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Abstract

Kalman filtering methods have long been regarded as efficient adaptive Bayesian tech-

niques for estimating hidden states in models of linear dynamical systems under Gaussian

uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient

estimation property to nonlinear systems, and also to hybrid nonlinear problems where by

the processes are continuous and the observations are discrete (continuous-discrete CD-

CKF). Employing CKF techniques, therefore, carries high promise for modeling many bio-

logical phenomena where the underlying processes exhibit inherently nonlinear, continuous,

and noisy dynamics and the associated measurements are uncertain and time-sampled.

This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flag-

ship problems arising in the field of neuroscience upon relating brain functionality to aggre-

gate neurophysiological recordings: (i) estimation of the firing dynamics and the neural

circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the

hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals.

First, in simulated neural circuit models, estimation accuracy was investigated under varying

levels of observation noise (SNR), process noise structures, and observation sampling inter-

vals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy

for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction

with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-

Gaussian process noise, specifically with Poisson noise, a commonly assumed form of

background fluctuations in neuronal systems. Second, in simulated hemodynamic models,

parametric estimates were consistently improved under CD-CKF. Critically, time-localiza-

tion of the underlying neural drive, a determinant factor in fMRI-based functional connectivity

studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF

recently benchmarked against other advanced Bayesian techniques, the CD-CKF frame-

work could provide significant gains in robustness and accuracy when estimating a variety

of biological phenomena models where the underlying process dynamics unfold at time

scales faster than those seen in collected measurements.
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Introduction

Physiological signal recordings have long played a central role in probing and deciphering the

functional state of the underlying biological process. Towards this goal, dynamical system

modeling aims principally to develop a causal link between the observed signals and the pre-

dicted process outputs. In brain sciences, modeling is generally intended to provide a link

between the ongoing activity of a neuronal system and a host of associated aggregate record-

ings including directly related electrical measurements (such as the electroencephalogram

EEG, electrical corticogram ECoG, Local Field Potentials LFP) and indirectly related metabolic

measurements (such as fMRI and SPECT). For a vast majority of these models, the computa-

tional and identification complexity of these models quickly increases with the inclusion of

realistic assumptions on both the process and its measurement conditions.

First, at the process level, realistic descriptions often result in continuous-time, nonlinear,

stochastic and possibly time-varying dynamics. Starting with a set of ordinary differential

equations, models commonly include (i) nonlinear relationships among several variables (e.g.

voltage-dependent ionic conductances), (ii) uncertainty or randomness in describing the pro-

cess response to its environment (e.g. in vivo synaptic noise), and (iii) modulation of the pro-

cess itself by external inputs or factors (e.g. effect of neuromodulators ACh). Second, at the

measurement level, observation of the process is attained indirectly through one or more con-

tinuous-time variables that relate to the neuronal activity and are limited by spatial smearing

(e.g. extracellular currents) or temporal filtering (e.g. blood oxygenation levels). Although both

of the underlying processes are continuous, the temporal bandwidth of the hemodynamic pro-

cess is considerably smaller than that of the neuronal dynamics (or its output contains much

lower frequencies) and hence can be recorded at much larger time intervals (Nyquist rate).

Accordingly, the relative time scale of the recording devices for those activities make the neu-

ronal activity well described by a continuous process and hemodynamic activity by a time-

sampled continuous process, or a discrete process. In other words, and by taking “snapshots”

or images of the hemodynamic process at regular intervals in time, the observations constitute

a sequence of noisy discrete-time physiological recordings.

Along with the increase in model complexity, the correct identification of the model param-

eters and the accurate estimation of its hidden internal states become key challenges. This is

particularly true since the efficiency and performance of available estimation tools depend on

a set of assumptions on the process dynamics (linearity, time-invariance) and its operating

conditions (process and measurement noise structure) that become clearly violated in these

models.

From a system theoretic viewpoint, state space formulations constitute a flexible framework

whereby both the modeling and estimation problems can be combined for a wide range of

realistic physiological modeling assumptions. In the context of modeling, state space allows

for separate descriptions of the dynamic processes and their uncertainties (continuous-time

dynamics and noise impact in both the hidden states and observation variables) from the

method of observation and its imperfections (discrete time noisy multiple channel recordings)

[1]. In the context of estimation, state space summarizes the system history in a set of first

order dynamics memory elements (or states) whereby knowledge of their current value and

future inputs completely characterizes the system evolution into the future (first order Mar-

kov), thereby allowing for efficient time-recursive estimation.

This type of state estimation problems is usually solved with Bayesian filters whereby

the posterior probability density function (pdf) of the states is constructed, based on all

available information up to current time, to provide a complete statistical description of the

states at current time [2]. Subsequently, new information that becomes available from new
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measurements is combined with the old information to modify the posterior pdf using

Bayes theorem.

Arguably, the Kalman filter is the most widely used type of Bayesian filters available to solve

the state estimation problem. In the Kalman setup, it is assumed that both the state noise and

the measurement disturbance are samples of an additive, zero mean random processes that

admit Gaussian probability distributions [3].

The Kalman filter is a recursive estimation filter since the posterior densities of the states

are updated with new measurement without the need to reprocess all previous measurement

data. The filter consists mainly of two steps, the prediction step and the update step, that are

also commonly referred to as the time update and the measurement update, respectively. The

prediction step involves the computation of the mean and covariance matrix of the predictive

state pdf using the process model and the estimated state pdf from the previous time step.

Then, the update step employs Bayes theorem to modify the predictive pdf using information

available from the new measurement. As an adaptive technique, therefore, a Kalman filter

allows for predicting time variations in the estimated densities.

Strictly speaking, the Kalman filter is an optimal Bayesian estimator only for linear systems

because it updates the first and second order moments of linear combinations of Gaussian dis-

tributed random processes, which are also Gaussian. Extensions of the Kalman filter were

introduced in the past in order to deal with practical systems that involve nonlinearities. Such

filters are the Extended Kalman filter (EKF) [4], the Unscented Kalman filter (UKF) [5–7] and

the most recently introduced filter the Cubature Kalman filter (CKF) [2, 8].

