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Abstract: A relationship exists between metabolic syndrome (MetS) and human bone health; however,
whether the combination of demographic, lifestyle, and socioeconomic factors that are associated
with MetS development also simultaneously affects bone density remains unclear. Using a machine
learning approach, the current study aimed to estimate the usefulness of predicting bone mass
loss using these potentially related factors. The present study included a sample of 23,497 adults
who routinely visited a health screening center at a large health center at least once during each of
three 3-year stages (i.e., 2006–2008, 2009–2011, and 2012–2014). The demographic, socioeconomic,
lifestyle characteristics, body mass index (BMI), and MetS scoring index recorded during the first
3-year stage were used to predict the subsequent occurrence of osteopenia using a non-concurrence
design. A concurrent prediction was also performed using the features recorded from the same
3-year stage as the predicted outcome. Machine learning algorithms, including logistic regression
(LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost),
were applied to build predictive models using a unique feature set. The area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity, specificity, precision, and F1 score were
used to evaluate the predictive performances of the models. The XGBoost model presented the best
predictive performance among the non-concurrence models. This study suggests that the ensemble
learning model with a MetS severity score can be used to predict the progression of osteopenia. The
inclusion of an individual’s features into a predictive model over time is suggested for future studies.

Keywords: osteopenia; metabolic syndrome; socioeconomic status; lifestyle; machine learning

1. Introduction

Osteoporosis is a systemic bone disease and an important public health problem
because it increases the incidence and mortality of fractures and significantly increases the
risk of fracture-related medical expenses [1–3]. A recent review study reported that the
economic burden of osteoporosis-related fractures was significant, costing approximately
USD 17.9 billion and GBP 4 billion per annum in the USA and UK, respectively [4]. In
Taiwan, the prevalence of osteoporosis among the population older than 50 years increased
from 17.4% in 2001 to 25.0% in 2011 [5] Approximately one-quarter of individuals older
than 65 years who have been diagnosed with osteoporosis have experienced a spine or hip
fracture [6].

Several physical factors have been associated with osteoporosis, including abdom-
inal obesity, high blood pressure, dyslipidemia, and glucose metabolism abnormalities,
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which are all considered to be components of metabolic syndrome (MetS). Cardiovascular
diseases (CVDs) have been linked to reduced bone mineral density (BMD), osteoporosis,
and osteopenia [7–10]. While MetS may play a potential role in the development of osteo-
porosis, further research is needed to obtain hard data to support the hypothesis. Previous
studies have identified similar risk factors and pathophysiological mechanisms underlying
the development of both osteoporosis and atherosclerotic CVDs. There are suggestions
that common underlying pathways, such as disturbed calcium homeostasis, induction of
inflammatory response, and oxidative stress, are shared by the two conditions. It has been
suggested that the two conditions share underlying pathways linking components of MetS
as well as the coupling process of bone formation and bone reabsorption [11,12]. Evidence
suggests that consideration should be given to the correction of MetS for the prevention of
osteoporotic fractures [13]. Potential factors that affect MetS development have included
demographic factors (including age, sex, and living area) and lifestyle behaviors (includ-
ing smoking, alcohol consumption, diet, and physical activity) [14,15]. Socioeconomic
status (SES) components, including income, occupation, and education, are also closely
related to CVD development and metabolic indicators [15–17]. Previous analyses may
have been limited by the lack of inclusion of social and lifestyle covariate factors, which
may reduce the explanatory power of these analyses. To clarify the causal relationship
between bone density and MetS, a prospective longitudinal study should be performed,
and during the investigation, sex, age, ethnicity, lifestyle, and eating habits should not be
overlooked [13,18].

