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Background: Traumatic brain injury (TBI) is the main cause of death and severe disability

in young adults worldwide. Progressive hemorrhage (PH) worsens the disease and can

cause a poor neurological prognosis. Radiomics analysis has been used for hematoma

expansion of hypertensive intracerebral hemorrhage. This study attempts to develop an

optimal radiomics model based on non-contrast CT to predict PH by machine learning

(ML) methods and compare its prediction performance with clinical-radiological models.

Methods: We retrospectively analyzed 165 TBI patients, including 89 patients with

PH and 76 patients without PH, whose data were randomized into a training set and

a testing set at a ratio of 7:3. A total of 10 different machine learning methods were used

to predict PH. Univariate andmultivariable logistic regression analyses were implemented

to screen clinical-radiological factors and to establish a clinical-radiological model. Then,

a combined model combining clinical-radiological factors with the radiomics score was

constructed. The area under the receiver operating characteristic curve (AUC), accuracy

and F1 score, sensitivity, and specificity were used to evaluate the models.

Results: Among the 10 various ML algorithms, the support vector machine (SVM)

had the best prediction performance based on 12 radiomics features, including the

AUC (training set: 0.918; testing set: 0.879) and accuracy (training set: 0.872; test

set: 0.834). Among the clinical and radiological factors, the onset-to-baseline CT

time, the scalp hematoma, and fibrinogen were associated with PH. The radiomics

model’s prediction performance was better than the clinical-radiological model, while

the predictive nomogram combining the radiomics features with clinical-radiological

characteristics performed best.

Conclusions: The radiomics model outperformed the traditional clinical-radiological

model in predicting PH. The nomogram model of the combined radiomics features and

clinical-radiological factors is a helpful tool for PH.
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INTRODUCTION

Traumatic brain injury (TBI) is a disease with the highest
mortality and disability rate in systemic trauma. It is the main
cause of death and serious disability among the young adult
population worldwide. The pathophysiological change in TBI is
a dynamic process (1), and progressive hemorrhage (PH) is a
significant cause of death and deterioration in TBI patients. It
has been reported that the incidence rate of PH is approximately
18–64% (2–5). PH has an occult onset and a rapid progression,
and when patients have the development of symptoms, the
condition has already progressed to a certain extent, which brings
difficulties for the clinical treatment. Moreover, PH directly
affects the prognosis of patients, and prior cases (6, 7) have shown
that the risk of developing a poor neurological outcome with
PH was four times higher than that without PH. Therefore, early
detection of PH is very important. At present, non-contrast CT is
the first choice for brain trauma. It is very difficult to recognize
PH by observing non-contrast CT images with the naked eye,
and the clinical diagnosis of PH mainly depends on serial head
CT scans. However, there are no unified guidelines on the CT
reexamination time and frequency; blindly repeating head CT
leads to unnecessary radiation exposure, and repeatedly moving
the patients for examination can be harmful to them.

As a new technology, radiomics can extract many quantitative
features from non-contrast CT images, can capture image
information that cannot be evaluated by the naked eye, such
as texture features and high-order features, and then can
filter the quantitative features most relevant to the clinical
findings by statistical methods. Radiomics has been widely
used for evaluation of the central nervous system, such as
tumors (8–11), the prediction of hematoma enlargement in
hypertensive intracerebral hemorrhage (12, 13), the classification
of intracranial aneurysm rupture (14), and the etiological
classification of intracranial hematoma (15, 16). However, few
studies have reported the application of radiomics in progressive
hemorrhage of cerebral contusion.

The purpose of this retrospective study was to seek the
optimal radiomics model based on non-contrast CT scanning
to predict PH by applying various machine learning methods
and comparing the prediction performance of this model
with the traditional model based on clinical factors and
radiological factors.

MATERIALS AND METHODS

Study Population
This study was approved by the medical ethics committee of the
Chongqing University Central Hospital, and the requirements
for informed consent were waived.