Kalman filter extensions (EKF, UKF, and CKF) that deal with nonlinear systems have also

found their way to numerous applications in a wide variety of areas in Biology [9–15]. In the

neural sciences, KF applications include neural activity modeling and estimation [10, 16–18]

motor activity decoding for neural prosthesis [19, 20], intracranial pressure estimation [21],

Seizure prediction and control [22–26], Sleep and EEG modeling [27–30], and particularly

brain connectivity estimation in psychology and cognition [31–35]. The time-varying adaptive

nature of Kalman filtering continues to place it among other popular estimation techniques,

particularly those based on Dynamic Causal Modelling (DCM) [36]. DCM is based on genera-

tive models that are compared within a Bayesian framework in order to infer the functional

connectivity between neuronal populations or brain regions from observed data (EEG, MEG,

or fMRI) [37–40].

The Cubature Kalman filter is designed for the estimation of hidden or unobserved states

in a nonlinear dynamical system that is subjected to additive Gaussian noise. The CKF was

originally introduced as an approximate Bayesian filter for discrete-time nonlinear filtering

problems whereby the predictive density of the joint state-measurement random variable is

assumed to be Gaussian. In this way, the optimal Bayesian filter reduces to the problem of

computing various multi-dimensional Gaussian-weighted moment integrals, with numerical

approximations obtained by invoking a third-degree spherical-radial cubature rule.

As presented above, representations of physiological processes, such as neural systems,

often admit state-space models that are of the continuous-discrete hybrid types. For estima-

tion of these systems, therefore, the hybrid Continuous-Discrete Cubature Kalman Filter

(CD-CKF), introduced as an extension of the CKF for mixed systems, seems to be more nat-

ural. The CD-CKF discretizes the continuous process equation in SDE form using the Itô-

Taylor expansion of order 1.5 and transforms it to stochastic difference equation in discrete

time. This transformation will result in a state-space model with both process and measure-

ment equations expressed in stochastic difference equations in discrete time.

In the paper, we address the accuracy of state and parameter estimation using CKF and

CD-CKF techniques in the context of neural state estimation from EEG and fMRI recordings

Cubature Kalman filtering and neuronal dynamic models
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as specific examples of physiological dynamical system modeling. Starting with nonlinear

state-space simulation models, we elaborate estimation performance while varying conditions

related to (i) the observation sampling frequency, (ii) the observation signal-to-noise ratio and

(iii) the structure of the additive noise process underlying the state dynamics. In particular, we

aim to highlight those situations where an added benefit can be obtained by explicitly employ-

ing a hybrid filtering. We pay specific attention to the effect of the sampling interval of the

observations principally because it relates to the inherent time constants (speed of dynamics)

of the underlying continuous processes and hence constrains the modeler’s ability to recover

detailed dynamics from observations obtained using a given recording modality. In the case of

estimating neural activity, electrical potential recordings (EEG, MEG) theoretically have a

real-time accuracy since these are manifestations of the underlying electrical neural dynamical

activity. Imaging modalities (fMRI, SPECT), on the other hand, have a much lower time reso-

lution because these reflect observations of slow continuous-time metabolic processes that are

indirectly related to the fast underlying neural activity. Specifically for fMRI, the time sampling

interval of the blood oxygenation levels is on the order of one second [41], which is well

beyond the milliseconds details of the dynamics of synaptic activity. Thus, with realistic

recording conditions, it is suspected that the CD-CKF might be superior in cases where one

aims to recover hidden process dynamics from low-pass filtered indirect observations, such as

when inferring neural activity drive from fMRI data as a determinant for estimating functional

connectivity in brain networks.

We also compare the accuracy of the CD-CKF and CKF techniques in estimating the neural

activity and parameters for simulated neural models in cases where the observation signal-

to-noise ratio are decreased, and/or the Gaussian process noise assumptions are violated.

Low signal to noise ratios are common for modalities that record electrical potentials at a

location distant from the source (depth electrodes, scalp EEG) due to spatial filtering (smear-

ing (~0.5 cm2) and activity aggregation across numerous neural subtypes (leading to unmo-

deled signal components).

Finally, and since Kalman-based techniques invariably assume that process noise is of

Gaussian nature (for a continuous time, the derivative of the state is driven by a Wiener pro-

cess), we aim to assess, using Monte-Carlo simulations, the performance of both CKF and

CD-CKF when noise structures violate Gaussianity. In neural estimation, non-Gaussian noise

models from are common. Examples include the additive noise in synaptic dynamics (approxi-

mating in vivo conductance fluctuations) that has specific structures (Ornstein–Uhlenbeck

process [42], and the afferent neural activity impinging onto a given population, that has been

reported to possess an un-symmetric tailed distribution [43–48].

We note here that performance assessment is limited here to improvements of hybrid

CD-CKF over the CKF estimator—with the understanding that the utility of the CKF in solv-

ing these problems was earlier benchmarked against many other state-of-the-art estimation

techniques. In the area of neural modeling, Havlicek et al. (2011) [32] validated the CKF algo-

rithm against a main contender, namely the dynamic expectation maximization that used vari-

ational Bayesian techniques [49]. The authors demonstrated that, for hemodynamic models of

evoked brain responses in fMRI, marked improvements can be obtained using CKF estimation

when compared to the dynamic expectation maximization method (DEM) in terms of inver-

sion of nonlinear dynamic models, including estimation of the states, input and parameters. In

addition, and because DEM requires embedding of the states while a CKF does not, the CKF

was computationally more efficient in preforming model inversion (see [32] for more details).

The paper is organized as follows. In the next section, we present the Kalman filtering for-

mulations for the CKF and CD-CKF. We then introduce a simplified model of continuous

neural activity (NA) dynamics and associated electric potentials (EP) recordings. A state-space

Cubature Kalman filtering and neuronal dynamic models
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formulation of this model under different additive noise structures is subsequently introduced

as part of the Kalman filtering setup. We similarly introduce the hemodynamic model linking

neural drive (output) to recorded BOLD signals under fMRI as well as a joint neuronal-hemo-

dynamic model. Next, we compare the performance of CKF and CD-CKF in state estimation

accuracy from simulated EP observations under different assumptions on (a) observation data

sampling rate, (b) observation signal-to-noise ratio and (c) process noise structures. We then

contrast performance of the two filters in estimating neural drive and parameters in the hemo-

dynamic model and show some preliminary results on the joint neuronal-hemodynamic

model. Finally, we summarize the findings and discuss their significance and implications in

physiological process estimation.