For decades, artificial intelligence has been applied to the identification of risk factors
or groups at risk of developing osteoporosis. The burden on health systems, the economy,
and society could be lessened through the use of an artificial intelligence model to predict
risk groups [19–22]. A comprehensive and low-cost method could be developed to facilitate
the use of predictive models during health examinations, especially for developing coun-
tries or rural areas. However, most predictions for osteoporosis have been modeled using
information for participants who have primarily been female or in specific age groups.
Predictive tools should be developed to perform similarly across various populations,
including greater numbers of participants across a large age range, which has not been
the case for existing predictive models [22]. Additionally, few studies have performed
predictive models to identify the risk for osteopenia, which represents an earlier stage of
bone disorders, and to identify those at risk of osteopenia that may be useful for promoting
overall bone health, especially among younger populations.

To better understand the relationship between MetS and human bone health, de-
termining whether the underlying demographic, lifestyle, and socioeconomic causes of
MetS also affect bone density is critical. Our study aimed to explore a comprehensive
approach applicable to a wider population. Recent studies have reported that MetS sever-
ity scores can serve as useful indicators to assess the potential risk factors for subclinical
conditions and can facilitate the development of prevention strategies during the early
stages of disease development [23,24]. To our knowledge, no study has previously de-
veloped a disease prediction model that combines demographic, lifestyle, and SES with
MetS score indicators. Except for the two types of research that we reported [15,21], most
studies [14,16–20] conducted a cross-section (i.e., concurrence) approach to modeling the
potential risks associated with bone health. A non-concurrence study examining these
factors can be used to investigate the causal relationship between these factors and bone
health. Using a machine learning approach, this study developed a model to predict the
loss of adult bone mass among a Taiwanese population using MetS severity scores and
individual risk factors.

2. Materials and Methods
2.1. Data Source

Data were obtained and analyzed from a membership-oriented private institute, a
Major Health Screening Center in Taiwan. With four clinic locations around the country,
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the center provides periodic health examinations to approximately 600 thousand mem-
bers. A detailed description of the data collection and analysis of the resulting Major
Longitudinal Health-check-up-based Population Database (MJLPD) is described in detail
elsewhere [25,26].

In consideration of various ethical issues within the data, the protocol of this study was
evaluated and approved by the National Taiwan University Research Ethics Committee
(NTU-REC 201911EM012) and the Major Health Screening Center.

2.2. Study Sample

Participants over 20 years of age who had undergone at least one standard health screen-
ing at the Center in each of three three-year stages/periods (i.e., 2006–2008, 2009–2011, and
2012–2014) from 2006 to 2014 were used to conduct the longitudinal study. All participants
lacking BMD examination data or who were diagnosed with osteopenia or osteoporosis
(T score < −1) at baseline (i.e., 2006–2008) were excluded from the study. For participants
who had undergone multiple screenings within the three-year period, the last examination
period was selected for the analysis. As a result, three questionnaires and examination
measurements for each participant were collected during the nine-year period. A final
total of 23,497 participants (13,012 males and 10,485 females) met the inclusion criteria and
were used as our study dataset. Among the included study population, 1402 and 1805
participants were diagnosed with either osteopenia or osteoporosis during the second and
third stages, respectively. Due to a relatively low positive rate, the dataset was analyzed
using a random under-sampling (1:1 match) approach while applying machine learning
models to mitigate the imbalance problem. A flow chart of the data collection process used
to identify the study participants and define the analysis dataset is shown in Figure 1.
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2.3. Response Variables

The measurement of BMD in this study was primarily performed using a Lunar DPX-L
density meter, which measures dual-energy X-ray absorption (Liberty Corp., Madison,
WI, USA). Using the National Health and Nutrition Examination Survey as a reference
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population, gender-specific T scores were calculated, and osteoporosis was defined as a
T score below −2.5 standard deviations (SDs) relative to the average population value,
whereas a T score between −1.0 and −2.5 SDs was defined as low BMD (referred to as
osteopenia), and a T score above −1.0 SD was defined as normal [27]. All BMD reports were
independently reviewed and coded by trained research physicians. Bone measurements
taken at the spine were given priority, followed by hip bones and wrist bones, and the
results of all measurement sites were considered by physicians. In conducting the study
of the effects of risk factors on bone health over an extended period, we collected the
indicators of ongoing osteopenia or osteoporosis status among those who developed these
disorders during the study period and were not diagnosed with bone disorders at baseline.
Using −1.0 SD as the cutoff point in the current longitudinal study, individual BMD was
treated as a dichotomous variable. The measured outcome was defined as the occurrence
of bone illness, as diagnosed during the second and/or third stages for those with BMD
values higher than −1.0 SD during the baseline measurement.