Patients with a brain contusion and hematoma on baseline
head CT after trauma were recruited from June 2016 to
December 2021 at the Chongqing University Central Hospital.
The exclusion criteria were as follows: (1) patients <18 years old;
(2) patients with a history of skull surgery; (3) patients with a
baseline head CT more than 6 h after trauma; (4) patients who
did not undergo repeated CT within 3 days of baseline; (5) severe

artifacts on the baseline images; (6) patients with penetrating
TBI; (7) patients with brain surgery or interventional therapy
before the follow-up head CT; and (8) patients with anticoagulant
therapy before trauma; and (9) patients with non-traumatic
brain diseases, such as tumor, discovered on CT. The patient
screening process is shown in Figure 1. After the exclusion
criteria screening was applied, 165 cases with TBI were selected,
including 89 cases with PH and 76 cases without PH. After
admission, all patients were evaluated and treated according to
the Clinical Guidelines for the Management of Head Injury (17).

The clinical-radiological data (age, sex, Glasgow Coma
Scale score) were acquired from Picture Archiving and
Communication Systems and the patients’ medical records.
PH was defined as the increase of the volume of intracranial
hematoma by 25% or more when compared with the initial CT
(18). The hematoma volume was calculated as ABC/2.

The head CT images were from United Imaging 760 64
Shanghai China and General Electric Company, LightSpeed
64, America. All the CT scanning parameters were similar:
a tube voltage of 120 kV, a tube current of 200mA, an
axial technical section thickness of 5mm, and a reconstruction
interval of 1.25 mm.

To ensure that the labeling ratio was not affected, the data were
randomly divided into training and testing sets at 7:3. Since some
patients had multiple independent lesions, namely 30 patients
(18.29%) had two lesions, 5 patients (3.05%) had three lesions,
and 1 patient (0.61%) had four lesions, samples from the same
patient were assigned to the same cohort to avoid data leakage.
Finally, we randomly assigned lesions into a training set (n= 145)
and a testing set (n = 62). Models were fitted on the training set
and were independently tested on the testing set.

Image Segmentation and Feature
Extraction
All regions of interest (ROIs) were delineated around the
boundary using a postprocessing platform (Dr. Wise Multimodal
Research Platform1 v1.6.3, Beijing Deepwise & League of
PHD Technology Co., Ltd, Beijing, China). An open-source
package of Python, called “PyRadiomics” (19), was used to
generate the radiomics data from the original images. The
software package could extract signal strength features, texture
features, shape features, and higher-order features from the
original images. Higher-order features are calculated from the
above features using filters (wavelet, Laplace-Gauss, square
root, logarithm, exponent, gradient transform, and local binary
mode transform). All the calculation formulas and the pipeline
can be found at https://pyradiomics.readthedocs.io/en/latest/.
In total, 2,107 radiomics features were extracted automatically,
including 414 first-order features, 14 shape features, 506 gray
level co-occurrence matrix (GLCM) features, 368 gray level
size zone matrix (GLSZM) features, 368 gray level run length
matrix (GLRLM) features, 322 gray level dependence matrix
(GLDM) features, and 115 neighboring gray-tone difference
matrix (NGTDM) features.

The values of each training set feature were standardized
with the Z score, and a similar normalization procedure, which
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FIGURE 1 | Study overview. (A) Workflow of the study. (B) Workflow of the radiomics analysis.
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utilized the mean and standard deviation values of the training
set, was applied to the testing set.

Radiomics Feature Selection
First, we applied intraclass coefficient (ICC) analysis to
identify features with high reproducibility and consistency
of measurements. Reader 1 and Reader 2 independently
redelineated the original images, and for each reader, 17 patients
were randomly selected. Features with an ICC > 0.75 were
selected for further analysis. After that, an analysis of variance
(ANOVA) model was built, and it excluded features without
significant differences between the PH group and the control
group. Finally, we used the least absolute shrinkage and selection
operator (LASSO) method, whose penalty parameter was tuned
by a 5-fold cross-validation (CV).

The whole variable reduction process above was performed on
the training set.

