratories worldwide 
have made primary sequencing data available 
in the Sequence Read Archive (SRA, http://
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www.​ncbi.​nlm.​nih.​gov/​sra),7 one of the largest data 
repositories with 7.5 PB of open-access HTS data.8 The 
repository comprises data from over 340 000 samples 9 
and thus provides a rich and valuable source for reanal-
ysis of existing datasets with bioinformatic software 5 to 
identify novel and clinical translatable findings.

Moreover, non-invasive and minimally invasive 
profiling platforms, including ‘liquid biopsies’, allow one 
to obtain information about a disease state or response 
to treatment using, for example, blood from patients, 
followed by HTS profiling and subsequent bioinformatic 
analysis. While this concept is already implemented in 
oncology,10 it is less mature in rheumatology. We argue 
here that HTS offers enormous potential to pave the way 
to personalised therapy 11 for patients with rheumatic 
diseases, particularly due to its extreme molecular and 
phenotypic heterogeneity 12.

Very recently in this journal, Kedra et al 13 reviewed 
the current use of big data and artificial intelligence in 
rheumatic diseases. Here, we focus on HTS profiling 
as a big data producer 14 and review both the literature 
using HTS and public HTS datasets in rheumatological 
diseases to quantify the adoption of this technology in 
rheumatology. In addition, we propose a minimal set of 
clinical data necessary to accompany rheumatological-
relevant HTS data.

METHODS
Systematic literature review
The literature review was implemented in R (V.3.6.1,15) 
using the package easyPubMed (V.2.13,16) and consists 
of 2 steps. First an automated PubMed search was carried 
on 15 August 2020 out using the query string:

“(methylomics OR epigenomics OR NGS OR \“next 
generation sequencing\” OR RNA-Seq OR \“mRNA 
sequencing\” OR \“RNA sequencing\” OR \“RNA-
sequencing\” OR \“transcriptome sequencing\” OR 
\“whole exome sequencing\” OR \“whole-exome 
sequencing\” OR \“high throughput sequencing\” OR 
\“high-throughput sequencing\” OR \“DNA sequencing\” 
OR \“RNA sequencing\” OR \“RNA-sequencing\” OR 
\“DNA-sequencing\” OR WXS OR WGS OR \“whole-
genome sequencing\” OR \“whole genome sequencing\“) 
AND (rheumatology OR \“rheumatologic disease\” OR 
\“rheumatologic disease\”))".

This search resulted in 1097 entries. The keywords 
of each returning dataset were intersected with official 
disease names extracted from International Statistical 
Classification of Diseases and Related Health Problems 
(ICD)-1117 in order to filter out keywords that are not 
disease names. The remaining 253 keywords were then 
manually inspected to find rheumatic diseases. This 
approach identified the following diseases: autoinflam-
matory syndrome, dermatomyositis, enthesitis, familial 
mediterranean fever (FMF), granulomatosis with 
polyangiitis (GPA), juvenile idiopathic arthritis (JIA), 
myositis, osteoarthritis (OA), polymyositis, psoriatic 

arthritis (PsA), rheumatoid arthritis (RA), sacroiliitis, 
sjögren’s syndrome, spondyloarthritis (SpA), synovitis, 
systemic lupus erythematosus (SLE), systemic sclerosis 
vasculitis, uveitis, gout and polychondritis.

In a second step more specific PubMed search was 
carried out using the disease names identified in the first 
step:

“(methylomics OR epigenomics OR NGS OR \“next 
generation sequencing\” OR RNA-Seq OR \“mRNA 
sequencing\” OR \“RNA sequencing\” OR \“RNA-
sequencing\” OR \“transcriptome sequencing\” OR 
\“whole exome sequencing\” OR \“whole-exome 
sequencing\” OR \“high throughput sequencing\” OR 
\“high-throughput sequencing\” OR WXS OR WGS 
OR \“whole-genome sequencing\” OR \“whole genome 
sequencing\“) AND (\“autoinflammatory syndrome\” OR 
dermatomyositis OR enthesitis OR \“familial mediterra-
nean fever\” OR \“granulomatosis with polyangiitis\” OR 
\“juvenile idiopathic arthritis\” OR myositis OR osteo-
arthritis OR polymyositis OR \“psoriatic arthritis\” OR 
\“rheumatoid arthritis\” OR sacroiliitis OR \“sjögren 
syndrome\” OR \“sjögren’s syndrome\” OR spondyloar-
thritis OR synovitis OR \“systemic lupus erythematosus\” 
OR \“systemic sclerosis\” OR vasculitis OR uveitis OR gout 
OR polychondritis)".