2.4. Explanatory Variables

Each of the study participants completed a self-administered questionnaire during
screening to obtain socio-demographic characteristics and lifestyle habit information. Data
collected included sex, age (classified into 20–39 years, 40–64 years, and 65 or more years),
four aspects of SES (i.e., marriage, education, income, and occupation), as well as nine well-
documented lifestyle habits, constituting related risk factors in past studies. Hormones,
steroids, and thyroid-related treatment drugs used by patients were cataloged.

Body mass index (BMI, kg/m2) is considered a risk factor for osteopenia and was
included as a continuous variable in our analysis. Using the same databases reported in
previous research [24], by back-transforming the standardized scores derived from the
aforementioned equations, a covariance matrix was obtained with the MetS severity scores,
calculated using waist circumference, fasting plasma glucose, systolic blood pressure,
fasting triglycerides (TG), and high-density lipoprotein (HDL). First, the individual values
of the five components were standardized and converted to a Z score. A confirmatory
factor analysis approach was then followed to derive the score based on the five MS
components, with a weighted contribution for each of the components to a latent MetS
factor being determined based on both specific age ranges and genders. In the present
study, a higher score denotes that a person has a more severe MetS condition, whereas
lower scores indicate the lack of MetS.

Classification of the SES of participants was divided into three levels of educa-
tional attainment. Occupation was classified as unemployed, manager/owner, and non-
management employee. Marriage classification was labeled as married or unmarried.
Some lifestyle habits, estimated quantitatively by frequency, were classified into three
levels for smoking, alcohol consumption, sugar-sweetened consumption, physical activity,
and sleeping. Other habits, such as betel nut chewing, vegetarian diet, dairy intake, taking
calcium supplements, and related medical treatments such as hormones, steroids, and
thyroid-associated medications, were classified dichotomously.

2.5. Study Design

The physical and biochemical aspects, demographic, socioeconomic, and lifestyle
characteristics of the study participants at baseline and those associated with participants
who developed osteopenia or osteoporosis over the following two stages were described.
In the longitudinal study, the causal relationships were analyzed using a non-concurrent
design. The lifestyle characteristics, demographic, socioeconomic, and, as well as BMI and
MetS scores from the first stage were used as the features recorded during the following
two stages. The factors used to predict the occurrence of osteopenia or osteoporosis for
the second and third stages were those identified during the initial stage. A concurrent
prediction was also performed during the second and third stages using each individual’s
features from the stage being examined.
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2.6. Feature Selection and Machine Learning

All features missing greater than 30% of values were excluded from the analysis. The
missing values for the remaining features were replaced by using a multiple imputation
technique. A multivariate imputation via chained equations (MICE) module was used in
the R package to perform the data imputation. To identify the effects of important features
on the development of osteopenia, we applied the random forest (RF) algorithm with
10 times repeated 10-fold cross-validation to select robust significant features from the
training/validation (80/20) dataset, which utilized a mixture of numerical and categorical
features. Both the features and the cutoff points associated with each feature were randomly
chosen before each training model. Thus, the sequence of feature importance could differ
during each model. Then, we averaged the ten lists of feature importance to obtain a
robust selected feature list. The results demonstrated that the independent variables for
forecasting the prediction included 17 of the 24 analyzed features, which were selected as
a selected features dataset for further machine learning and model evaluation. The MetS
score and BMI played the most important roles among the selected features (Table 1).

Table 1. Robust feature importance ranking list.

