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Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been recognized as a toxic gas and environment pollutant.
However, increasing evidence suggests that H2S acts as a novel gasotransmitter and plays important roles in a variety of
physiological and pathological processes in mammals. H2S is involved in many hepatic functions, including the regulation of
oxidative stress, glucose and lipid metabolism, vasculature, mitochondrial function, differentiation, and circadian rhythm. In
addition, H2S contributes to the pathogenesis and treatment of a number of liver diseases, such as hepatic fibrosis, liver
cirrhosis, liver cancer, hepatic ischemia/reperfusion injury, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis,
hepatotoxicity, and acute liver failure. In this review, the biosynthesis and metabolism of H2S in the liver are summarized and
the role and mechanism of H2S in liver health and disease are further discussed.

1. Introduction

Hydrogen sulfide (H2S) is a colorless and water-soluble gas
with the characteristic foul odor of rotten egg [1–3]. At physi-
ological pH, nearly two thirds of H2S exists as H

+ and hydro-
sulfide anion, which subsequently decomposes to H+ and
sulfide ion [4]. In mammals, H2S is produced from
L-cysteine and L-homocysteine mainly by cystathionine
γ-lyase (CSE) and cystathionine β-synthase (CBS). Both CSE
and CBS are cytosolic enzymes [5, 6]. 3-Mercaptopyruvate
sulfurtransferase (3-MST) acts in combination with cysteine
aminotransferase (CAT) to produce H2S from L-cysteine
in the presence of α-ketoglutarate (αKG). 3-MST and
CAT are located in the mitochondria and cytosol [3, 7].
Furthermore, a recent study has shown that D-amino acid
oxidase could metabolize D-cysteine to an achiral α-ketoacid,

3-mercaptopyruvate (3-MP), which is further metabolized to
H2S by 3-MST in both kidney and brain [8].

H2S has been considered the third gaseous signaling mol-
ecule that plays important regulatory roles in a number of
physiologic conditions, such as angiogenesis [9], vasodilata-
tion [10], and neuronal activity [11]. The liver, the largest
solid organ in the body, plays a key role in glucose and lipid
metabolism, antioxidant defense, and xenobiotic metabolism
[12–14]. The liver is an important organ for H2S production
and its clearance [3, 15]. CSE, CBS, and 3-MST have been
detected in the liver, and they contribute to liver production
of H2S to different extents [3, 12]. The production and catab-
olism of H2S in the liver are shown in Figure 1. Hepatic H2S is
involved in mitochondrial biogenesis and bioenergetics,
insulin sensitivity, lipoprotein synthesis, and glucose metab-
olism [12, 16, 17]. However, H2S also contributes to the
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Figure 1: A schematic illustration of the biosynthesis and metabolism of H2S in the liver. (a) H2S is enzymatically produced from L-cysteine
and L-homocysteine by CSE and CBS. 3-MST acts in combination with CAT to produce H2S from L-cysteine in the presence of αKG. (b) H2S
can be stored as acid-labile sulfur and bound sulfane sulfur. Catabolism of H2S is thought to occur mainly via rhodanese, methylation, binding
to hemoglobin, and mitochondrial oxidation. H2S: hydrogen sulfide; CSE: cystathionine γ-lyase; CBS: cystathionine β-synthase; H2O: water;
NH3: ammonia; αKG: α-ketoglutarate; L-Glu: L-glutamate; CAT: cysteine aminotransferase; 3-MST: 3-mercaptopyruvate sulfurtransferase;
pH: potential of hydrogen; CH3-S-CH3: dimethyl sulfide; CH3-SH: methanethiol; S2O3

2−: thiosulfate; SO4
2−: sulfate.
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pathogenesis and treatment of many liver diseases, such as
liver cirrhosis [18], liver cancer [19], hepatic fibrosis [20],
hepatic ischemia/reperfusion (I/R) injury [21], and nonalco-
holic steatohepatitis (NASH) [22].

In the present review, we highlight recent studies that
provide new insight into the biosynthesis and metabolism
of H2S in the liver and further discuss the role and mecha-
nism of H2S in liver health and disease.

2. H2S in Hepatic Function

2.1. H2S in Hepatic Oxidative Stress. Reactive oxygen species
(ROS), the by-products of normal aerobic cellular metabo-
lism, are considered to be important signaling molecules in
many cellular processes, including cell adhesion, immune
response, apoptosis, and cell survival and growth [23–25].
Oxidative stress means that an imbalance develops between
ROS and antioxidant systems, which is implicated in liver
cancer [26], fatty liver [22], liver failure [27], and hepatic
ischemia/reperfusion [28]. It has been demonstrated that
increased carbonyl formation is an indicator of oxidative
stress [12]. The level of carbonyl formation in the liver
of CBS-deficient mice is higher when compared to the
control group [29], suggesting that CBS may play a role
in reducing hepatic oxidative stress. Recent studies have
shown that treatment with relatively low concentrations
of H2S donor (NaHS or Na2S) could decrease ROS levels,
lipid peroxidation, and cytochrome P450 2E1 (CYP2E1)
activity and elevate glutathione (GSH) levels and antioxida-
tive enzyme activities like superoxide dismutase, glutathione
peroxidase, catalase, and glutathione S-transferase in hepato-
cytes [30–32]. It should be noted that administration of
500μM NaHS could increase ROS formation through the
inhibition of cytochrome c oxidase and the depletion of
GSH in rat primary hepatocytes, which could lead to hepato-
toxicity [33]. These results together indicate that relatively
low levels of H2S could protect against hepatic oxidative
stress; however, relatively high concentrations of H2S may
exert opposite effects. A proper dose of H2S should be
adopted to avoid H2S-induced cytotoxicity in normal liver
cells when it is used for the treatment of liver diseases.