Machine Learning and Radiomics
Signature Construction
We implemented 10 different machine learning (ML)
algorithms—logistic regression (LR), support vector machine
(SVM), K-nearest neighbors (KNN), linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), Gaussian naive
Bayes (GNB), artificial neural network (ANN), random forest
(RF), XGBoost, and CatBoost—on the training dataset and
determined the optimal hyperparameters of these models by
the 5-fold CV method and grid search technique. For each
selected model, receiver operating characteristic (ROC) curves
were generated, and the average area under the curve (AUC)
was calculated to assess the prediction performance. We used
a learning curve to determine the overfitting of the model. A
model was considered overfitted if its AUC for the training
set was significantly higher than that for the validation set.
Finally, with the best ML classifier, we built a radiomics model
on the whole training set and constructed a radiomics signature
(Rad-score) using the logit function

rad− score = ln
p

1− p

where, p refers to the probability of PH predicted by our
radiomics model for each patient. We also calculated the
accuracy, F1 score, sensitivity, and specificity for comparison.

Clinical-Radiological Analysis
To select the clinical-radiological characteristics with significant
differences between the PH group and control group, we
performed the chi-square test for categorical variables and
the Mann–Whitney U-test or Student’s t-test for continuous
variables. Then, univariate logistic regression and multivariable
logistic regression were implemented to remove those features
without significance and to determine the final clinical-
radiological factors that were used to establish the clinical
(LR) model.

Combined Model Establishment
A combination of the radiomics signature from the radiomics
model and clinical-radiological signatures from the clinical-
radiological model was used to conduct the combined model
by the LR algorithm to provide a nomogram to evaluate the
risk of PH. The ROC-AUC, accuracy, F1-score, sensitivity, and
specificity metrics were calculated separately on the training set.
The testing data was used to assess the performance of these three
classifiers, and the decision curve and the calibration curve were
also illustrated for comparison. A Youden index analysis was
constructed to determine the optimal threshold (cutoff value) of
the critical probability.

Statistical Analysis
“Scipy.stats,” an open-source package of Python, was used for
all statistical tests (20). Categorical variables were compared
by the chi-square test. The Shapiro–Wilk’s test was performed
to assess the normality of continuous variables. For variables
with the null hypothesis rejected, we used the Mann–Whitney
U-test to test for feature significance. For variables whose p-
values were higher than 0.05, these variables followed a normal
distribution, and then we performed the Levene test. If the results
were significant, Welch’s test was conducted. If the results were
not significant, it was considered that the variances were equal,
and Student’s t-test was utilized. Differences in the AUC values
between the different classifiers were compared using DeLong’s
test. A two-sided p-value < 0.05 was considered statistically
significant. Hosmer–Lemeshow tests were used to calculate if the
observed event rates matched the expected event rates in the
population subgroups.

RESULTS

Patients’ Characteristics
The clinical-radiological factors of the PH group and non-PH
group are given in Table 1. The proportion of the PH group
in the training set was 51.03% (74 of 145), and that in the
validation set was 53.23% (33 of 62). In the training set, the
factors including scalp hematoma, the GCS score, the onset-to-
initial CT time, and fibrinogen level were significantly different
between the two groups (p < 0.01). The other features were not
significant (p > 0.05).

Radiomics Feature Selection
After intra- and interreader ICC analysis, a total of 1,494
radiomics features were considered robust and consistent. After
that, 815 factors showed significant differences between the PH
group and control groups (p < 0.05) via ANOVA. These features
were finally reduced to 12 through the LASSO model (Figure 2).

Machine Learning and Radiomics
Signature Construction
To find the optimal radiomics model to establish the Rad-
score, we implemented ten machine-learning algorithms on the
training set and compared their predictive ability by calculating
commonly used metrics, including the ROC-AUC, accuracy, F1-
score, sensitivity, and specificity (Figure 3). Using the 5-fold
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TABLE 1 | Comparisons of patient characteristics in the training set and testing set.