Feature Rank Relative Importance

MetS score 1 1.000
Body mass index 2 0.959

Age 3 0.253
Education 4 0.243

Sweetened beverage 5 0.216
Milk intake 6 0.207

Income 7 0.194
Physical activity 8 0.187

Sleep 9 0.184
Occupation 10 0.162

Cheese intake 11 0.154
Sex 12 0.151

Smoke 13 0.133
Alcohol 14 0.127

Vitamin C/E intake 15 0.105
Calcium intake 16 0.103
Marital status 17 0.102

In this study, four well-accepted machine learning algorithms, including logistic
regression (LR), extreme gradient boosting (XGBoost), RF, and support vector machine
(SVM), were applied to develop the concurrence and non-concurrence predictive models.
A 10-fold cross-validation and grid search were used to determine the parameters of the
four predictive models for the tuning of hyperparameters while training the model using
the defined dataset. Using bootstrapping and 10-fold validation, the best scores were used
to define the parameters for the predictive models. The test of a dataset with 80/20, which
was a separated dataset from the preceding datasets, was used to avoid the development
of an over-fitting model. Subsequently, 10 iterations of a receiver operating characteristic
curve (ROC) analysis were employed on the randomized datasets to obtain the best area
under the ROC curve (AUC). All machine learning analyses were performed using Python
Software (Foundation and Python Language Reference, version 3.7.3, Beaverton, OR, USA).
The libraries of Scikit-Learn 0.23.2 were implemented and used to confirm these models.
The process used for feature selection and machine learning is shown in Figure 2.
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2.7. Model Evaluation

The model’s discrimination was measured. In this study, discrimination refers to
the predictive effectiveness of the model in determining between participants with and
without osteopenia. In each model, the discriminatory power was analyzed based on the
AUC, while the ROC curves used were determined by plotting the true positive fraction
against the false positives. For each cutoff score, the specificity (maximum subsequent
sum) and sensitivity (optimal values) were calculated.

Furthermore, accuracy, precision, and F1 score evaluation indicators from the con-
fusion matrix were used to analyze the relationship between the actual values and the
predicted values for osteopenia. The precision–recall curve (PRC) was also generated to
determine the tradeoff between precision and recall at different thresholds. Precision–recall
is a useful measure of the success of prediction when classes are imbalanced. In the im-
balanced data, the false-positive rate tends to stay at small values due to the low positive
rate. Thus, ROC becomes less informative for the model performance in this situation. On
the other hand, the PRC baseline is varied by the value of the positive rate, and PRC is
performed by switching from false positives to precision, which provides more valuable
information. A high AUC represents both high recall (i.e., sensitivity) and high precision,
where high precision is associated with a low false-positive rate, and high recall relates to a
low false-negative rate. F1 was calculated as 2 × precision × recall/(precision + recall),
which is the harmonic mean of precision and recall. A larger F1 score indicates a more
accurate model.

3. Results

Lifestyle habits, sociodemographic factors, and biochemical and physical examination
items over the three study stages are presented in Table 2. Osteopenia occurrence rates
during the second stage in men and women were 7.3% and 4.3%, respectively. An increase
to 8.3% and 6.9% in the occurrence of osteopenia was observed during the third stage. Par-
ticipants with relatively low SES, adverse habits (e.g., smoking and alcohol consumption),
low sleep hours, and a vegetarian diet and who were taking related medicines during the
initial baseline stage had a higher occurrence of osteopenia during the subsequent stages.
Compared with the participants at baseline, the average BMI of those who developed
osteopenia in subsequent stages was relatively low. The participants who went on to
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develop osteopenia had a lower MetS score (−0.22) in the subsequent stages compared
with the average score (0.09) for the entire population at baseline.

Table 2. Explanatory variables related to osteopenia over the three study stages.