Methods

Neuronal model description

In this section, we will introduce the mathematical description of the simulation models for

neural activity (NA) dynamics. We will adopt a simplified neuronal model to describe the neu-

ronal dynamics of different populations in a cortical column. The model incorporates active

neurotransmitter-gated synaptic processes [50]. The dynamics of the membrane potential are

formulated as a parallel RC circuit where capacitive synaptic current flow balances the sum of

all currents across the membrane [50]. The dynamics of the membrane potential are given by

the following stochastic differential equations:

C _V ¼ gLðVL � VÞ þ gEðVE � VÞ þ gIðVI � VÞ þ I þ ΓV

Where C is the membrane capacitance, V is the membrane potential, I is the input current, ΓV
is a Gaussian noise, and the currents across the membrane are as follows (see Table 1):

• gE(VE − V): is the excitatory sodium (Na+) current with conductance gE and reversal poten-

tial VE.

• gI(VI − V): is the inhibitory chloride (Cl−) current with conductance gI and reversal potential

VI.

• gL(VL − V): is the potassium (K+) leak current with conductance gL and reversal potential VL.

The conductances can also be described by stochastic differential equations whose dynam-

ics depend on the pre-synaptic input (B) and a characteristic rate constant (κ).

_g i ¼ kiðBi � giÞ þ Γ i

Where gi(i = E, I) represent the excitatory and inhibitory conductance, and Γi is Gaussian

noise.

The pre-synaptic input to a given neuron, denoted by B
ðiÞ
l , is the firing rate in another neu-

ron j times a coupling parameter γ(j,i) [51]:

B
ðiÞ
l ¼ g

ðj;iÞ
l sðV ðjÞ � VRÞ

Where σ(.) is a sigmoid activation function that transforms the postsynaptic potential of neu-

ron j to firing rate, and is given by [52]:

sðV ðjÞ � VRÞ ¼
1

1þ e� aðVðjÞ� VRÞ

Cubature Kalman filtering and neuronal dynamic models
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Where VR is a threshold potential, and α is a constant that determines the slope (voltage sensi-

tivity) of the activation function.

For simplicity, we will consider a cortical column that is composed of three layers (Fig 1):

1. The granular layer: consists of excitatory spiny stellate cells.

2. The supra-granular layer: consists of inhibitory interneurons.

3. The infra-granular layer: consists of excitatory pyramidal cells.

The model described above will be adopted to describe the stochastic dynamics of interact-

ing populations in a cortical column. Thus, for each population i = 1, 2, 3:

C _V ðiÞ ¼ gLðVL � V
ðiÞÞ þ gðiÞE ðVE � V

ðiÞÞ þ gðiÞI ðVI � V
ðiÞÞ þ I þ ΓV

_g ðiÞE ¼ kEðB
ðiÞ
E � g

ðiÞ
E Þ þ Γ E

_g ðiÞI ¼ kIðB
ðiÞ
I � g

ðiÞ
I Þ þ Γ I

B
ðiÞ
l ¼ g

ðj;iÞ
l sðV ðjÞ � VRÞ; l ¼ E; I

Where the input I is at the granular layer (population 1).

These stochastic differential equations can be formulated in state-space model of the form:

_x ¼ f ðx; IÞ þ Γ

Where the state vector x comprises the membrane potentials, the excitatory and inhibitory

Table 1. Model parameters.

Parameter Physiologic interpretation Value Unit

Vi Membrane potential, i = 1, 2, 3 for granular, supra-granular, and infra-granular respectively. - - - mV

VL potassium (K+) reversal potential -70 mV

VE sodium (Na+) reversal potential 60 mV

VI chloride (Cl−) reversal potential -90 mV

VR Threshold potential -40 mV

C Membrane capacitance 10 μF

I Input current at the granular layer - - - μA

gL Conductance of potassium leak current 1 mS

gi
E Excitatory sodium current conductance, i = 1, 2, 3 for granular, supra-granular, and infra-granular respectively. - - - mS

gi
I Inhibitory chloride current conductance, i = 1, 2, 3 for granular, supra-granular, and infra-granular respectively. - - - mS

κE Sodium diffusion rate constant (opening of sodium channels) 0.25 ms-1

κI Chloride diffusion rate constant (opening of chloride channels) 0.0625 ms-1

α Constant that controls the voltage sensitivity of the activation function 0.56 - - -

γI
2;1

Inhibitory connection strength from supra-granular to granular layers 0.7 - - -

γI
2;3

Inhibitory connection strength from supra-granular to infra-granular layers 2 - - -

γI
2;2

Inhibitory connection strength within the supra-granular layer 0.25 - - -

γE
3;1

Excitatory connection strength from infra-granular to granular layers 0.5 - - -

γE
3;2

Excitatory connection strength from infra-granular to supra-granular layers 1 - - -

γE
1;3

Excitatory connection strength from granular to infra-granular layers 1 - - -

https://doi.org/10.1371/journal.pone.0181513.t001
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conductance, and f (.) is a vector that comprises the equations of motion of each state:

x ¼ ½V ð1Þ gð1ÞI gð1ÞE V ð2Þ gð2ÞI gð2ÞE V ð3Þ gð3ÞI gð3ÞE �
T

f ðx; IÞ ¼

1

C
gLðVL � V

ð1ÞÞ þ gð1ÞE ðVE � V
ð1ÞÞ þ gð1ÞI ðVI � V

ð1ÞÞ þ I
� �

kI g
ð2;1Þ

I sðV ð2Þ � VRÞ � g
ð1Þ

I

� �

kE g
ð3;1Þ

E sðV ð3Þ � VRÞ � g
ð1Þ

E

� �

1

C
gLðVL � V

ð2ÞÞ þ gð2ÞE ðVE � V
ð2ÞÞ þ gð2ÞI ðVI � V

ð2ÞÞ
� �

kI g
ð2;2Þ

I sðV ð2Þ � VRÞ � g
ð2Þ

I

� �

kE g
ð3;2Þ

E sðV ð3Þ � VRÞ � g
ð2Þ

E

� �

1

C
gLðVL � V

ð3ÞÞ þ gð3ÞE ðVE � V
ð3ÞÞ þ gð3ÞI ðVI � V

ð3ÞÞ
� �

kI g
ð2;3Þ

I sðV ð2Þ � VRÞ � g
ð3Þ

I

� �

kE g
ð1;3Þ

E sðV ð1Þ � VRÞ � g
ð3Þ

E

� �

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Fig 1. Cortical column architecture. A cortical column is segregated into three layers where the input

granular layer is composed of spiny stellate cells, the supra-granular layer is composed of inhibitory

interneurons, and the output infra-granular layer is composed of pyramidal cells. Intrinsic connections

between layers are illustrated with arrows: red arrows are inhibitory, and blue arrows are excitatory.