Training set (n = 145) Testing set (n = 62)

PH (n = 74) Non-PH (n = 71) p value PH (n = 33) Non-PH (n = 29) p value

Sex, male 14 (18.9) 12 (16.9) 0.999 13 (39.4) 3 (10.3) 0.147 b

Multiple primary brain contusions 52 (70.3) 49 (69.0) 1.000 28 (84.8) 25 (86.2) 1.000 b

Craniofacial fracture 67 (90.5) 59 (83.1) 0.779 33 (100.0) 28 (96.6) 0.885 b

Epidural hematoma 16 (21.6) 12 (16.9) 0.972 12 (36.4) 4 (13.8) 0.392 b

Subdural hematoma 67 (90.5) 54 (76.1) 0.239 28 (84.8) 25 (86.2) 1.000 b

Subarachnoid hemorrhage 67 (90.5) 58 (81.7) 0.665 33 (100.0) 27 (93.1) 0.671 b

Midline shift 3 (4.1) 0 (0.0) 0.568 3 (9.1) 0 (0.0) 0.597 b

Scalp hematoma 73 (98.6) 58 (81.7) 0.018* 33 (100.0) 26 (89.7) 0.465 b

Diabetesa 6 (8.1) 10 (14.1) 0.858 6 (18.2) 8 (27.6) 0.941 b

Hypertensiona 22 (29.7) 19 (26.8) 0.997 14 (42.4) 5 (17.2) 0.330 b

Smoking 16 (21.6) 22 (31.0) 0.801 6 (18.2) 8 (27.6) 0.941 b

Alcoholism 19 (25.7) 24 (33.8) 0.887 7 (21.2) 15 (51.7) 0.179 b

Age, mean ± SD (years) 56.5 ± 17.742 59.155 ± 18.245 0.305 59.848 ± 18.346 57.862 ± 16.487 0.657 c

INRa, mean ± SD 1.076 ± 0.187 1.061 ± 0.148 0.811 1.09 ± 0.116 1.1 ± 0.134 0.799

Admission SBPa, mean ± SD (mmHg) 142.446 ± 21.144 148.408 ± 27.622 0.146 c 144.727 ± 28.627 138.69 ± 30.844 0.427 c

GCS scorea, mean ± SD 12.365 ± 2.356 12.958 ± 2.381 0.011* 11.242 ± 2.948 11.931 ± 3.023 0.072

Platelet, mean ± SD

(109/L)

170.892 ± 57.15 180.535 ± 53.678 0.097 161.152 ± 42.854 176.897 ± 49.703 0.185 c

APTTa, mean ± SD (s) 33.705 ± 4.486 33.615 ± 4.018 0.970 32.391 ± 2.567 35.379 ± 4.631 0.004 d

Prealbumin, mean ± SD (mg/L) 241.689 ± 59.41 239.38 ± 56.184 1.000 237.394 ± 67.875 232.931 ± 61.04 0.832

Onset-to-CT timea, mean ± SD (h) 2.313 ± 1.345 2.984 ± 1.764 0.029* 2.326 ± 1.219 3.441 ± 1.921 0.062

First-to-second CT time, mean±SD (h) 22.53 ± 20.38 21.66 ± 18.57 0.182 20.11 ± 18.13 20.11 ± 20.79 0.554

Admission DBPa, mean ± SD (mmHg) 84.541 ± 12.456 86.704 ± 14.395 0.147 84.485 ± 17.566 83.759 ± 13.543 0.761

Fibrinogen, mean ± SD (g/L) 2.483 ± 0.788 5.708 ± 13.488 0.003* 2.419 ± 0.623 2.897 ± 0.993 0.025 c

aDiabetes, Diabetes History; Hypertension, Hypertension history; INR, International normalized ratio; Admission SBP, Systolic blood pressure on admission; GCS score, Glasgow coma

scale score; APTT, Activated partial thrombin time; Onset-to-CT time, Interval from trauma to first CT; Admission DBP, Diastolic blood pressure on admission.
b For categorical factors, the chi-squared test was used, data in parentheses are percentages. cStudent’s t-test. d Welch’s t-test. For other continuous factors, the Mann–Whitney

U-test was used, and for categorical factors, the chi-squared test was used. * Predictors included for further analysis (p < 0.05).

cross-validation (CV) method, we evaluated the performance
of several classifiers in the training phase (CV training) and
validation phase (CV validation). In addition to GNB, the other
models performed well on the CV training. However, the two
tree models of RF and Xgboost overfitted the CV training. The
SVM model had the best predictive ability on the CV validation
(AUC = 0.918), and there was no overfitting compared to the
result on the CV training (AUC = 0.879). Therefore, the SVM
algorithm was determined as our radiomics model and was used
to generate the radiomics scores (Rad-score) on the training set
and testing set.