Characteristics
Participants in 2006–2008 Osteopenia in 2009–2011 Osteopenia in 2012–2014

n (%) n (%) n (%)

Sex
Male 13,012 (55.4) 953 (7.3) 1080 (8.3)

Female 10,485 (44.8) 449 (4.3) 725 (6.9)
Age (yrs)

20–39 11,055 (47.0) 240 (2.9) 176 (3.0)
40–64 11,781 (50.1) 1029 (7.2) 1404 (8.7)
≥65 661 (2.8) 133 (14.0) 225 (16.4)

Marital status
Unmarried 5163 (23.3) 211 (4.7) 258 (6.5)

Married 16,956 (76.7) 1100 (6.3) 1386 (7.8)
Education (yrs)

<12 2178 (9.4) 289 (13.6) 346 (16.5)
12–15 10,529 (45.6) 635 (6.2) 777 (7.9)
≥16 10,397 (45.0) 444 (4.2) 586 (5.5)

Income (NTD/yr)
<400,000 2676 (12.4) 226 (9.0) 297 (12.1)

400,000–799,999 5797 (26.8) 332 (6.4) 403 (8.4)
>800,000 13,174 (60.9) 699 (5.0) 899 (6.4)

Occupation
Unemployed 3707 (17.5) 284 (7.5) 422 (10.8)

Managed 2562 (11.7) 150 (5.5) 183 (6.6)
Non-managed 15,557 (71.3) 815 (5.4) 970 (6.6)

Smoke (pack/day)
None 18,545 (82.2) 1062 (5.6) 1503 (7.6)
≤1 3177 (14.1) 181 (6.6) 196 (7.6)
>1 839 (3.7) 71 (10.4) 57 (8.9)

Alcohol (cup/day)
None 18,601 (83.9) 1041 (5.7) 1477 (7.6)

1 1726 (7.8) 94 (5.5) 140 (7.6)
≥2 1847 (8.3) 129 (7.2) 140 (7.8)

Chewing betel nut
No 21,521 (93.8) 1208 (5.7) 1659 (7.6)
Yes 1428 (6.2) 93 (8.1) 102 (8.5)

Physical activity (hrs/wk)
<1 9042 (39.6) 503 (5.4) 552 (6.7)
1–6 12,805 (56.1) 573 (6.1) 801 (7.8)
≥7 987 (4.3) 126 (7.3) 197 (10.8)

Sleep (hrs/day)
<6 4523 (20.1) 369 (7.0) 524 (8.9)
6 16,467 (73.2) 676 (5.9) 845 (7.3)
≥7 1506 (6.7) 312 (5.1) 388 (6.9)

Vegetarian diet
Yes 592 (2.5) 56 (8.2) 271 (7.9)
No 22,774 (97.5) 1330 (5.9) 1534 (7.6)

Sweetened beverage
(cup/wk)

None 7148 (30.8) 707 (7.2) 996 (8.8)
1–6 10,981 (47.3) 483 (5.0) 560 (6.4)
≥7 5067 (21.8) 176 (4.9) 189 (6.5)

Milk intake (cup/wk)
None 11,545 (49.9) 701 (6.0) 871 (7.6)
1–6 9491 (41.0) 505 (5.6) 679 (7.2)
≥7 2093 (9.0) 158 (7.4) 187 (9.3)
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Table 2. Cont.

Characteristics
Participants in 2006–2008 Osteopenia in 2009–2011 Osteopenia in 2012–2014

n (%) n (%) n (%)

Cheese intake (slice/wk)
None 13,276 (57.5) 824 (6.3) 1119 (8.4)
1–6 9390 (40.7) 503 (5.3) 581 (6.4)
≥7 430 (1.9) 33 (6.3) 32 (6.9)

Vitamin C, E intake
Yes 4180 (17.8) 175 (4.8) 271 (7.9)
No 19,312 (82.2) 1227 (6.2) 1534 (7.6)

Calcium intake
Yes 3990 (17.0) 326 (8.6) 403 (12.0)
No 19,502 (93.0) 1076 (5.5) 1402 (7.0)

Hypertension medicine
Yes 1399 (6.0) 138 (7.1) 226 (9.3)
No 22,093 (94.0) 1264 (5.9) 1579 (7.5)

Diabetes medicine
Yes 440 (1.9) 47 (7.1) 72 (8.5)
No 23,052 (98.1) 1355 (5.9) 1733 (7.7)

Thyroid medicine
Yes 252 (1.1) 21 (6.5) 27 (7.3)
No 23,240 (98.9) 1381 (6.0) 1778 (7.7)