This search was carried on 4 September 2020 and 
resulted in 1162 PubMed hits, which were (if possible) 
annotated regarding disease name, PubMed ID, assay, 
journal, year of publication by automatic screening 
the title and abstract. Reviews (ie, publications which 
have ‘Review’ in metadata) and commentaries were 
excluded and missing information was added manually 
by manual inspection of the publication. After manual 
curation, 699 studies were included in this literature 
review (figure 1).

A list of all identified publications can be found at 
https://​github.​com/​sebboegel/​pubmed_​rheuma_​HTS.

SRA data analysis
Searching the SRA portal was carried out via the SRA 
portal at https://www.​ncbi.​nlm.​nih.​gov/​sra using the 
diseases names identified in the literature review as 
key words one after another (ie, only one disease was 
searched at a time), then using the Run Selector (‘Send 
results to Run Selector’), switching to the old Run 
Selector (‘Revert to the old Run Selector’) and down-
loading the metatable, which was input to a custom-
built python script extracting all necessary information. 
In addition, the python package pysradb 18 was used for 
retrieving PubMed identifiers for an associated SRA 
project number.

Code availability
All scripts, input and result files, comments, as well all 
figures in this manuscript, generated with R package 
ggplot2 (V.3.2.1,19) are available at https://​github.​com/​
sebboegel/​pubmed_​rheuma_​HTS.

http://www.ncbi.nlm.nih.gov/sra
https://github.com/sebboegel/pubmed_rheuma_HTS
https://www.ncbi.nlm.nih.gov/sra
https://github.com/sebboegel/pubmed_rheuma_HTS
https://github.com/sebboegel/pubmed_rheuma_HTS
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Paper counting
For counts that are not disease based (such as figure 2), 
the unique number of publications are depicted, which 
sum up to 699. However, as there exist publications using 
HTS on multiple rheumatic diseases, counting these 
papers in disease-based analysis (eg, figure 3) sum up to 
the total number of records (n=813), as a paper focusing 
on for example, SLE and RA will appear in the count 
for SLE and RA. Similarly, as there are publications using 

more than one HTS assay, summing up the number of 
assays discussed in the Results section will also exceed the 
number of unique publications.

Figure 1  PRISMA flowdiagram of the literature review. For details, see the Methods section. NGS, next-generation 
sequencing; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; SLE, systemic lupus 
erythematous; SRA, Sequence Read Archive.

Figure 2  Publications per year. Number of unique identified 
primary research articles per year using different HTS assays 
in rheumatic diseases. HTS, high throughput sequencing; 
scRNA-Seq, single cell RNA-seq; WES, whole-exome 
sequencing; WGS, whole-genome sequencing.

Figure 3  Publications and HTS assays per disease. 
Number of identified primary research publications per 
rheumatic disease using different HTS assays. AutoSyn, 
autoinflammatory syndrome; FMF, familial mediterranean 
fever; GPA, granulomatosis with polyangiitis; JIA, juvenile 
idiopathic arthritis; RA, rheumatoid arthritis; scRNA-Seq, 
single cell RNA-Seq; SLE, systemic lupus erythematosus; 
WES, whole-exome sequencing; WGS,whole-genome 
sequencing.
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RESULTS
The semiautomated search strategy, consisting of an 
R-script and manual curation, resulted in 699 unique 
PubMed hits (813 total records). We analysed the iden-
tified literature according to the year of publication, the 
rheumatic diseases, the different HTS assays used, the 
wide variety of applications and the journals, in which 
these studies appeared.