https://doi.org/10.1371/journal.pone.0181513.g001
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State-Space model

The model described above in stochastic differential equations form can be formulated in

state-space model of the form:

Process Equation : _xðtÞ ¼ f ðx; IÞ þ Γ

Measurement Equation : zk ¼ hðxk; kÞ þ wk

Where x 2 Rn is the state vector of the dynamic system at time t, I is the exogenous input,

zk 2 R
d is the measurement at discrete time tk, f : Rn � R! Rn is the drift coefficient,

h : Rn � R! Rd is the measurement function, Γ 2 Rn and wk 2 R
d are vectors of zero

mean random Gaussian noise.

The activity of infra-granular layer is considered as the output layer in which its activity is

observed and serves as a measurement. Our EP recording is assumed to be a simple linearized

filtering of the voltages of infra-granular layer. Thus, the measurement equation function

h(xk, k) depends on the infra-granular layer membrane potentials (V(3)). We will consider as

an output measure of this cortical column the value of infra-granular membrane potential at a

given discrete time k.

hðxk; kÞ ¼ V
ð3Þ

k

Where V ð3Þk represents infra-granular membrane potential at discrete time instant k.

Model dynamics

An exogenous input arrives at the granular level and excites the spiny stellate cells, which in

turns send postsynaptic excitation to pyramidal neurons located in the infra-granular layer.

The activated pyramidal cells send a feedback signal to both granular and supra-granular

layers, where the inhibitory interneurons in supra-granular layer tend to inhibit both granular

and infra-granular cells as well as the interneurons themselves.

The activity of infra-granular layer is considered as the main evoked output in a cortical col-

umn [53]. Thus, this layer will serve as an output layer in which its activity is observed and

serve as measurement in the Kalman setup.

To illustrate the basic network dynamics, we examined the neuronal responses of this net-

work (shown in Fig 1) for a given afferent input by integrating the equations aforementioned

using IT-1.5 discretization method. We considered 20 realizations to demonstrate the effect of

stochastic fluctuations of the additive white noise on the behavior of this network (Fig 2).

Colored noise

We will describe the model for the case where the additive noise is colored noise. The differen-

tial equations are formulated in state-space model of the form:

_xðtÞ ¼ f ðx; IÞ þΨ

Where C is filtered white noise.

In order to be able to simulate this model with colored noise using the IT-1.5 discretization

method for SDE, we augmented the state vector to include the colored noise as state variables

Cubature Kalman filtering and neuronal dynamic models
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Fig 2. Cortical model activity for all states at different layers. The exogenous input is shown in the top left

panel for the case where the additive noise is white.

https://doi.org/10.1371/journal.pone.0181513.g002
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driven by white noise. The augmented state vector becomes:

xaug ¼ ½ x Ψ �T

x ¼ ½V ð1Þ gð1ÞI gð1ÞE V ð2Þ gð2ÞI gð2ÞE V ð3Þ gð3ÞI gð3ÞE �
T

Ψ ¼ ½ CVð1Þ Cgð1ÞI
Cgð1ÞE

CVð2Þ Cgð2ÞI
Cgð2ÞE

CVð3Þ Cgð3ÞI
Cgð3ÞE �

T

Using the augmented vector notation, the system now is a state-space model described as

stochastic differential equations:

_xaug ¼ f augðxaug ; IÞ þYΓ

_x
_Ψ

" #

¼
f ðx; I;ΨÞ

f ðΨÞ

" #

þYΓ

f ðx; I;ΨÞ ¼

1

C
gLðVL � V

ð1ÞÞ þ gð1ÞE ðVE � V
ð1ÞÞ þ gð1ÞI ðVI � V

ð1ÞÞ þ I
� �

þCVð1Þ

kI g
ð2;1Þ

I sðV ð2Þ � VRÞ � g
ð1Þ

I

� �
þCgð1ÞI

kE g
ð3;1Þ

E sðV ð3Þ � VRÞ � g
ð1Þ

E

� �
þCgð1ÞE

1

C
gLðVL � V

ð2ÞÞ þ gð2ÞE ðVE � V
ð2ÞÞ þ gð2ÞI ðVI � V

ð2ÞÞ
� �

þCVð2Þ

kI g
ð2;2Þ

I sðV ð2Þ � VRÞ � g
ð2Þ

I

� �
þCgð2ÞI

kE g
ð3;2Þ

E sðV ð3Þ � VRÞ � g
ð2Þ

E

� �
þCgð2ÞE

1

C
gLðVL � V

ð3ÞÞ þ gð3ÞE ðVE � V
ð3ÞÞ þ gð3ÞI ðVI � V

ð3ÞÞ
� �

þCVð3Þ

kI g
ð2;3Þ

I sðV ð2Þ � VRÞ � g
ð3Þ

I

� �
þCgð3ÞI

kE g
ð1;3Þ

E sðV ð1Þ � VRÞ � g
ð3Þ

E

� �
þCgð3ÞE

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

f ðΨÞ ¼ �
1

a
Ψ

Θ ¼
0 0

0
1

a
Q

2

4

3

5

Where Q is the covariance matrix of the white noise process driving the colored noise vector

C, and α is a constant that determines the cutoff frequency of the colored noise.

State-Space model: for this case where the additive noise is colored noise, the model

described can be formulated in state-space model of the form:

Process Equation : _xaug ¼ f augðxaug ; IÞ þYΓ

Measurement Equation : zk ¼ hðxk; kÞ þ wk
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Where xaug 2 R2n is the augmented state vector of the dynamic system at time t, I is the exog-

enous input, zk 2 R
d is the measurement at discrete time tk, f : R2n � R! R2n is the drift

coefficient, h : R2n � R! Rd is the measurement function, Γ 2 R2n and wk 2 R
d are vec-

tors of zero mean random Gaussian noise.

As same as the previous model with additive white noise the measurement equation func-

tion h(xk, k) for the colored noise case is dependent on the infra-granular layer membrane

potentials (V(3)).

hðxk; kÞ ¼ V
ð3Þ

k

Where V ð3Þk represents infra-granular membrane potential at discrete time instant k.