Lipidemia medicine
Yes 400 (1.7) 35 (5.7) 68 (8.1)
No 23,092 (98.3) 1367 (6.0) 1737 (7.7)

Hormone medicine
Yes 272 (1.2) 18 (7.9) 15 (7.1)
No 23,220 (98.8) 1384 (5.9) 1790 (7.7)

Body mass index (sd) 23.25 (3.41) 22.79 (3.09) 22.85 (3.07)
MetS score (sd) 0.09 (1.02) −0.22 (0.99) −0.22 (0.94)

The study utilized four machine learning models (i.e., LR, XGBoost, RF, and SVM)
to predict osteopenia. The predictive models were corroborated using optimal parame-
ters for each model through a grid search. The ROC and PRC curves of the generated
machine learning models for the concurrence and non-concurrence designs are shown in
Figures 3 and 4.

The differences between the models were more distinct when using baseline features
to predict osteopenia during the second stage than when using the baseline features to
predict osteopenia during the third stage. The performances of the models for predicting
osteopenia occurrence during the second stage according to baseline features are shown
in Table 3.

The AUC values for LR, XGBoost, RF, and SVM in the non-concurrence and con-
currence models were 0.726 and 0.745, 0.753 and 0.721, 0.693 and 0.687, and 0.723 and
0.712, respectively. The F1 scores for the four algorithms in the non-concurrence and
concurrence models were 0.668 and 0.689, 0.723 and 0.686, 0.656 and 0.633, and 0.688 and
0.676, respectively. Among all predictive models, the XGBoost model had the highest
AUC value. Except for the LR models, most of the non-concurrence models demonstrated
better predictive performance than the concomitant concurrence models. Although the
concurrence LR model was associated with high AUC and PRC values of 0.745 and 0.774,
respectively, the other indicators were relatively poor. The performance of the predictive
models for identifying osteopenia occurrence during the third stage showed a similar
pattern, with poorer performances than the models used to predict occurrence during the
second stage (Table 4).
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Table 3. Model predictions of osteopenia in the second stage (2009–2011) using concurrent and non-concurrent features.

Logistic Regression XGBoost Random Forest SVM

Non-
Concurrent Concurrent Non-

Concurrent Concurrent Non-
Concurrent Concurrent Non-

Concurrent Concurrent

Sensitivity 0.682 0.684 0.733 0.678 0.663 0.636 0.736 0.702
Specificity 0.648 0.681 0.689 0.672 0.623 0.636 0.575 0.632
Accuracy 0.665 0.683 0.711 0.675 0.643 0.636 0.658 0.667
Precision 0.655 0.694 0.713 0.694 0.650 0.631 0.646 0.651

ROC 0.726 0.745 0.753 0.721 0.693 0.687 0.723 0.712
PRC 0.728 0.774 0.750 0.708 0.696 0.697 0.742 0.720
F1 0.668 0.689 0.723 0.686 0.656 0.633 0.688 0.676

SVM: support vector machine; XGBoost: extreme gradient boosting; ROC: receiver operating characteristic curve; PRC: precision–recall
curve; Non-concurrence indicates the prediction using the individual features from the first stage (2006–2008).
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Table 4. Model predictions of osteopenia in the third stage (2012–2014) using concurrent and non-concurrent features.

Logistic Regression XGBoost Random Forest SVM

Non-
Concurrent Concurrent Non-

Concurrent Concurrent Non-
Concurrent Concurrent Non-

Concurrent Concurrent

Sensitivity 0.704 0.698 0.745 0.662 0.680 0.672 0.751 0.698
Specificity 0.646 0.620 0.633 0.657 0.622 0.660 0.600 0.627
Accuracy 0.673 0.657 0.686 0.659 0.650 0.666 0.669 0.661
Precision 0.640 0.628 0.645 0.639 0.617 0.645 0.624 0.632

ROC 0.715 0.710 0.723 0.721 0.698 0.705 0.707 0.706
PRC 0.669 0.665 0.673 0.680 0.633 0.662 0.660 0.654
F1 0.670 0.661 0.691 0.650 0.647 0.658 0.681 0.663

SVM: support vector machine; XGBoost: extreme gradient boosting; ROC: receiver operating characteristic curve; PRC: precision–recall
curve; Non-concurrence indicates the prediction using the individual features from the first stage (2006–2008).