2.2. H2S in Hepatic Glucose Metabolism. The liver is crucial
for the maintenance of blood glucose homeostasis by uptake
of glucose in the postprandial state and conversion to triglyc-
eride and glycogen and by production of glucose in the
postabsorptive state by gluconeogenesis and glycogenolysis
[34, 35]. Defects in the mechanisms by which insulin and
glucose regulate hepatic glycogen metabolism disrupt blood
glucose homeostasis and lead to metabolic disorders such as
diabetes [35, 36] and glycogen storage disease [37]. It has
been shown that the CSE activity is lower in livers of type 1
diabetic rats and peripheral blood mononuclear cells of type
1 diabetic patients [38], indicating that H2S is involved in
glucose regulation [17, 39]. A recent study demonstrates that
the rate of gluconeogenesis in CSE knockout mice is reduced,
which can be reversed by administration of NaHS [40].
Similarly, incubation with NaHS impairs glucose uptake
and glycogen storage via decreasing glucokinase activity

and increasing gluconeogenesis through S-sulfhydration of
pyruvate carboxylase in hepatocytes [16, 41]. These findings
suggest that H2S may be a potential target in the treatment
of diabetes.

2.3. H2S in Hepatic Lipid Metabolism. The liver is the main
metabolic organ and plays an important role in fatty acid
and cholesterol metabolism [42]. Hepatic lipid metabolism
is orchestrated by a delicate interplay of hormones, tran-
scription factors, nuclear receptors, and intracellular signal-
ing pathways [43]. Excessive accumulation of fat in the
liver disturbs its function and leads to the development of
many liver diseases, such as NASH, liver cirrhosis, and liver
cancer [44]. CBS deficiency in mice liver increases expres-
sion of genes induced by endoplasmic reticulum stress and
genes that regulate the expression of enzymes required for
cholesterol and fatty acid biosynthesis and uptake [45].
Another study indicates that the levels of triglyceride and
nonesterified fatty acid are elevated and the activity of thio-
lase, a key enzyme in beta-oxidation of fatty acids, is
decreased in the liver of CBS-deficiency mice [46]. It has
been shown that the expression levels of CBS and CSE and
the lipid peroxidation were increased in the liver of
high-fat diet- (HFD-) fed mice [47]. In addition, tyrosol sup-
plementation increases hepatic CSE and CBS expression and
H2S synthesis in HFD-fed mice, which is associated with the
attenuation of HFD-induced hepatic lipid peroxidation [48].
A recent study has revealed that administration of NaHS
decreases the accumulation of lipids such as total cholesterol
and triglyceride throughdownregulationof fatty acid synthase
and upregulation of carnitine palmitoyltransferase-1 in the
liver of HFD-induced obese mice [49]. S-Propargyl-cysteine
(SPRC), a substrate for endogenous H2S, could reduce the
lipid content both in human hepatocellular carcinoma
HepG2 cells and in the liver of mice with nonalcoholic fatty
liver disease (NAFLD) [50]. These findings indicate that H2S
is involved in hepatic lipid metabolism and the underlying
mechanisms are needed to be further investigated.

2.4. H2S in Hepatic Vasculature. The liver has a complex sys-
tem of vascular supply, including the inflow of oxygenated
blood through the hepatic artery and deoxygenated blood
through the portal vein, as well as the outflow of deoxygen-
ated blood through the hepatic veins to the inferior vena cava
[51]. Anatomical variations in hepatic artery are of impor-
tance to surgeons in planning effective therapeutic strategies
for abdominal surgical procedures [52]. The hepatic artery is
involved in the pathogenesis of several diseases, such as ste-
nosis, thrombosis, aneurysm, and pseudoaneurysm [51].
H2S plays a key role in vascular homeostasis during physio-
logical and pathological conditions. H2S-based therapy in
vascular disease is a novel area of research [53]. H2S acts as
an autocrine mediator in regulation of the contraction of
hepatic stellate cells (HSCs) and that a decreased expression
of CSE in HSCs may lead to the increased intrahepatic
resistance in rodent models of liver cirrhosis [18]. A recent
study has shown that H2S differentially contributes to the
microcirculatory dysfunction in both systemic and hepatic
microcirculations, which can be attributed to H2S-induced
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differential vasoactive function on sinusoidal and presinu-
soidal sites within the liver [54]. Another study demon-
strates that H2S increases the hepatic arterial buffer
capacity and mediates vasorelaxation of the hepatic artery
through activation of KATP channels [55]. However, a vaso-
constrictor action of H2S on the hepatic sinusoid has been
observed, which is different from the dilatory effect of
H2S in presinusoidal resistance vessels [56]. More efforts
should be paid to validate the different effects of H2S on
hepatic vasculature.