Clinical-Radiological Model
The results of the univariate and multivariable LR are listed
in Table 2. After that, scalp hematoma, the onset-to-CT time,
and fibrinogen level, whose coefficients were significant in both
univariate LR (p = 0.008, p = 0.013, and p = 0.014, respectively)
and multivariable LR (p < 0.0001, p = 0.007, and p = 0.010,
respectively), were determined as the variables to be used in the
clinical-radiological model.

Combined Model Establishment
We then added the Rad-score to the clinical-radiological model;
that is, radiomics and clinical-radiological signatures were used
to develop a combined signature. On the training set, we
implemented an LR algorithm and built a nomogram as the
combined classifier, made predictions on the testing set, and
assessed the performance of the clinical-radiological, radiomics,
and combined models by calculating metrics including the
ROC-AUC, accuracy, F1-score, sensitivity, and specificity
(Figure 4; Table 3).

The combined model fit best on the training set
(AUC = 0.937), and the results of DeLong’s test showed
significant differences between this and the other two models. In
addition, the radiomics model was significantly better than the
clinical-radiological model (p= 0.0002). In the other metrics, the
performance of the combined model was the best. On the testing
set, the score attained by the combined model (AUC = 0.853)
was still significantly higher than that of the other two classifiers.
Except for the specificity, the other indicators of the nomogram
all ranked first. From the perspective of the calibration curve,
the combined model was closer to the ideal on both the training
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FIGURE 2 | The radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) regression algorithm. (A) The coefficient lambda of the

penalty term in LASSO was seen as a hyperparameter and was tuned via the 5-fold cross-validation (CV) method. The x-axis represents the values of lambda. The

black curve represents the average mean square error (MSE) for each model given lambda. The vertical line marks the value of the best lambda, which is 0.058

because, at this time, the average MSE reaches its lowest point. (B) Radiomics feature coefficient reduction path curves. Finally, 12 non-zero factors were selected.

(C) The histogram of the resulting radiomics feature coefficients from the optimal LASSO model.

and testing sets; from the view of the decision curve, using the
nomogram to predict the PH would be more beneficial than that
without the Rad-score or the Radiomics model. Furthermore,
only the combined model showed good results (p= 0.4208>0.2)
when the HL test was conducted in the training set, and the
p-values of the clinical-radiological and radiomics models were
both <0.05. In the testing set, the HL statistics indicated a poor
fit for the clinical-radiological model (p = 0.0158<0.05). The
radiomics and the combined models adequately fitted the data
(p= 0.1686 and p= 0.1834 > 0.05).

DISCUSSION

In this study, we used 10 different MLs to construct the radiomics
models and to select the best model. We established the other
two models to predict PH, including the traditional clinical-
radiological model and the combinedmodel (integrating clinical-
radiological factors with radiomics features) and we compared

the prediction performance of the three models. Our results
suggest that the radiomics model is better than the clinical-
radiological model, and the combined model is the best of
all models. Finally, we established a convenient prediction
nomogram based on the combinedmodel to assist neurosurgeons
and radiologists in identifying PH.

Many clinical and radiological factors have been demonstrated
to be predictors of PH. Some studies (2, 3, 18, 21–24) have
suggested that hypertension, the triglyceride level, D-dimer level,
fibrin monomers, the onset-to-baseline CT time, the initial
volume of contusion, the coexistence of SAH or SDH on baseline
CT, skull fracture, and the “spot sign” formed by contrast
extravasation on baseline CTA were independent predictors of
PH. In this study, the first result we found was that fibrinogen
was an independent predictor of PH, which might be attributed
to the hyperfibrinolysis that is induced by a TBI. In the early
stage of TBI, the blood is in a hypercoagulable state due to the
activation of the coagulation pathway. However, the activation of
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FIGURE 3 | (A,B) The ROC curves of ten ML models for predicting progressive hemorrhage of cerebral contusion.