4. Discussion

Most previous studies have been conducted using a concurrence design, also known
as cross-sectional design, which does not allow for the assessment of causal relationships
between risk factors and BMD. By initially selecting participants without osteopenia and us-
ing a prospective dataset, the present study indicates that non-concurrent models resulted
in better predictive performance and are more suitable for this empirical purpose than
concurrent models while the optimal algorithm (i.e., XGBoost) is being applied. Therefore,
further investigation remains necessary to verify these findings, especially for chronic
disorders such as osteopenia or osteoporosis. In addition to BMI, the MetS severity score is
identified as the dominant predictor of osteopenia in the present study. Though a relation-
ship has been explored between MetS and bone health, some confusion may arise from the
traditional Adult Treatment Panel criteria, such as whether individuals with two high-level
MetS components have a lower CVD risk than in those with slightly elevated levels above
the criteria in three or more components. Due to the limitations in the traditional MetS
criteria, we instead developed the models with a MetS severity score to provide valuable
evidence for healthcare societies. Additionally, the study found better predictive perfor-
mance for the second stage than for the third stage, which implies that the selected features
are suitable for predicting osteopenia occurrence over the short-term period of three years
but may not be suitable for predictions over a longer period. It could be justified that there
would be less effects of health outcomes because of even early socioeconomic or behavioral
conditions since these conditions may have changed overtime due to certain personal or
heath issues. In the past, risk calculators, such as the web-based Fracture Risk Assessment
Tool (FRAX®) algorithm, have enabled the assessment of an individual’s fracture risk using
clinical risk factors, such as age and alcohol consumption [28]. A prediction of osteopenia
using easily measured risk factors may alert practitioners to the condition of an individual’s
bone health during the early stages of bone disease and may enhance the performance
of osteoporosis prevention or avoid the occurrence of future fractures. Our findings may
encourage health institutes to provide prevention strategies to those who are potential
osteopenia patients, which will lead to better bone health in over one thousand people or
the possibility of avoiding deterioration in advance for the study participants. The results
for a field with limited research provide pertinent and comprehensive information to those
who seek to identify the most suitable model in bone mass loss for decision-making.

Predictive algorithms can serve as diagnostic screening tests to stratify patient pop-
ulations by risk and to allow for more discrete decision-making [29]. Since screening is
intended to guide interventions, high accuracy and precision testing is required. We ap-
plied four machine learning algorithms to the construction of predictive models. Generally,
RF and XGBoost are ensemble learning models, and LR represents the basic machine learn-
ing model, while SVM is widely used as a predictor. As previously discussed, ensemble
learning models, specifically the XGBoost model, was found to have higher prediction capa-
bilities and lower risks of overfitting than the others, which can provide greater benefits to
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decision-makers who are looking for more suitable models for the prediction of healthcare
demands [30]. Cruz et al. conducted a review study and summarized the different per-
formances of various machine learning-based diagnostic models for osteoporosis among
25 studies, taking into account the artificial intelligence method applied, the number of risk
factors included in the model, the number of patients evaluated, the country associated
with the evaluation, and the proportions of each sex in the study population [22]. The study
noted that most of the proposed systems can be very useful for the medical community,
provided that analysis is not restricted to specific groups and that a spectrum of input
variables is included. To the best of our knowledge, this study is the first to develop
and compare various machine learning models to predict early bone mass loss that also
considers socioeconomic and lifestyle conditions, in addition to MetS indicators.