2.5. H2S in Hepatic Mitochondrial Function. Mitochondria
are double-membrane organelles whose shape is instrumen-
tal to their function in many cellular processes [57]. The
major role of mitochondria is to regulate the production of
energy-rich molecules such as adenosine triphosphate [58].
Mitochondria play important roles in the metabolism of glu-
cose, lipids, and protein in the liver [59]. Under normoxic
conditions, the protein expression of CBS in liver mitochon-
dria is at a low level. Hepatic ischemia/hypoxia results in the
accumulation of CBS in mitochondria and increased H2S
production, which prevents hypoxia-induced mitochondrial
ROS production and Ca2+-mediated cytochrome C release
from mitochondria [60]. CSE-generated H2S induces liver
mitochondrial biogenesis, which can be attributed to the perox-
isome proliferator-activated receptor-γ coactivator-1α and per-
oxisome proliferator-activated receptor-γ coactivator-related
protein signaling in primary hepatocytes [61]. 3-MP, the
substrate of the enzyme 3-MST, stimulates mitochondrial
H2S production and enhances hepatic mitochondrial
electron transport and cellular bioenergetics at low con-
centration, while it inhibits cellular bioenergetics at a
higher concentration. In addition, low concentration of
H2S induces a significant increase in hepatic mitochondrial
function, while a higher concentration of H2S is inhibitory
[62]. These results indicate that endogenous H2S plays a
physiological role in the maintenance of mitochondrial
electron transport and cellular bioenergetics. Considering
that different concentrations of exogenous H2S exert diverse
effects on hepatic mitochondrial function, the proper dose
range of exogenous H2S should be confirmed to achieve
optimal hepatic mitochondrial function.

2.6. H2S in Hepatic Differentiation. A number of etiologies
such as viral infections, toxic injury, and genetic or autoim-
mune disorders may cause severe liver dysfunction resulting
in acute liver failure or chronic liver disease [63]. Liver trans-
plantation is the primary method to treat acute liver failure
and end-stage liver diseases. However, it is limited by numer-
ous problems, including shortage of donor organs, high cost,
and immune rejection [64]. To solve these problems,
stem-cell-based therapeutic strategies have emerged as
alternative options [63, 65]. A recent study indicates that
physiological concentrations of H2S could increase the ability
of human tooth-pulp stem cells (HTPC) to undergo hepato-
genic differentiation [66]. Another study has revealed that
H2S increases hepatic differentiation of both HTPC and
human bone marrow stem cells [67]. These cells may be
suitable for generation of functionally useful hepatocytes

and transplantation into model animals with liver diseases.
Whether H2S can play a role in hepatic differentiation of
other types of cells needs to be further investigated.

2.7. H2S in Hepatic Circadian Rhythm. The circadian clock
system comprises peripheral clocks in peripheral tissues
and a central clock located in the suprachiasmatic nucleus
of the hypothalamus [68]. Peripheral clocks in the liver
contribute to maintaining liver homeostasis, including the
regulation of energy metabolism and the expression of
enzymes controlling the absorption and metabolism of xeno-
biotics [69]. Clock dysfunction leads to the development of
liver diseases such as fatty liver diseases, hepatitis, cirrhosis,
and liver cancer, and these disorders also disrupt clock func-
tion [68, 70]. A recent study has shown that treatment with
NaHS could maintain the circadian rhythm of clock gene in
isolated liver cells. It is speculated that H2S increases the
activity of sirtuin 1 protein and changes the nicotinamide
adenine dinucleotide+/reduced formof nicotinamide adenine
dinucleotide ratio in hepatocytes to maintain the rhythm of
expression of circadian clock genes, which can prevent and
treat lipid metabolism-related diseases caused by the biologi-
cal clock disorders [71]. In light of the key role of H2S in reg-
ulating hepatic circadian rhythm, further studies are needed
to elucidate whether H2S could relieve liver diseases through
hepatic circadian rhythm.

2.8. Natural Sulfur-Containing Agents in Hepatic Function.
Garlic (Allium sativum), a member of the lily family, has
been widely used both as a foodstuff and a traditional med-
icine worldwide for many centuries [72–74]. Garlic oil, one
of the garlic products, is usually prepared by steam distilla-
tion and has been shown to contain a number of organosul-
fur compounds, such as diallyl sulfide (DAS), diallyl
disulfide (DADS), and diallyl trisulfide (DATS), which have
been considered to be the major biological agents [75, 76]. It
has been reported that DAS activates nuclear receptor CAR
to induce the Sult1e1 gene in the mouse liver. Whether
DAS can play a role in estradiol synthesis pathways, estra-
diol turnover, or expression/activity of SULT1E1 in other
tissues/organs needs to be clarified [74]. Another study indi-
cates that administration of DADS or DATS increases the
activities of the phase II enzymes, quinone reductase and
glutathione S-transferase, and antioxidative enzyme gluta-
thione peroxidase in rat liver cytosol, suggesting that
DADS/DATS could increase the detoxification and antioxi-
dant effects of the liver [77]. Similarly, DADS and DATS
have been shown to increase the activities of both GSH
reductase and GSH S-transferase in rat livers [78]. Further-
more, a recent study has shown that aldehyde dehydroge-
nase activity can be inhibited in vivo in the rat liver after
treatment with DATS [79]. These results together indicate
that natural sulfur-containing agents may play important
roles in the regulation of hepatic function. Recent studies
have demonstrated that DATS, DADS, and DAS can act as
H2S donors [80, 81]. Whether the regulatory effects of
DATS, DADS, and DAS are mediated by H2S need to be
further investigated.
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3. H2S in Hepatic Injury