Other types of noise processes

In order to examine the effect of Gaussianity assumption for the noise structure in neural

model on the performance of Kalman filter in estimating neuronal hidden states, we assumed

that the actual continuous system could be driven by different types of noise processes whereas

these processes are assumed to be a Wiener process in the Kalman setup.

The system will be examined under the following noise types:

1. Poisson process.

2. Exponential process.

3. Gamma process.

4. Low frequency noise.

The simulation of the neural model driven by Poisson, Exponential and Gamma noise pro-

cesses is carried out under the assumption that these noise processes are the resultant discrete

process after the discretization of the continuous process equation; that is we are assuming

that by discretizing the process equation we do not have any prior knowledge about what kind

of original continuous noise process could produce these discrete noise processes. Hence, in

order to simulate such system driven by these noise types, the continuous system will be dis-

cretized with the LL method and the noise process will be added as a discrete process to the

discrete dynamics in the same manner that we have simulated the system with additive white

noise case. The continuous time dynamics of the system without the noise term is given by:

_x ¼ f ðx; IÞ

The discrete version of this ODE system by the LL method is given by [54]:

xkþ1 � xk þJ � 1

k ½expðJ kDtÞ � Ie� f ðxk; IÞ

Where J k is the Jacobian of f and Δt is the time interval between samples, and Ie is the identity

matrix.

Given this discrete version of the continuous system dynamics, we can add the noise from a

discrete process to get a process equation with additive noise as follow:

xkþ1 ¼ xk þJ � 1

k ½expðJ kDtÞ � Ie� f ðxk; IÞ þΩ

Where O represents a discrete Poisson, Exponential or Gamma process.
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The state-space representation in discrete time for these cases is:

Process Equation : xkþ1 ¼ xk þJ � 1

k ½expðJ kDtÞ � Ie� f ðxk; IÞ þΩ

Measurement Equation : zk ¼ hðxk; kÞ þ wk

Where xk 2 R
n is the state vector of the dynamic system at discrete time k, I is the exogenous

input, zk 2 R
d is the measurement at discrete time tk, f : Rn � R! Rn is the drift coeffi-

cient, h : Rn � R! Rd is the measurement function, Ω 2 Rn is a discrete noise process, and

wk 2 R
d is a vector of zero mean random Gaussian noise.

In addition, we will consider the case where the neural model is driven by very slow varying

noise considered as filtered white noise. This model will be simulated in the same manner as

the colored noise case was simulated but by varying the constant α in the covariance matrix Θ
in order to produce noise process having frequency components in the range of 1–5 Hz.

Hemodynamic model description

In this section, we introduce the mathematical description of the hemodynamic model that

relates neural activity (NA) to measured BOLD signals [36, 55, 56]. The model is based on four

physiological state variables: vasodilatory signal (s), cerebral blood flow (CBF) (F), cerebral

blood volume (CBV) (v), and deoxyhemoglobin content (dHb) (q). The hemodynamic model

is given by:

_s ¼ u � ks � lðF � 1Þ

_F ¼ s

t _v ¼ F � v1=b

t _q ¼
EðF; rÞF

r
�
q
v
v1=b

The vasodilatory signal (s) is a linear function of NA (expressed as firing rate of a given neu-

ronal population) and is subject to auto-regulatory feedback by CBF (F). The rate of change in

CBV (v) is the difference of blood inflow (CBF) and blood outflow (which is function of CBV)

from the venous compartment, and the rate of change in dHb (q) is the delivered deoxyhemo-

globin into the venous compartment minus that expelled (blood outflow (v1/β) times deoxyhe-

moglobin concentration q/v). Where κ is the rate constant of signal decay, λ is the rate

constant of feedback regulation, u is the input NA, τ is the hemodynamic transit time (average

time needed for the blood to traverse the venous compartment), β is the stiffness or Grubb’s

exponent, E(F, ρ) = 1 –(1 − ρ)1/F is the oxygen extraction function, and ρ is the resting oxygen

extraction fraction. The hemodynamic model parameters are listed in Table 2.

Table 2. Hemodynamic model parameters.

Parameter Physiologic interpretation Value Unit

κ Rate of signal decay 0.65 s-1

λ Rate of feedback regulation 0.38 s-1

β Grubb’s exponent 0.32 - - -

τ Hemodynamic transit time 0.98 s

ρ Resting oxygen extraction fraction 0.34 - - -

https://doi.org/10.1371/journal.pone.0181513.t002

Cubature Kalman filtering and neuronal dynamic models

PLOS ONE | https://doi.org/10.1371/journal.pone.0181513 July 20, 2017 12 / 49

https://doi.org/10.1371/journal.pone.0181513.t002
https://doi.org/10.1371/journal.pone.0181513


The hemodynamic model can be generalized by incorporating an additive noise process,

and thus the model can be formulated by the following stochastic differential equations sys-

tem:

_xHDM ¼f HDMðxHDM; uÞ þ Γ

Where Γ is a Gaussian noise vector, the hemodynamic state vector xHDM and the model func-

tions fHDM(.) are:

xHDM ¼ ½ s F v q �

f HDMðxHDM; uÞ ¼

u � ks � lðF � 1Þ

s

ðF � v1=bÞ=t

EðF; rÞF
r

�
q
v
v1=b

� �

=t

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

The observation BOLD signal is a nonlinear function of CBV (v), dHb (q) and the resting

blood volume fraction (V0):

zBOLD ¼ V0 k1ð1 � qÞ þ k2 1 �
q
v

� �
þ k3ð1 � vÞ

h i

k1 ¼ 7r; k2 ¼ 2; k3 ¼ 2r � 0:2

It is noted that the state variables CBF (F), CBV (v), and dHb (q) are always positive due to

their physiological nature (the flow, volume and deoxyhemoglobin content cannot be nega-

tive). Thus, in order to ensure their positive values and the numerical stability of the Kalman

filter, their corresponding equations are converted to log space by applying the chain rule after

a change of variables, exHDM ¼ ln xHDM [39].