Compared with linear-based models, neural networks constitute flexible nonlinear
systems and may be more suitable for the prediction of outcomes when the associations
between the variables are nonlinear, complex, and multidimensional, as is done when
assessing the relationships among variables in complex biological systems [31]. Using
neural networks, de Cos Juez et al. studied the influence of diet and lifestyle on BMD
values in postmenopausal women. A questionnaire examining nutritional habits and
lifestyles was used, resulting in 39 variables, such as calcium intake, protein intake, number
of pregnancies, height, and BMI, for each respondent [19]. They found that these variables
influenced the progression of osteoporosis. However, collecting all possible individual
predictors can be difficult, and not all predictors apply to routine disease prevention. To
reduce the number of input variables required to obtain an accurate predictive model,
the researchers further processed the identified variables using genetic algorithms, which
resulted in a model that demonstrated better performance. To test the performance of the
algorithm, we performed artificial neural network models utilizing the same dataset via
the machine learning module in the SAS Viya Plus package (Linux® for x64, SAS Institute
Inc., Cary, NC, USA). The results showed similar performance (e.g., AUC = 0.732 for the
non-concurrence model for the second stage) as that obtained for the present LR model.
However, the current performance of the predictive models developed in the present
study still has room for improvement. In particular, there are even lower (AUC < 0.65)
performances when only the two most significant features (i.e., MetS score and BMI) are
being used to predict. Other than the modelling strategy that the study used, there are
several different algorithms (e.g., gradient boosting machine, decision tree, etc.), samplings,
and feature selections such as data-driven approaches [32–34] that have been developed.
As we performed additional analyses under varying approaches, the results showed that
the synthetic minority oversampling technique could be used to optimize the performance
of machine learning (Tables S1–S3). Future studies with the approach may be applicable.
However, caution should be exercised to prevent adding increased uncertainty, especially in
regard to a sample with a small number of examples of a minority class or a non-continuous
feature space [35]. Additionally, Loke et al. studied the association between MetS and
BMD and found that the correlation had a very different effect among men than among
women [18]. Despite considering the effects of sex and age and using sex- and age-based
MetS severity scores in the present study, subgroup analyses stratified by sex and age
might provide more information in future studies.

Various issues, including patient self-selection, confounding due to various indi-
cations, and the inconsistent availability of outcome data, can result in the inadvertent
introduction of bias in machine learning-based predictions [29]. The present study has
some limitations that must be addressed. First, although the use of several medications
was considered, information regarding some treatments related to BMD was not available,
including treatments associated with chronic renal insufficiency, bone metabolic illness,
chronic hepatopathy, and neoplasia. A recent study suggested that genomic data can be
used to develop a predictive model for BMD using a machine learning approach [36].
However, genotypic variables were not collected in our study, which may have impacted
the performance of bone mass prediction models. Additionally, the issues of information



Healthcare 2021, 9, 948 13 of 15

loss and selection bias raised by the under-sampling method and imputation procedure
cannot be ignored. Finally, the concept of social mobility refers to the degree of SES stability
or change in the trajectory of an individual’s life course itself. Therefore, exposure to
socioeconomic or behavioral adversities during the course of life increases an individual’s
long-term risk. The accumulation of risk models advocates that increased exposure, du-
ration, and severity to adverse events during the life course increase the risk of disease
development [37]. The development of a life course approach has been suggested to de-
velop a better understanding of how a reciprocal relationship between affected factors and
health changes over different life stages [38].

5. Conclusions

The study found that an individual’s MetS severity score, BMI, and socioeconomic
and lifestyle indicators could be used as tools to predict the progression of bone density
health using an ensemble learning model. The prediction of osteopenia using easily
measured risk factors may alert a physician to the precarious condition of an individual’s
bone health during the early stages of bone disease and may enhance the performance of
preventative measures to avoid osteoporosis or further fractures, reducing the economic
burdens associated with related diseases. Our findings can provide guidance for health care
providers when designing health promotion measures for specific populations. However,
to reflect real-world conditions, the inclusion of an individual’s specific features into a
predictive model, including changes that occur over time, is suggested for future studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/healthcare9080948/s1, Table S1: Additional model predictions of osteopenia using non-
concurrent features using the other algorithms. Table S2: Additional model predictions of osteopenia
using non-concurrent features selected by gradient boosting approach. Table S3. Additional model
predictions of osteopenia using non-concurrent features using synthetic minority oversampling
technique.
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