3.1. H2S in Hepatic Fibrosis. Hepatic fibrosis results from
chronic damage to the liver in conjunction with the excessive
accumulation of the extracellular matrix (ECM) of predomi-
nantly type I collagen [82]. A variety of factors such as viral
infections, alcohol abuse, genetic abnormalities, overload of
metal ions, and autoimmunity contribute to hepatic fibrosis
[82, 83]. Hepatic fibrosis is the inevitable pathological pro-
cess of many chronic liver diseases, including NASH,
NAFLD, and viral hepatitis [84]. Once these chronic diseases
aggravate further, hepatic fibrosis may progress to liver cir-
rhosis or hepatocellular carcinoma (HCC) [85]. There is
increasing evidence that activated hepatic stellate cells
(HSCs) are the central effector cells, which play key roles in
the excessive synthesis and deposition of ECM in hepatic
interstitium, leading to hepatic fibrosis [82]. Despite the
development made in this field, there are limited available
treatments for this disease [86, 87]. It is urgent to develop
novel therapeutic drugs aimed at attenuating or preventing
hepatic fibrosis. It has been reported that CBS deficiency pro-
motes fibrosis, oxidative stress, and steatosis in mice liver,
suggesting that H2S is involved in hepatic fibrosis [29].
Furthermore, recent studies have shown that H2S could
attenuate hepatic fibrosis both in vivo and in vitro
(Table 1). Therefore, H2S may be a promising therapeutic
target for the treatment of a variety of fibrotic diseases. The
expression levels and roles of H2S-generating enzymes in
fibrotic diseases need to be further determined. Furthermore,
proper H2S-releasing agents can be designed and developed
to treat fibrotic diseases in a controlled way.

3.2. H2S in Liver Cirrhosis. Liver cirrhosis is an increasing
cause of morbidity and mortality, particularly in developed
countries [92]. Liver cirrhosis is a serious condition in
which scar tissue replaces the healthy tissue of the liver
and regenerative nodules surrounded by fibrous bands in
response to the injury [93]. Cirrhosis is the common end
of progressive liver disease of various causes, leading to sev-
eral chronic liver failure entailing complications including

peritonitis, hepatic encephalopathy, spontaneous bacterial
ascites, and esophageal varices [94]. The major clinical conse-
quences of cirrhosis are impaired liver function, an increased
intrahepatic resistance, and the development of HCC
[93, 95]. In spite of current advancements in the treat-
ment, orthotopic liver transplantation remains the only
definite solution to end-stage cirrhosis [92, 94, 96]. Several
studies have demonstrated that the mRNA and protein levels
of hepatic CSE and the serum levels of H2S in rats are
decreased in the cirrhosis group compared with those in the
control group [18, 97, 98]. A hypothesis suggests that H2S
may contribute to the pathogenesis of vascular dysfunction
in cirrhosis [99]. In addition, treatment with NaHS could
attenuate CCl4-induced liver cirrhosis, hepatotoxicity, and
portal hypertension through anti-inflammation, antifibrosis,
and antioxidation effects in rats, suggesting that targeting
H2S may present a promising approach in alleviating liver
cirrhosis and portal hypertension [31]. However, more stud-
ies are urgently needed to clarify the role and mechanism of
H2S in different animal models of liver hepatitis.

3.3. H2S in Liver Cancer. Malignant liver tumors can be
classified as primary or secondary (metastatic) [100]. Primary
malignancies of the liver are HCC, which is the sixth most
common cancer and the third leading cause of
cancer-related death worldwide [101, 102]. The main
etiologic factors for HCC are chronic hepatitis B virus and
hepatitis C virus infection, NAFLD, and alcoholic cirrhosis
[103]. Most patients with HCC are diagnosed at a late stage
when curative treatments are not applicable, and the majority
of death is due to tumor recurrence [104]. Thus, it is urgent to
uncover novel etiological mechanisms and develop more
effective approaches for the prevention and treatment of
HCC [105]. In the liver, biosynthesis and clearance of H2S
mainly occur in hepatic stellate cells, the major cell source of
the extracellular matrix in liver fibrosis and HCC [106]. It
has been shown that CSE is overexpressed in human hepato-
cellular carcinoma HepG2 and PLC/PRF/5 cells and contrib-
utes to the proliferation of human HCC cells [107]. Similarly,
another study indicates that CSE/H2S promotes human HCC

Table 1: Protective effects of H2S on hepatic fibrosis.

Experimental models Effects Proposed mechanisms Refs.