That is, for any given state variable xHDM with the state equation _xHDM ¼ f HDMðxHDMÞ:

~xHDM ¼ lnðxHDMÞ , xHDM ¼ expð~xHDMÞ

)
d~xHDM

dt
¼
dlnðxHDMÞ
dxHDM

dxHDM

dt
¼
f HDMðxHDMÞ
xHDM

This transformation will result in the following system:

xHDM ¼ ½ s ~F ~v ~q �

f HDMðxHDM; uÞ ¼

u � ks � lðF � 1Þ

s=F

ðF � v1=bÞ=tF

EðF; rÞF
r

�
q
v
v1=b

� �

=tq

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

When evaluating the BOLD output equation, the log-hemodynamic states are exponen-

tiated, that is v ¼ expð~vÞ and q ¼ expð~qÞ are used to compute the predicted observed BOLD

signal.
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Fig 3 shows the behavior of hemodynamic variables for the presented neural activity input

(u). The model was simulated for 200 s with sampling rate dt = 0.1 s without adding noise to

the system.

The hemodynamic model has a smearing effect of the underlying neural activity in a given

cortical area; that is the BOLD signal is a low passed filtered version of the underlying neuronal

activity. We propose to combine the cortical neuronal model with the hemodynamic model in

order to examine the performance of Kalman filter on estimating neuronal states from a noisy

smeared observation signal (BOLD signal). Although the neuronal model and the hemody-

namic model have different scales of dynamics (neuronal model has dynamics in milliseconds

time scale and that of the hemodynamic model is in seconds time scale), we are assuming that

the BOLD signal can be observed in milliseconds time scale (in reality the observation BOLD

Fig 3. Hemodynamic model. Noiseless BOLD signal (bottom plot) and the dynamics of the hemodynamic

variables for a given neural activity (top plot).

https://doi.org/10.1371/journal.pone.0181513.g003
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signal has a sampling rate> 1s). This assumption is solely presented to show the general

advantage of using CD-CKF in estimating fast dynamics from infrequent observations.

Under this assumption, we propose that the noisy observation BOLD signal is obtained

from the infra-granular layer membrane potentials (V(3)). That is u = σ(V(3)) is the input NA

and it is a sigmoid function that transforms membrane potential (V(3)) to firing rate.

The Hybrid Kalman filtering will be tested in two different models that are explained next:

(1) a hemodynamic model with the unknown neural activity inputs, and (2) a joint neural-

hemodynamic model with known afferent activity to the neural populations.

In the hemodynamic model, the (simulated) observations are assumed to be BOLD signals

obtained at a sampling rate (or repeat time TR) of 1 sec and recorded for a period of 64 seconds

and the estimation procedure is required to infer neural activity driving the model. This is an

input blind deconvolution problem whereby both the nonlinear model parameters and the

input are to be delineated from the low frequency observations. The model setup, its con-

straints and solution methods were chosen to closely resemble those utilized in [32] and are

particularly intended to benchmark against the best known performance accuracy of estima-

tion in this field.

In simulating this system, the continuous time dynamics are assumed to be driven by Wie-

ner noise processes. The neural activity took the shape of Gaussian-bump functions with dif-

ferent amplitudes. The IT-1.5 discretization method with a simulation time step of 0.1 sec
was adopted to generate the continuous observation BOLD signal, which was then artificially

resampled at the repeat time (TR = 1 sec). The states, observation, and inputs to the model are

assumed to be driven by random noise having precisions similar to those reported in [32].

The blind deconvolution procedure was applied for two scenarios: (2-a) only the input is

unknown, and (2-b) the input as well as two model parameters (rate of signal decay κ and rate

of feedback regulation λ) are unknown.

For the estimation problem, linear interpolations between successive samples were obtained

at uniform time steps (dt = 0.2, 0.5 sec) and are utilized as effective discrete-time observations.

Subsequent estimation consisted of a forward pass using the CKF and CD-CKF then a back-

ward smoothing pass (the cubature Rauch–Tung–Striebel smoother, namely CKS and CD-

CKS). Since the unknown quantities are the input (first scenario) as well as two parameters

(second scenario), the backward pass is necessary to improve on the estimates of the forward

pass, as reported in [32]. Furthermore, estimation of unknown parameters (second scenario)

was constrained to specific intervals (rate of signal decay κ 2 [0.6–0.9] and rate of feedback

regulation λ 2 [0.3–0.5]) and were initialized randomly within these intervals and sampled

from uniform distributions.

A total of 100 independent Monte-Carlo simulations were performed and the perfor-

mance of both CD-CKF and CKF at two sampling rates (dt = 0.2, 0.5 sec) were assessed (the

CD-CKF sampling interval dt is divided intom steps of length δ, where δ = dt/m, andm is

taken to equal 5).

Finally, for the joint neuronal hemodynamic model, the input to the neural system is

assumed known and the sampled BOLD signal is observed. The estimated quantities are the

various states of both the hemodynamic and neural sub-models including the neural activity

input to the former. The model setup, simulation of the continuous dynamics, and parameters

are similar to the ones detailed above.

Results

In order to compare the performance of CKF and CD-CKF (details of both filter formulations

are presented in Appendix), we consider two scenarios of the underlying continuous system
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and its mathematical representation by the continuous stochastic process equation that is

modeled as an SDE driven by a Wiener process:

1. The underlying continuous system is indeed subject to stochastic noise given by a Wiener

process.

2. The underlying continuous system is actually subject to colored noise. That is, we are mis-

representing the actual colored noise by assuming that it is a Wiener process.

For both scenarios, we evaluate the performance of CKF and CD-CKF as the accumulative

mean square error (MSE) of all normalized states (membrane potentials of granular and

supra-granular layers as well as the excitatory and inhibitory conductances of all layers)

excluding the observation state (membrane potential of infra-granular layer), over a total of

100 Monte-Carlo simulations.

MSE ¼
1

M

XM

i¼1

Ei

WhereM = 8 is the number of unobserved states, and Ei are the elements of a vector E defined

as:

E ¼ ½ EVð1Þ Egð1ÞI
Egð1ÞE

EVð2Þ Egð2ÞI
Egð2ÞE

Egð3ÞI
Egð3ÞE �

T

For example EVð1Þ is defined as follows and all the elements of vector E are computed in the

same manner:

EVð1Þ ¼
1

NK

XN

n¼1

XK

k¼1

ðV ð1ÞÞrealk � ðV̂
ð1ÞÞ

n
k

� �2

ðV ð1ÞÞ2norm
N ¼ 100

Where K is the length of the total simulation time vector, ðV ð1ÞÞrealk is the true state at time k,
ðV̂ ð1ÞÞnk is the estimated state at time k in the nth Monte-Carlo run, and ðV ð1ÞÞ2norm is a normaliz-

ing factor.