HTS assays are adapted in rheumatic research: the 
number of papers including HTS published has increased 
from 18 in 2014 to 123 in 2018 and 189 in 2019 (figure 2). 
As of 4 September 2020, already 180 studies have been 
published and following this exponential growth, up to 
~340 studies can be assumed by the end of 2020 (online 
supplemental figure S1). One of the first HTS studies we 
identified with this search strategy was published in 2011 
and used whole-genome sequencing (WGS) to identify 
low-frequency variants associated in gout.20 21

RA, n=182/699 unique publications, 26%, SLE, n=161, 
23% and OA (n=152, 22%) are the rheumatic diseases 
with the most reported use of HTS assays (figure  3). 
Applications of HTS in these diseases range from HLA 
typing,22 TCR,23 24 BCR,25 26 and gene expression 27–29 
profiling, as well as identification of T cell epitopes,30 
antibody repertoires,31 and pathogenic mutations.32 33

The most represented assay is RNA-Seq (n=457, 65%) 
for the identification of biomarkers in blood or synovial 
tissue, for example, to distinguish active versus inac-
tive/low disease activity states,27 to examine response 
to anti-TNF therapy in RA,34 to identify gene expres-
sion signatures correlating with disease phenotype,35 for 
longitudinal analysis of peripheral blood TCR diversity in 
patients with SLE,36 as well as for subgrouping patients 
with SLE with common clinical characteristics,28 charac-
terisation of circulating memory stem T cells in RA,37 as 
well as to examine the BCR repertoire in patients with RA 
to identify B cell clones associated with autoreactivity.38 In 
addition to messenger RNA, a wide range of RNA types 
can be measured, such as microRNAs (miRNAs) in RA,39 
JIA,40 SLE and Sjögren’s syndrome,41 long non coding 
RNA (lncRNA) in SLE42 as well as myositis,43 and finally 
circular RNA as biomarker in SLE44.

Transcriptomic analysis of individual cells (single cell 
RNA-Seq, scRNA-Seq) is increasingly becoming popular 
in cancer research,45 for example, to better capture 
tumour heterogeneity. Here, we identify 40 out of the 
457 RNA-Seq studies (9%, online supplemental figure 
S2) uses scRNA-Seq with applications in, for example, 
SLE for mapping disease heterogeneity at the single-cell 
level using the blood transcriptome46 or for the identifi-
cation of previously uncharacterised fibroblast subpopu-
lations in the synovium of patients with RA.47

Applications for WES and targeted DNA (panel) 
sequencing (n=169, 24%) include identification of patho-
genic mutations (mostly point mutations, small insertions 
and deletions) that can aid in diagnosis of monogenic 
autoinflammatory diseases and vasculitis,48 FMF,49 gout50 
or familial RA, SLE and primary Sjögren’s syndrome51 or 

Uveitis.52 Of note, while HTS assays are powerful tools 
for large cohorts, we find many case reports using WES 
and gene panel sequencing in, for example, in a young 
patient with cutaneous vasculitis53 or JIA,54 as well as in 
a patient with RA experiencing immune dysregulation 
syndrome after abatacept therapy.55

We identified 42 (6%) studies using WGS. Again, the 
main application was identification of genetic variants, 
especially copy number variations, for example, of Fcγ 
receptor genes in RA56 and association of mitochondrial 
genetic variation and copy number with gout,57 as well 
as pharmacogenomic approaches examining patient’s 
response to golimumab treatment explained by common 
single-nucleotide variations.58

Other assays (online supplemental figure S3) include 
the analysis of bacterial species using HTS (metage-
nomics, n=33; 5%) in, for example, a joint infection in a 
patient with SLE,59 of the faecal microbiota of SLE mice60 
or the lung microbiota in early RA,61 as well as epigenetic 
analysis (n=32, 5%) in SLE,35 62 RA,63 64 systemic sclerosis65 
and finally, phage immunoprecipitation sequencing 
(n=1) for HTS of autoantibody repertoires in systemic 
sclerosis.66

Among the journals in which these studies appeared, 
‘Arthritis and Rheumatology’ (n=58, 8%), ‘Annals of the 
Rheumatic Diseases’ (n=40, 6%) and ‘Plos One’ (n=29, 
4%) are the leading journals publishing papers covering 
a broad range of HTS assays, whereas the journals ‘JCI 
Insight’ (n=12, 2%) and ‘Journal of Immunology’ (n=9, 
1%) focused so far on RNA-Seq, and ‘Paediatric rheu-
matology online journal’ (n=9) focus on WES (online 
supplemental figure S4) for the identification of disease-
relevant genetic variants.