Hepatic fibrosis in vivo (rat)
NaHS (56 μmol/kg/day) attenuates

CCl4-induced hepatic fibrosis
Reduction of liver expression levels

of AGTR1
[20]

Hepatic fibrosis in vivo (rat)
NaHS solution (10mmol/kg body
weight) shows protective effects on

CCl4-induced hepatic fibrosis

Decreased expression of p38 and
increased expression of

phospho-Akt
[88]

Hepatic fibrosis in vivo (rat)
NaHS solution (10mmol/kg body
weight) attenuates CCl4-induced

hepatic fibrosis and ECM expression

Induction of cell cycle arrest and
apoptosis in activated hepatic

stellate cells
[89]

Hepatic fibrosis in vivo (rat)
NaHS (56 μmol/kg/day) attenuates

CCl4-induced hepatic fibrosis

Reduction of the expression of
TGF-β1 and sediment of ECM in

the liver tissues
[90]

Hepatic fibrosis in vitro (rat)
DATS (an H2S donor, 10 μM) reduces
H2O2-induced upexpression of fibrotic

protein in HSCs
Unknown [91]

CCl4: carbon tetrachloride; AGTR1: angiotensin II type 1 receptor; TGF-β1: transforming growth factor-β1; H2O2: hydrogen peroxide.
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cell proliferation via cell cycle progression regulation [19].
Furthermore, CBS is overexpressed in human hepatocellular
carcinoma HepG2 and SMMC-7721 cells and inhibition of
endogenous CBS/H2S could reduce the viability and pro-
liferation of SMMC-7721 cells [108]. Moreover, administra-
tion of 500μmol/L NaHS could induce cell proliferation,
migration, and angiogenesis and exhibit antiapoptotic effects
in PLC/PRF/5 hepatoma cells via activation of the nuclear
factor-κB (NF-κB) pathway [109]. However, treatment
with 10−3M NaHS inhibits HCC cell migration, proli-
feration, and division through induction of cell apoptosis
[106]. P-(4-methoxyphenyl)-p-4-morpholinylphosphino-
dithioic acid morpholine salt (GYY4137)-mediated sup-
pression of cell proliferation in human HCC cells may
be due to direct targeting of the signal transducer and acti-
vator of the transcription 3 pathway [110]. A recent study
has demonstrated that the growth and migration of
human HCC cells are enhanced by 10-100μM NaHS and
dose-dependently inhibited by 600-1000μM NaHS
through epidermal growth factor receptor/extracellular
signal-regulated protein kinase/matrix metalloproteinase 2
and phosphatase and tensin homolog deleted on chromo-
some ten/protein kinase B (PKB/AKT) signaling pathways
[111]. Taken together, these results indicate that endogenous
H2S or relatively low levels of exogenous H2S may promote
the growth of HCC cells, while treatment with higher con-
centrations of exogenous H2S may exhibit anticancer effects.
Therefore, knockdown/knockout of H2S-generating enzymes
in cancer cells and development of H2S-releasing donors/-
drugs may be promising strategies for anticancer therapy.

3.4. H2S in Hepatic I/R Injury. Hepatic I/R injury is a major
complication in many clinical scenarios, such as liver trans-
plantation, trauma, hemorrhagic shock and resuscitation,
liver resection, and aortic injury during abdominal surgery
[112–114]. Hepatic I/R injury leads to acute or chronic liver
failure and increases the rate of morbidity and mortality
[115]. Under different pathological conditions, hepatic I/R
injury can be classified into warm and cold I/R injury accord-
ing to the environmental temperature [115]. It is well known
that hepatic I/R injury involves several mechanisms, includ-
ing pH imbalance, calcium overload, mitochondrial dysfunc-
tion, ROS overproduction, anaerobic metabolism, activation
of Kupffer cells and neutrophils, and the production of cyto-
kines and chemokines [113, 114, 116, 117]. Despite signifi-
cant improvements in surgical techniques and perioperative
care, therapies to suppress hepatic I/R injury at the bedside
remain limited largely due to the complex mechanisms
[118]. Therefore, there is a clear need for the development
of novel agents to protect the liver from I/R injury. An
increasing number of studies suggest that H2S could
attenuate hepatic I/R injury in several ways, such as anti-
oxidation, anti-inflammation, antiapoptosis, and AKT
activation (Table 2). These results indicate that H2S plays
an important role in attenuating hepatic I/R injury, and
targeting H2S may present a promising approach against
I/R-induced liver injury. However, it should be noted that
elevated endogenous H2S could not alleviate hepatic I/R
injury in insulin-resistant rats, whereas silymarin

preconditioning is able to prevent oxidative, inflammatory,
nitrosative, and apoptotic injuries associated with hepatic
I/R, which can be attributed to the suppression of endogenous
H2S production [129]. Furthermore, a recent study suggests
that brief and repeated ischemic postconditioning (IPoC)
could increase the expression of CSE after I/R in diabetesmel-
litus, and the modulation of CSE may contribute to the reno-
protective effect of IPoC [130]. Whether the expression levels
of H2S-generating enzymes in hepatic I/R injury are increased
need to be further investigated.