ðV ð1ÞÞ2norm ¼ max ðV ð1ÞÞreal
� �

� min ðV ð1ÞÞreal
� �h i2

The normalizing factor is the square of the difference between the maximum and minimum

values of a given true state. This factor is introduced in order to make all states magnitude in

[0, 1] range.

For each scenario, we generate measurement data from the cortical model with different

levels of background noise. We consider a total of eight cases to simulate conditions for a

range of different signal-to-noise ratio (SNR) (Table 3). The SNR is defined as:

SNRdB ¼ 10 log
10

Psignal
Pnoise

¼ 10 log
10

E½V2
signal�

s2
noise

� �

Table 3. SNR values in dB over the observation signal (membrane potential of infra-granular layer).

Case 1 2 3 4 5 6 7 8

SNR of observation signal (dB) 4 7 8 9 11 12 14 18

https://doi.org/10.1371/journal.pone.0181513.t003
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Where P is the average power, E½V2
signal� is the mean squared value of signal amplitude, and

σnoise is the standard deviation of the noise.

For each SNR case, we assume that measurement data is collected at different sampling

time steps (dt), with dt = 0.1, 0.5, 1, 2, 4, 8ms, in order to examine the effect of decreasing the

sampling rate on the estimation error.

The measurement update for the observations in both filtering cases is obviously dictated

by the assumed sampling rate for the CKF, the time update occurs in concurrence with the

measurements every dtmillisecond. For the CD-CKF, however, the time update occurs

every δmilliseconds where each sampling interval dt is divided intom steps of length δ, where

δ = dt/m (wherem is taken to equal 5).

We study the performance of both filters for different noise scenarios (7 cases), several sam-

pling rates, (6 cases) and signal-to-noise ratios (8 cases). We here consider in detail two main

noise scenarios (white and colored noise).

First scenario: White noise

We assume here that the continuous time system is driven by a Wiener noise process for dif-

ferent SNRs. For the purpose of simulation, we adopt a time step of 0.01ms in IT-1.5 discreti-

zation method in order to generate measurement data [57]. We subsequently artificially

resample the output data of the simulation at different sampling rates (dt = 0.1, 0.5, 1, 2, 4, 8

ms) and make the resampled data available as measurement data for the two filters.

Fig 4 shows the MSE values averaged over 100 Monte-Carlo runs of CD-CKF and CKF for

different SNRs at different sampling rates. From the figure, it is clear that the CD-CKF outper-

formed the CKF for all cases. For a given SNR, both filters showed improved convergence to

true underlying processes as the sampling rate decreases. However, for a given sampling rate,

the CD-CKF scored smaller MSE values than those of the CKF.

In order to statistically examine how better the CD-CKF performed than the CKF, Fig 5

shows the boxplots at different sampling rates of CD-CKF squared error to CKF squared error

ratio. Each boxplot refers to ratios computed for a given SNR at a given sampling rate for the

100 Monte-Carlo runs. The squared error ratio was computed as follow:

Rn ¼
ðSEnÞCD� CKF

ðSEnÞCKF
n ¼ 1; 2; . . . ; 100

Where the squared error of each filter is defined as:

ðSEnÞf ¼
1

M

XM

i¼1

IEni

Where f stands for the filter type, n is the nth Monte-Carlo run and i represents the state with

M = 8, and IEni are the elements of a vector IEn defined as:

IEn ¼ IEnVð1Þ IEn
gð1ÞI

IEn
gð1ÞE

IEnVð2Þ IEn
gð2ÞI

IEn
gð2ÞE

IEn
gð3ÞI

IEn
gð3ÞE

h iT

For example IEnVð1Þ is defined as follows and all remaining elements are computed in the

same manner:

IEnVð1Þ ¼
1

K

XK

k¼1

ðV ð1ÞÞrealk � ðV̂
ð1ÞÞ

n
k

� �2

ðV ð1ÞÞ2norm
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Where K is the length of the total simulation time vector, ðV ð1ÞÞrealk is the true state at time

k, ðV̂ ð1ÞÞnk is the estimated state at time k in the nth Monte-Carlo run, and ðV ð1ÞÞ2norm is a normal-

izing factor.

ðV ð1ÞÞ2norm ¼ ½max ððV ð1ÞÞrealÞ � min ððV ð1ÞÞrealÞ�2

Where f stands for the filter type, n is the nth Monte-Carlo run and i represents the state with

M = 8, and K is the length of the total simulation time vector.

As seen in Fig 5, the median ratio was consistently greater than one for all simulations. Seen

in terms of the length of sampling time step dt, it is noted that the CD-CKF to CKF ratio is

highest for very small time step (dt = 0.1ms) and large time steps (dt = 4 − 8ms). At intermedi-

ate time step, (dt = 1 − 2ms), the ratio is nearly unity (performance is comparable) only for

very low SNR (4 dB). In terms of the SNR variation, it is noted that the ratio was the highest

for all SNR levels at very small time steps (dt = 0.1ms, or frequent measurments). An increase

in the SNR value generally improves the ratio for smaller time steps (both in median value and

overall spread but not at wider time steps (dt = 4 − 8ms), where the ratio does not increase in

neither median nor overall spread with large SNR).

Fig 4. Performance of CD-CKF and CKF under white noise. MSE values averaged over 100 Monte-Carlo

runs of CD-CKF and CKF for different SNRs and different sampling rates where the underlying system is

perturbed by additive white noise.

https://doi.org/10.1371/journal.pone.0181513.g004
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Second scenario: Colored noise

In this case, we consider the continuous time system when subjected to a colored noise process

(which violates the assumptions taken in both finding the CD-CKF and CKF estimates).

_xðtÞ ¼ f ðx; IÞ þΨ

Where C is filtered white noise.

We again simulate the system using the IT-1.5 (as described in section "Other types of noise

processes" below) with dt = 0.1ms to produce observations which then were resampled at dif-

ferent sampling rates for the application of filters and the MSE values averaged over 100

Fig 5. Distribution of squared error ratios of 100 Monte-Carlo runs for different sampling rates and

different SNRs for the additive white noise case. Each box plot is based on 100 data samples. The

horizontal red lines inside the boxes are the medians, The boxes contain 50% of the samples where the lower

and upper edges of each box are the 25th and 75th percentiles, and the "whiskers" above and below the

box indicate the range of the samples (the locations of minimum and maximum sample data points that are not

considered outliers).

https://doi.org/10.1371/journal.pone.0181513.g005
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Monte-Carlo runs for both filters under different SNRs and sampling rates were computed

and shown in Fig 6.