Raw-sequencing data in public domain
A search of samples in the SRA portal using the diseases 
identified in the PubMed search as key words revealed 
17 023 HTS samples (figure 4) in 296 projects (online 
supplemental figure S5). The number of samples gener-
ated per study varies dramatically in the identified SRA 
projects (online supplemental figure S5) with 32/296 
(11%) studies involving more than 100 study objects. 
Half of them (n=16) are produced in RA, seven in SLE, 
three in SpA, two in OA and JIA, and one in Systemic 
Sclerosis and GPA. The median number of HTS samples 
across the projects within the diseases is highest in GPA 
(72 samples/ study) and lowest in PsA 6.5 samples/ 
study). The vast majority of primary sequencing data 
originates from human biomaterial (15414/17023, 
90.5%, online supplemental figure S6, primarily from 
samples reflecting the disease of interest (9854/17023, 
58%, online supplemental figure S7, such as patients or 
disease models and 864 (5%) healthy controls. For the 
remaining 6305 (37%) samples, no phenotype or disease 
state was defined in the SRA metadata.

The majority of the samples are associated with RA 
(n=8483, 50%), SLE (n=3785, 22%) and OA (n=1386, 
8%) and correlate with the relative abundance of studies 

https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
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https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
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identified in the literature search for these diseases. 
Also, the dominance of the RNA-Seq assay is consistent 
with the PubMed findings. However, there are obvious 
inconsistencies when comparing the number of publica-
tions using or producing HTS data (figure  3) with the 
number of projects depositing HTS data on SRA (online 
supplemental figure S5). To examine this discrepancy, we 
used the RNA-Seq assay (including scRNA-Seq, miRNA, 
ncRNA) in SLE as an example for in depth analysis. 
By using the metadata table on the SRA website and a 
customised python script, followed by manual inspec-
tion, we identified 56 SRA projects, of which 43 proj-
ects provide raw RNA-Seq data. For seven of them no 
corresponding publication could be identified. Of the 
remaining 36 Projects, two SRP-IDs are associated with 
the same publication and two SRP-IDs are each associ-
ated with two different publications, resulting in 37 
PubMed-IDs associated to SRA-Projects, which overlap 
with the 107 RNA-Seq studies in SLE identified in the 
PubMed search (figure  3). The remaining 70 publica-
tions were examined manually and 32/70 publications 
provided no information on the availability of the raw 
sequencing data at all, 13/70 provide the raw data ‘on 
reasonable request’, nine studies did not produce RNA-
Seq data, but rather used publicly available datasets, six 
papers could not be accessed, three studies deposited the 
raw data at the European Genome Archive (EGA), two 
publications report an embargo on the data, that is, it 

will be provided with delay after the acceptance of the 
manuscript and one study made the data available under 
protected access at the database of Genotypes and Pheno-
types (dbGaP) (online supplemental figure S8). Of note, 
four studies not providing the raw sequencing are case 
reports, which is consistent with FMF consisting primarily 
of case reports and we do not find any sequencing data 
from FMF on SRA (figure 4).

The most prominent sequencing platform is the Illu-
mina HiSeq series (n=13 063, 77%, online supplemental 
figure S9) and paired end as preferred read layout 
(n=11 533, 68%), except for SLE with 1300 paired end 
and 2485 single end reads samples (online supplemental 
figure S10).

Analysing the tissue source of the HTS sample across 
different diseases (figure 5) reveals blood (whole blood, 
plasma, serum, peripheral blood mononuclear cell) and 
isolated immune cells (T cells, monocytes, dendritic 
cells) as the primary source material (6461/17 023, 38%). 
There are disease-specific preferences such as, cartilage 
in OA (84% of samples with defined tissue source), stool 
(faeces) in SpA, 87%, kidney in SLE (33%), synovium in 
PsA (52%) and synovitis (100%), as well as salivary gland 
in Sjögren’s syndrome (50%), muscle in (poly/derma)
myositis (63%) and retina in uveitis (100%) (figure 5 and 
online supplemental figure S11, ‘​sra_​tissue.​tsv’).

Reporting of clinical patient data
Next, we examined the availability and quality of clin-
ical information about the patients that were subject to 
sequencing and which HTS data is available from SRA. 
There are two challenges in finding patient character-
isation of the primary HTS data of interest. First, the 
associated metadata does not use a defined ontology 
and no standardised patient/sample characterisation is 
required when deopsiting the sequencing data on SRA. 
Second challenge is the identification of the publication 

Figure 5  Tissue source of high throughput sequencing data 
on Sequence Read Archive (SRA). Distribution of tissues 
subject to sequencing in publicly available datasets on SRA. 
Disease abbreviations as in figure 4.