3.5. H2S in NAFLD/NASH. NAFLD affects approximately
25% of the general adult population and is currently the most
common cause of chronic liver disease worldwide [131, 132].
NAFLD is defined as the presence of >5% steatosis, no signif-
icant alcohol consumption, and no competing etiologies for
hepatic steatosis [133]. Development of NAFLD is associated
with metabolic syndrome, such as diabetes, obesity, and dys-
lipidemia [134]. NASH is considered the progressive form of
NAFLD and is characterized by inflammation, hepatocellular
injury, liver steatosis, and different degrees of fibrosis [135].
Despite intensive investigations, there are currently no
approved therapies for NAFLD/NASH. Therefore, there is
an unmet need for developing novel and effective treatments
for NAFLD/NASH. Methionine is the most toxic amino acid
in mammals. It has been reported that excessive methionine
intake induces acute lethal hepatitis in mice lacking CSE
[136]. Another study indicates that free fatty acids upregulate
hepatic expression of 3-MST and subsequently inhibit the
CSE/H2S pathway, leading to NAFLD [137]. In addition,
exercise training can restore bioavailability of H2S and pro-
mote autophagy influx in livers of mice fed with HFD.
Recently, a growing number of studies have shown that
H2S could play important roles in NAFLD/NASH
(Table 3). Novel H2S donors and H2S-releasing drugs can
be designed and applied for the treatment of NAFLD/NASH.

3.6. H2S in Hepatotoxicity. Hepatotoxicity refers to liver
injury induced by different types of prescription or nonpre-
scription drugs, such as biological agents, natural medicines,
health products, dietary supplements, traditional Chinese
medicines (TCMs), and small chemical molecules [140].
TCMs are abundant sources of biologically active substances
which have been widely used in the prevention and treatment
of human diseases [141–143]. However, an increasing num-
ber of studies have shown that TCMs could induce severe
adverse effects, such as hepatotoxicity [143–145]. Hepatotox-
icity is the leading cause of acute liver failure in the clinic and
the main reason that drugs are taken off the market [146].
The wide range of culprit agents and lack of objective diag-
nostic tests lead to many challenges in the diagnosis and
management of hepatotoxicity [147]. In spite of its low inci-
dence in the general population, the possibility of hepatotox-
icity in patients with unexplained acute/chronic liver injury
needs to be considered [147, 148]. A recent study demon-
strates that uranium (U) intoxication decreases endogenous
H2S generation in the hepatic homogenates, while adminis-
tration of NaHS can reduce U-induced acute hepatotoxicity
through antioxidant and antiapoptotic signaling pathways
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in rats [32]. Acetaminophen overdose is one of the leading
causes of drug-induced acute liver failure [149]. H2S treat-
ment alleviates acetaminophen hepatotoxicity in mice partly
through antioxidative and anti-inflammatory effects [150].
Another study indicates that H2S anions could protect
against acetaminophen-induced hepatotoxicity by directly
scavenging reactive N-acetyl-p-benzoquinone imine [151].
Thus, H2S has a potential therapeutic value for the treatment
of hepatotoxicity.

3.7. H2S in Acute Liver Failure (ALF). ALF is a rare
multiorgan-failure disease that is usually caused by viral hep-
atitis, ingestion of drugs or toxic substances, or hepatic I/R
injury [152]. ALF could lead to rapid deterioration of liver
function with subsequent coagulopathy and encephalopathy
[153]. ALF patients often require and undergo orthotopic

liver transplantation or die due to shortage of donor livers
[152]. The major problem in the treatment of ALF is the lack
of suitable mechanistic biomarkers and broad-spectrum
anti-ALF agents [154]. It has been reported that inhibition
of CSE or administration of sodium thiosulfate protects
against ALF by increasing thiosulfate levels and upregulating
antioxidant and antiapoptotic defense in the liver [27]. Sim-
ilarly, CSE deficiency protects against the development of
multiorgan failure and attenuates the inflammatory response
in a murine model of burn [155]. These results suggest that
CSE may be a potential therapeutic target in ALF. Whether
CBS or 3-MST deficiency can exert similar effects needs to
be further investigated.

3.8. Natural Sulfur-Containing Agents in Hepatic Injury. An
increasing number of studies have shown that the garlic

Table 2: Protective effects of H2S on hepatic I/R injury.

Experimental models Effects Proposed mechanisms Refs.

Hepatic I/R in vivo (rat)

NaHS (14 μM/kg, 30min prior to I)
attenuates the severity of liver injury and

inhibits the production of lipid
peroxidation, serum inflammatory

factors, and apoptosis-related proteins

Antioxidant and antiapoptotic
activities

[21]

Hepatic I/R in vivo (mouse)
H2S (100 ppm, 5min prior to R) protects

the liver against I/R injury
Reduction of apoptosis, necrosis, and

inflammation
[119]

Hepatic I/R in vivo (rat)

GYY4137 (an H2S donor, 133 μM/kg,
1 h prior to I) attenuates the reduced cell
viability and the increased apoptosis

induced by hepatic I/R

Activation of the Akt pathway
regulated by miR-21

[120]

Hepatic I/R in vivo (rat)
NaHS (12.5, 25, and 50 μM/kg, 5min
prior to I) reduces liver damage after

perioperative I/R injury

Inhibition of MPTP opening and the
activation of Akt-GSK-3β signaling

[121]