TABLE 2 | Risk factors for progressive hemorrhage.

Univariate logistic regressionb Multivariable logistic regression

Odds ratio p value Odds ratio p value

Scalp hematoma 16.362 (2.079, 128.757) 0.008 10.382 (3.595, 29.978) <0.0001*

GCS score, mean ± SD 1.0 (0.975, 1.025) 0.974 / /

Onset-to-CT timea, mean ± SD (h) 0.759 (0.611, 0.943) 0.013 0.728 (0.578, 0.915) 0.007*

Fibrinogen, mean ± SD (g/L) 0.607 (0.407, 0.905) 0.014 0.638 (0.453, 0.898) 0.010*

aOnset-to-CT time, Interval from trauma to first CT.
bUnivariate LRs of the clinical factors on the labels were implemented one by one to check whether there were insignificant variables.

*The predictors included for the further analysis (p < 0.05).

the protein C system, the consumption of platelets, the decline
of platelet function, the depletion of coagulation factors, and
the activation of endothelial cells lead to hyperfibrinolysis, and
fibrinogen decreases over time. Previous studies have confirmed
that fibrinolysis is related to the progression of bleeding in TBI
patients. As a retrospective study, the clinical data of some
patients were incomplete (D-dimer, blood lipid, etc.). Therefore,
the impact of these clinical data on PH could not be assessed,
which is a limitation of this study. The second factor in the
clinical-radiological model was time. The shorter the onset-to-
baseline CT time was, the higher the incidence of PH, and
it was an independent predictor of PH, which was consistent
with previous studies (25). In addition, we also found that
scalp hematoma was another independent predictor of PH.
Some patients without a skull fracture but who had a scalp
hematoma developed PH in our study. Scalp hematoma was also
a manifestation of the severity of trauma and was a radiological
factor that cannot be ignored. We did not find any literature
report that scalp hematoma was an independent predictor of

PH, which might be because the previous relevant literature
(2, 3, 5, 7, 26) did not include scalp hematoma in its studies.
In the past, researchers had established some models to predict
PH based on clinical and radiological factors, but the accuracy
of these models was relatively low, ranging from 0.69 to 0.77
(2, 18, 27). Like our clinical-radiological model, a low accuracy
meant that patients at risk of PH could not be accurately selected.

Radiomics analysis has great potential in hemorrhagic diseases
and is helpful for the etiological diagnosis of intracerebral
hemorrhage and for detecting hematoma expansion in cases
of spontaneous intracerebral hemorrhage (28). However, it is
unclear whether radiomics features can predict the development
of traumatic PH. Our study indicated the value of radiomics
signatures in detecting PH.We screened 12 out of 2,107 extracted
radiomics features for modeling, including 3 first-order features,
6 GLCM features, 1 GLSZM feature, and 2 GLDM features.
Among these radiomics features, the first-order features reflected
the heterogeneity of the hematoma density by describing the
voxel intensity distribution and internal variation degree. The

Frontiers in Neurology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 839784

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yang et al. Progressive Hemorrhage Contusion Radiomics

FIGURE 4 | Graphs of the construction of the combined model, the nomogram, and the model comparison. (A,B) The distribution of the Rad-score and the

Mann–Whitney U-test results between the two groups on the training and testing sets (E) Nomogram (C–I) Performance of the clinical-radiological, radiomics, and

combined models on the training and testing sets (C,D) ROC curves and AUC values (G,I) Calibration curves (F,H) Decision curves.
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FIGURE 5 | Case 1: A case with progressive hemorrhage, The baseline and follow-up CT images of a TBI patient (A,B), Scalp hematoma = 1, Fibrinogen = 2.68,