Figure 4  Public available high throughput sequencing 
(HTS) datasets. number of publicly available HTS samples on 
Sequence Read Archive for the rheumatic diseases identified 
in the literature review. AutoSyn, autoinflammatory syndrome; 
GPA, granulomatosis with polyangiitis; Hi-C, chromosome 
conformation capture; JIA, juvenile idiopathic arthritis; 
MBD-Seq, Methyl CpG binding domain-based capture and 
sequencing; miRNA-Seq, micro-RNA-Seq; ncRNA-Seq, non-
coding-RNA-Seq; OA, osteoarthritis; PsA, psoriatic arthritis; 
RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; 
SpA, Spondyloarthritis; TN-Seq, transposon insertion 
sequencing; WGS, whole-genome sequencing; WXS, whole-
exome sequencing.

https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
https://dx.doi.org/10.1136/rmdopen-2020-001324
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associated with the data. If no PubMed identifier is 
provided in the respective bioproject on SRA, the study 
can occasionally be identified by searching the bioproject 
title on PubMed or a related search engine.

In general, reporting of clinical data was highly diverse. 
In order to quantify this diversity, we used the RNA-Seq 
assay (including scRNA-Seq,miRNA, ncRNA) in SLE as 
an example for a detailed analysis. Of the 43 SRA proj-
ects providing SLE RNA-Seq data, 23 contain sequencing 
data from SLE patients, whereas the remaining projects 
deal with model organisms and cell lines (n=12) or the 
associated publications could be neither found (n=7) 
or accessed (n=1). Of these 23 projects, three associated 
manuscripts contain no information about the sequenced 
patient, four studies have at least a rudimentary set of 
information, eight publications with a medium set and 
eight papers with very detailed reporting of patient char-
acteristics (table 1 and online supplemental figure S12).

DISCUSSION
High throughput gene expression profiling using DNA 
microarrays have already provided unprecedented views 
into the blood transcriptome of, for example, SLE,67 68 
RA,69 SpA,70 and thus paved the way for the development 
of personalised diagnostic and therapeutic strategies.

The introduction of ‘next generation’ HTS platforms, 
together with a tremendous evolution of open source 
bioinformatic software, enables the rapid detection of 
a wide variety of molecular features, such as alternative 
splicing events, RNA editing, HLA typing, BCR and TCR 
typing, mutation detection and many more,5 thus adding 
new dimensions in understanding disease pathogenesis 
and biomarker identification.71 Application and impact 
of HTS using NGS platforms in rheumatology have been 
reviewed in general12 and for individual diseases, such as 
SLE72 or RA.73

However, this is to our knowledge, the first study quan-
tifying the usage of HTS in rheumatological research by 
reviewing literature on PubMed and examining public 
HTS data on SRA.

A limitation of this approach is that the numbers 
identified in this search are likely to be underestimated 
as potential publications may have been missed by the 
search. For example, one of the first studies using HTS 
for TCR and BCR repertoire analysis in RA was published 
April 201174 and is not indexed on PubMed (and thus has 
not been found by this search). Further, there exist more 
than 200 different rheumatic diseases75 and our approach 
identified only a small subset (n=20). The strength of this 
approach is that it is easily reproducible. The provided R 
and python scripts along with all input and result files as 
well as comments about the manual steps of the analysis, 
enable reproduction of the results presented here and 
can be adopted for allowing literature review at any time 
point in the future.