Hepatic I/R in vivo (rat)
NaHS (20 μM/kg, 30min prior to I)

reduces hepatic I/R injury in the young
rats

Activation of the Nrf2 signaling
pathway

[122]

Hepatic I/R in vivo (rat)
NaHS (5mg/kg/d for 11 days) protects
against cognitive impairment in rats

undergoing hepatic I/R

Reduction of neuroinflammation in the
hippocampus

[123]

Hepatic I/R in vivo (mouse)

NaHS (1mg/kg prior to R) ameliorates
hepatic I/R injury by direct and indirect
antioxidant activities and by accelerating

hepatic regeneration

Via mechanisms involving Nrf2 and
Akt-p70S6k

[124]

Hepatic I/R in vivo (rat)
NaHS (5mg/kg/d for 11 days) exerts a
protective effect on hepatic I/R-induced

cognitive impairment

May be associated with the NR2B
subunit of the NMDA receptors

[125]

Hepatic I/R in vivo (mouse)
NaHS (1.5mg/kg, 1 h prior to I) protects

against hepatic I/R injury
Partly through AKT1 activation [126]

Hepatic I/R in vivo (mouse)
NaHS (14 and 28 μM/kg, 30min prior to

I) attenuates hepatic I/R injury
Partly through regulation of apoptosis

via inhibiting JNK1 signaling
[127]

Hepatic I/R in vivo (rat)
NaHS (28 μM/kg, prior to R) attenuates
hepatic I/R-induced renal and cardiac

injury

Reduction of myocardial and renal
inflammation and oxidative potential

[128]

Hepatic I/R in vivo (mouse)
Na2S (an H2S donor, 1mg/kg, 5min prior
to R) protects the murine liver against I/R

injury

Upregulation of intracellular
antioxidant and antiapoptotic signaling

pathways
[30]

MPTP: mitochondrial permeability transition pore; GSK-3β: glycogen synthase kinase-3 beta; Nrf2: nuclear factor erythroid 2-related factor 2; NMDA: NR2B
subunit of N-methyl-D-aspartate; JNK1: c-Jun N-terminal kinase 1.
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constituents possess various biological activities, including
anticarcinogenesis, antioxidative, antimicrobial, antihyper-
tensive, antithrombotic, hypolipidemic, radioprotective,
immunomodulatory, antidiabetic, and anti-inflammatory
effects [75, 156–158]. As can be seen in Table 4, many natural
sulfur-containing agents could protect against hepatotoxicity
mainly through antioxidative, anti-inflammatory, and antia-
poptotic effects. Recent studies have shown that DATS pos-
sesses a hepatoprotective effect against carbon tetrachloride-
(CCl4-) induced liver injury and ethanol-induced hepatic
steatosis in rats [166–169]. DADS can activate theHO-1/Nrf2
pathway, which may contribute to the protective effects of
DADS against ethanol-induced liver injury [170]. Another
study demonstrates that DADS increases the levels of phase
II/antioxidant enzymes and decreases the levels of inflamma-
tory mediators in CCl4-induced liver injury [158]. Protective
effects of DAS were also observed in lipopolysaccharide/D--
galactosamine/mercuric chloride-induced hepatic injury in

rats [171, 172]. Furthermore, a recent study reveals that
DATS can inhibit the profibrogenic properties and allevi-
ate oxidative stress in hepatic stellate cells through the
production of H2S [91]. Moreover, an increasing number
of studies have indicated that DATS, DADS, and DAS
could inhibit the growth of human liver cancer cells [173–
178]. More efforts should be made to determine the mecha-
nisms of action of natural sulfur-containing agents on liver
diseases, such as liver cirrhosis, hepatic I/R injury, and
NAFLD/NASH.

4. Conclusions

The liver plays a key role in glucose and lipid metabolism,
antioxidant defense, and xenobiotic metabolism. The liver
is one of the major organs for the production andmetabolism
of H2S. CSE, CBS, and 3-MST are three main H2S-generating
enzymes, and they contribute to the production of H2S to

Table 3: Protective effects of H2S on NAFLD/NASH.

Experimental models Effects Proposed mechanisms Refs.

NAFLD in vivo (mouse)
NaHS (56 μmol/kg/day) attenuates

HFD-induced NAFLD
Activation of liver autophagy via the

AMPK-mTOR pathway
[138]

NAFLD in vivo (mouse)
NaHS (50 μmol/kg/day) mitigates

HFD-induced NAFLD
Improvement of lipid metabolism and

antioxidant potential
[49]

NAFLD in vivo (mouse)
NaHS (14 μmol/kg) attenuates

concanavalin A-induced hepatitis

Inhibition of apoptosis and autophagy
partly through activation of the
PI3K-AKT1 signaling pathway

[139]

NASH in vivo (rat)
NaHS (28 μmol/kg/day) attenuates

MCD-induced NASH
Possibly through abating oxidative
stress and suppressing inflammation

[22]

NAFLD in vivo (mouse)
SPRC (an H2S donor, 40mg/kg/day)
exerts a novel protective effect on

MCD-induced NAFLD

Antioxidative effect through the
PI3K/Akt/Nrf2/HO-1 signaling

pathway
[50]

AMPK: adenosine monophosphate-activated protein kinase; mTOR: mammalian target of rapamycin; PI3K: phosphatidylinositol 3-kinase; MCD:
methionine-choline-deficient; HO-1: heme oxygenase-1.