Onset-to-CT time = 2 h, R-score = 1.925. The risk of PH calculated by the nomogram was approximately 94%, and the hematoma volume was expanded to

approximately 42.9ml on the follow-up 10-h CT compared to 10.5ml on the baseline CT. Case 2: A case without progressive hemorrhage, The baseline and follow-up

CT images of another TBI patient (C,D), Scalp hematoma = 1, Fibrinogen = 3.01, Onset-to-CT time = 6 h, R-score =-1.144. The risk of PH calculated by the

nomogram was approximately 0.044%. At 17 h after trauma, the hematoma volume had not expanded.
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TABLE 3 | Comparisons of predictive models on the training and testing set.

Model vs. the Combined modelb AUC (95% CI) Accuracy F1-score Sensitivity Specificity Thresholda

Training set

Clinical model <0.00001**** 0.728 (0.660–0.799) 0.717 0.771 0.905 0.493 0.427

Radiomics model 0.0618 0.911 (0.865–0.951) 0.876 0.885 0.905 0.817 0.376

Combined model / 0.937 (0.897–0.970) 0.897 0.899 0.932 0.887 0.545

Testing set

Clinical model 0.0179 * 0.766 (0.663–0.871) 0.726 0.779 0.909 0.517 /

Radiomics model 0.0456* 0.820 (0.724–0.906) 0.758 0.805 0.939 0.552 /

Combined model / 0.853 (0.765–0.930) 0.806 0.818 0.818 0.793 /

aOn the training set, a Youden index analysis was constructed to determine the optimal threshold (cut-off value) of the classification probability and was used to predict the outcomes

based on the testing set.
bp-values of DeLong’s test; * p < 0.05; **** p < 0.0001.

GLCM, GLSZM, and GLDM features reflected the heterogeneity
of the hematoma density by describing the irregular texture
features of the hematoma. The change in the hematoma density
depended on the time course of bleeding. When progressive
hemorrhage occurs and when there is a greater change in
the hematoma density, there is a greater heterogeneity of the
hematoma density. Therefore, brain trauma with PH has greater
heterogeneity than stable brain trauma. A previous study (29)
has suggested that the attenuation of a heterogeneous hematoma
is a predictor of hematoma expansion and might reflect active
bleeding. Then, we applied 10ML algorithms to establish the
omics model. Compared with the traditional models such as
LR, the ML algorithms are better at processing multidimensional
features, because, from the data, they can identify some potential
patterns that in most scenarios are not linear or polynomial, so
LR is not always the most reasonable choice. Our study supports
these data (Figure 3). The SVM classifier we finally chose used
a sigmoid kernel function to map our data to higher dimensions
and then distinguished it with a hyperplane that allows the model
to learn richer non-linear patterns of the relationship between the
PH group and the non-PH group. Thus, our results revealed that
the radiomics model had a better discrimination ability than the
traditional clinical-radiological model.

To find the best predictive PH model, we constructed
a combined model integrating the Rad-score with clinical-
radiological factors. As we expected, compared with the
clinical-radiological and radiomics models, the combined model
showed the best discrimination and sensitivity in detecting
PH. The nomogram was a more objective, convenient, and
rapid personalized tool to predict PH based on the combined
model (Figure 5). It helps neurosurgeons to identify PH patients
and to revise treatment schemes in time, reduces mortality,
and improves the prognosis of patients. At the same time, it
solves the problem of blind repeat CT and reduces the waste
of medical resources and unnecessary radiation exposure. At
present, our research has some limitations. First, it is a single-
center retrospective study, and it lacks external validation of data
from other centers. Second, because some patients had multiple
lesions, we assigned data belonging to the same patient to the
same set to avoid data leakage, but the fly in the ointment is that

these samples may cause a local autocorrelation in the model.
Finally, when a hematoma is in the cerebral cortex, there may be
an inaccurate separation on CT due to the partial solvent effect.

CONCLUSIONS

In this study, the radiomics model outperformed the
traditional clinical-radiological model in predicting PH. A
nomogram model of combined radiomics features and clinical-
radiological factors could offer an efficient and convenient tool
for PH.
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