A key finding is that HTS is indeed being adapted in 
rheumatological research with an exponential growth 
rate in number of publications since 2011. Major indica-
tions are RA and SLE, which are rheumatic disease with 
high prevalence rates of 0.5%–1% of the adult popula-
tion in RA and 20–150 SLE cases per 100 000 individuals 
in the USA76 77 in contrast to the many other rheumatic 
conditions that are classified as ‘rare disease’, such poly-
myositis (prevalence 1/14 00078). For the majority of 
the indications identified in this review, RNA-Seq was 
the most represented assay. While analysis of nucleotide 
variations by exome and genome sequencing holds great 
promise in the diagnosis of rare diseases,79 going beyond 
the exome/genome, for example, analysing the gene 
expression to learn about pathomechanisms or person-
alised medicine approaches12 results in the major chal-
lenge of very small patient populations.80 Indeed, we find 

Table 1  Examples of reporting clinical data for SLE patients subject to RNA-Seq

Category Information provided Bioproject SRP-ID Reference

No information – PRJNA431313 SRP131173 102

Rudimentary set Demographics (age, sex, race) PRJNA505280 SRP168421 103

Medium set of 
useful information

Demographics, serology, medication PRJNA514365 SRP178271 104

Demographics, disease duration, SLEDAI PRJNA379992 SRP103040 105

Advanced set of 
useful information

Demographics, disease duration (years from 
diagnosis), SLEDAI, medication at time of blood draw 
(mg/day), ANA reactivity, prominent clinical features 
(such flares, new rash, etc), information for each 
patient individually.

PRJNA484966 SRP156584 106

Demographics, SLEDAI, severity, immunosupprevise 
therapy, disease manifestation, comorbidities, 
medication, serology (eg, anti-DNA, C3/4)

PRJEB24742 SRP189104 107

Full list of patient characteristics available in file ‘SLE_pubmed_rna_patient_info.csv’ (see data availabiliy).
Bioproject: accessible at https://www.ncbi.nlm.nih.gov/bioproject/.
ANA, anti-nuclear antibody; C3/4, complement 3/4; SLE, systemic lupus erythematous; SLEDAI, Systemic Lupus Erythematosus Disease 
Activity Index.

https://dx.doi.org/10.1136/rmdopen-2020-001324
https://www.ncbi.nlm.nih.gov/bioproject/
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that the majority of studies depositing sequencing data 
on the public repository SRA included low numbers of 
samples posing a challenge to the application of classical 
statistical analyses for target identification.81 However, 
to be fair, not all projects we identified were designed 
to find biomarkers, such as case reports or mechanistic 
experiments using cell lines or model organisms.

The second key finding is that there exists a large 
number of raw sequencing data on the public repository 
SRA. However, we identified a gap between publications 
reporting usage of HTS assays and availability of this data 
on SRA. We quantified this gap with RNA-Seq projects for 
SLE as an example and found that the majority of studies 
not depositing data on SRA, do not provide any infor-
mation about the availability of the primary sequencing 
data in the publication. Second most common finding 
was the information on the availability ‘on request’. 
Reasons that might hinder researchers making HTS data 
publicly available might be technical or privacy chal-
lenges in sharing genomic data82 83 or interests of the 
data owners.84 With regard to privacy concerns, a feasible 
solution could be the deposition in repositories providing 
controlled and protected access to genomic data, such as 
the ‘European Genome-Phenome Archive’ (EGA)85 or 
the ‘database of Genoytpes and Phenotypes’ (dbGaP).86 
EGA stores genomic data of 2953 studies87 of which 1315 
(45%) belong to ‘cancer’ and only 85 (3%) are labelled 
as ‘Inflammatory’ containing RA (n=19, 0.6%), SLE 
(n=7, 0.2%), ankylosing spondylitis (n=7) and psori-
asis (n=1, 0.03%) datasets. As an example, very recently 
Panousis et al published a comprehensive genetic and 

transcriptomic profiling of 142 patients with SLE and 58 
controls27 and provided the raw and processed HTS data, 
clinical phenotypes/covariates, as well as the results of 
the genetic analysis under protected access (one needs 
to apply to access this data) at https://​ega-​archive.​org/​
studies/​EGAS00001003662. dbGaP is an online repos-
itory created by the National Center for Biotechnology 
Information provides controlled access to large-scale 
genomic datasets with associated phenotypes, such as 
‘The Cancer Genome Atlas’ (TCGA)88 or ‘Genotype-
Tissue Expression’.89