Table 4: Protective effects of natural sulfur-containing agents on hepatotoxicity.

Experimental models Effects Proposed mechanisms Refs.

Hepatotoxicity in vivo (rat)
DATS (40 and 80mg/kg, orally) protects
against valproate-induced hepatotoxicity

Antioxidative, anti-inflammatory, and
antiapoptotic properties

[159]

Hepatotoxicity in vivo (rat)
DADS (10ml/kg/day) attenuates
acetaminophen-induced acute

hepatotoxicity

Possibly via the reduction of oxidative
stress-mediated JNK activation and the
suppression of inflammatory responses

[160]

Hepatotoxicity in vivo (mouse)
AMDS (50mg/kg/day) protects against
acetaminophen-induced hepatotoxicity

Through the strong attenuation of the
CD45 expression and HNE formation

[161]

Hepatotoxicity in vivo (rat)
DATS (80mg/kg/day) ameliorates
arsenic-induced hepatotoxicity

Abrogation of oxidative stress,
inflammation, and apoptosis

[162]

Hepatotoxicity in vivo (rat)
DADS (2ml/kg/day) protects against

carbon tetrachloride-induced
hepatotoxicity

Through activation of Nrf2 [163]

Hepatotoxicity in vivo (rat)
DAS (200mg/kg/day) ameliorates ferric
nitrilotriacetate-induced hepatotoxicity

Unknown [164]

Hepatotoxicity in vivo (mouse)
DATS (40mg/kg) protects against
isoniazid and rifampin-induced

hepatotoxicity

Reduction of oxidative stress and
activation of Kupffer cells

[165]

AMDS: allyl methyl disulfide; HNE: human neutrophil elastase.
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different extents in the liver. Whether the liver could produce
H2S via another enzyme/pathway needs to be further investi-
gated and confirmed. H2S is the third gaseous signaling mol-
ecule that is involved in glucose and lipid metabolism, cell
differentiation, and circadian rhythm in the liver. Further
studies are needed to determine the effects of endogenous
H2S on hepatic physiological processes. It is worth noting
that H2S could exhibit two obviously opposite effects on
hepatic vasculature, oxidative stress, andmitochondrial func-
tion, which can be attributed to the concentration, time
frame, and reaction time of H2S, as well as the differences
between disease stages or models. In light of the important

roles of nitric oxide (NO) and carbon monoxide (CO) in
mammalian biology, whether H2S exerts the regulatory
effects by interacting with NO and/or CO should be clarified.

Recent studies indicate that treatment with exogenous
H2S could protect against a number of liver diseases, includ-
ing hepatic fibrosis, liver cirrhosis, NAFLD/NASH, and
hepatotoxicity. Novel H2S releasing/stimulating reagents
can be designed and applied to enhance the therapeutic
effects. An increasing number of evidence suggests that
endogenous H2S or relatively low levels of exogenous H2S
can promote the growth of HCC cells, while treatment with
higher concentrations of H2S for a relatively long period
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Figure 2: A proposed mechanism of the effect of H2S on the growth and death of cancer. (a) A normal distribution curve is employed to
explain the effect of H2S on the development of cancer. Endogenous H2S or relatively low levels of exogenous H2S could promote cancer
cell growth, while knockdown/knockout of the expression of H2S-generating enzyme or exposure of relatively high concentrations of H2S
could induce cancer cell death. (b, A1) Downregulation of endogenous H2S induces cancer cell death. (c, A2) A certain concentration of
H2S induces growth arrest in cancer cells. (d, A3) Normal level of H2S in cancer cells promotes cancer cell growth. (e, A4) Treatment with
relatively low levels of exogenous H2S could exert optimal effects on the growth of cancer cells. (f-h, A5-A7) Along with the increase in
the levels of exogenous H2S, the growth of cancer cells is gradually decreased. It is worth noting that the procession of cancer cells is
theoretically the same between A1 and A7, A2 and A6, and A3 and A5.
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may exhibit anticancer effects. We speculate that there is a
delicate balance between the pro- and anticancer effects
induced by H2S (Figure 2). Therefore, inhibition of the gen-
eration of endogenous H2S or administration of relatively
high level of exogenous H2S could be effective in suppressing
tumor growth. In addition, H2S could attenuate hepatic I/R
injury in several ways, such as antioxidation, anti-inflamma-
tion, antiapoptosis, andAKTactivation.Nevertheless, another
study has shown that the increases in endogenous H2S
exacerbate hepatic I/R injury, suggesting that increased
levels of H2S may exhibit opposite effects. Furthermore,
inhibition of CSE could alleviate ALF through upregula-
tion of antioxidant and antiapoptotic defense in the liver.
Novel inhibitors that target H2S-generating enzymes could
be designed and applied in the treatment of ALF.

In conclusion, with a deeper understanding of the precise
mechanisms behind the roles of H2S in liver health and dis-
ease, H2S could be a promising therapeutic target for further
preclinical and clinical research.
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