Sharing HTS data have several advantages. First of 
all, when data are made available for reuse, citations to 
the initial report increase.90 In addition, genomic data 
potentially has value beyond the initial purpose and 
re-analysis of publicly available sequencing data with 
novel bioinformatic tools can lead to novel insights, 
for example, in RA,91 to examine HLA and proteasome 
expression in different tissues92 or public HTS data can 
be used to provide supportive information in addition 
to own sequencing experiments, as in the case of uncov-
ering distinct subsets of patients with SLE using machine 
learning methods.93 However, clinically useful and trans-
lational reanalysis requires (1) the searchability of this 
data, which is only guaranteed if the data are deposited 
one of the above-mentioned repositories and (2) the 
availability of detailed patient characteristics along with 
clinical information linked to the respective sequencing 
sample (ie, data characterisation challenge).94

Very recently, Gossec et al present 10 EULAR points to 
consider (PTC) for the use of big data, including ‘omics 
and imaging data, in rheumatic and musculoskeletal 
diseases.95 Here, we emphasise the importance of clin-
ical data linked to the patient HTS data and propose an 
additional PTC: ‘provide clinical characterisation’. It is 
necessary to agree on a set of rules for reporting clinical 
data in the context of genomic sequencing experiments, 
link them to the respective sequencing sample of the 
patient to connect genotype (eg, genome) with pheno-
type (eg, treatment response, organ manifestation, grade 
of disease) and extract as much clinically translatable 
information as possible from existing data. A successful 
example from cancer research is TCGA, which is a cancer 
genomics programme consisting of research centres 
worldwide, generating genomic, epigenomic, transcrip-
tomic and proteomic data of more than 30 cancer types 
including histopathological images and clinical data. To 
make clinically valuable analysis comparable between the 
projects within the consortium, such as survival outcome 
analysis96 guidelines on reporting clinical data were 
developed97 and a data dictionary was defined to define 
necessary clinical entities, such as ‘Demographic’, ‘Diag-
nosis’, ‘Family History’, ‘Treatment’ and ‘Follow-up’.98 
We recognise that there is rheumatic disease specific 
information that is important to share, for example, 
Schirmer test for Sjögren syndrome. Nevertheless, we 
translate these guidelines into the world of rheumatology 

Table 2  Proposal of a minimal set of clinical information 
when sharing patient HTS data to enable clinically useful 
reanalysis

Clinical entity Data points

Demographic ethnicity, gender, age

Diagnosis Primary diagnosis (ICD-10), type/grade/
stage, disease activity scores (SLEDAI, 
BASFI, BASDAI, VAS, DAS, …)

Exposure cigarettes_per_day, years smoked

Family history History of autoimmune disease in family

Follow-up BMI, comorbidities, progression or 
recurrence, weight, disease duration

Molecular tests Anti-CCP, HLA status, C3, C4, 
autoantibodies (ANA, ENA…)

Treatment Therapeutic agents, dose, frequency, 
outcome, adverse events

ANA, anti-nuclear antibody; BASDAI, Bath Ankylosing Spondylitis 
Disease Activity Index; BASFI, Bath Ankylosing Spondylitis 
Functional Index; C3/4, Complement 3/4; CCP, Citrullinated 
Peptide/Protein antibodies; DAS, Diseases Activity Score; ENA, 
Extractable Nuclear Antigen; HLA, Human Leukocyte Antigen; 
HTS, high throughput sequencing; ICD, International Statistical 
Classification of Diseases and Related Health Problems; SLEDAI, 
Systemic Lupus Erythematosus Disease Activity Index; VAS, 
Visual Analog Scale.

https://ega-archive.org/studies/EGAS00001003662
https://ega-archive.org/studies/EGAS00001003662
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and propose a minimal set of clinical data to be reported 
in HTS experiments (table 2).

Being already established in cancer research and in 
the field of Mendelian diseases,99 rheumatic diseases are 
about to become the third disease domain for HTS. This 
is an important observation, as many of the bioinfor-
matic tools for analysing HTS data have been developed 
in the context of cancer research. Not all of them can 
be directly applied to rheumatology, such as mutation 
detection tools, and require adoption to rheumatological 
datasets. We foresee an evolution of bioinformatic soft-
ware newly developed or adopted to the specific needs 
and questions of rheumatological disease. Especially the 
RNA-Seq assay, which we found already widely adopted in 
rheumatology, will be a central and powerful assay in deci-
phering pathomechanisms, precision approaches and 
might lead to new disease definitions based on molecular 
characteristics as it has been shown in cancer.100 However, 
there is a need for a global solution for sharing clinical 
and genomic data.101 This discussion started in cancer 
research and must continue in rheumatic research.
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