It is noted here that these results are in line with those observed in the first scenario; the

CD-CKF performed better than the CKF with an improvement of performance with decreas-

ing sampling times for both filters. Fig 7 shows the boxplots of squared error ratio for different

SNRs and sampling times for the 100 Monte-Carlo runs. When compared to the white noise

case, dependence of the ratio on time steps and SNR in the colored noise case follows a similar

pattern (Figs 5 and 7): The ratio is highest at the two opposite ends of the sampling rate

(dt = 0.1ms and dt = 8ms), and the performance improves with increasing SNR particularly at

intermediate step lengths (dt = 1 − 2ms) but not at large time steps (dt = 8ms). Notably, how-

ever, the actual value of the ratio was higher (CD-CKF was better) for low SNR in the colored

noise case of all sampling intervals. That is, it is apparent that the CD-CKF is more resilient to

additive colored-noise particularly under large noise components.

Effect of the simulation method

The continuous time simulations of the system were performed using IT-1.5 discretization

methods. Therefore, and since the CD-CKF uses the IT-1.5 method to discretize the continu-

ous process equation while the CKF uses the local linearization scheme (LL), a legitimate con-

cern is whether the improvement in results obtained with CD-CKF is simply caused by the

matching discretization techniques in CD-CKF and system simulation.

Fig 6. Performance of CD-CKF and CKF under colored noise. MSE values averaged over 100 Monte-

Carlo runs of CD-CKF and CKF for different SNRs and different sampling rates where the underlying system

is perturbed by additive colored noise.

https://doi.org/10.1371/journal.pone.0181513.g006
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We therefore repeated the estimation problem for both scenarios with the observations

obtained by simulating the system using the LL discretization method. The MSE values aver-

aged over 100 Monte-Carlo runs of both filters for additive white and colored noise in this

case are shown in Fig 8. We can see that CD-CKF still performed better than the CKF and

hence the simulation method has no effect on the relative performance of both filters.

Other types of noise processes

In the Kalman estimation framework, the additive noise is assumed to be derived from a Wie-

ner process. To address the sensitivity of the obtained results on this assumption, we examine

in this section the performance of CD-CKF and CKF under the assumption that the actual

continuous time system is driven by other forms of additive noise processes. Here, the contin-

uous system is discretized with the LL method and the noise process is added as a discrete pro-

cess to the discrete dynamics in the same manner that we have simulated the system with

additive white noise case. (Note here that the correspondence of discrete white noise to a

Fig 7. Distribution of squared error ratios of 100 Monte-Carlo runs for different sampling rates and

different SNRs for the additive colored noise case.

https://doi.org/10.1371/journal.pone.0181513.g007
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continuous Wiener process is a well-known phenomenon. The discrete non-white processes

as incorporated here, however, are assumed to correspond to other continuous processes that

are generally unknown and are intended solely to study the robustness of the Kalman filtering

techniques). In particular, the performance of the two filters is examined under DT noise

derived from (i) Poisson, (ii) Exponential, and (iii) Gamma distributions.

A final noise case to be considered is that of (iv) additive very slowly varying noise that is

concentrated in the frequency range of the observed signals. Specifically, noise is modeled as

filtered white noise having frequency components of 1–5 Hz which is in the frequency range

of the measured membrane potential.

Measuring the accuracy of the estimates. In order to examine the performance of both

filters for the above noise scenarios, we conducted a deviation analysis to examine the inaccu-

racy rates of each filter. The filer is said to be inaccurate when the normalized error between

estimated and real states exceeds 20%. For the deviation analysis, we will introduce two types

of metrics that will be used as a measure of the inaccuracy of a given filter.

1. A probability of inaccuracy measure PI:
PI is regarded as the probability of the obtaining an inaccurate state estimate, that is, the

estimated states being 20% far from the true states. It can further be considered as the total

fraction of time when the estimated states were 20% far away from the true states.

PI ¼
1

M

XM

i¼1

Pi

WhereM = 8 is the number of unobserved states, and Pi are the elements of a vector P
defined as:

P ¼ ½ PVð1Þ Pgð1ÞI Pgð1ÞE PVð2Þ Pgð2ÞI
Pgð2ÞE

Pgð3ÞI
Pgð3ÞE �

T

Fig 8. Performance of CD-CKF and CKF with the observations obtained by simulating the system using the LL discretization method.

MSE of CD-CKF and CKF for different SNRs and different sampling rates where the underlying system is perturbed by additive white noise (left)

and colored noise (right).

https://doi.org/10.1371/journal.pone.0181513.g008
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where Px, x 2 fV ð1Þ; g
ð1Þ

I ; g
ð1Þ
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ð2Þ

I ; g2
E; g

ð3Þ

I ; g
ð3Þ

E g is defined as follows

Px ¼
1

NK

XN

n¼1

XK

k¼1

U
x½k� � x̂n½k�
x½k�

� �2

> y
2

" #

Where K is the length of the total simulation time vector, N is the total number of Monte-

Carlo simulations (N = 100), x[k] is the true states at time k, x̂n½k� is the estimate of the state

x at time k in the nth Monte-Carlo run, θ = 0.2 is the accuracy threshold, and U is the Heavi-

side function

U½z2 > y
2
� ¼

0 if z2 < y
2

1 if z2 � y
2

(

2. A level of inaccuracy measure (LI):

This is intended to quantify the amount of inaccuracy rather than just computing its proba-

bility. LI is computed as the total area under the curve where the estimated states were 20%

far from the true states.

LI ¼
1

M

XM

i¼1

Ai

WhereM = 8 is the number of unobserved states, and Ai are the elements of a vector A
defined as:

A ¼ ½AVð1Þ Agð1ÞI
Agð1ÞE

AVð2Þ Agð2ÞI
Agð2ÞE

Agð3ÞI
Agð3ÞE �

T

Where Ax, x 2 V ð1Þ; gð1ÞI ; g
ð1Þ

E ; V ð2Þ; g
ð2Þ

I ; g2
E; g

ð3Þ

I ; g
ð3Þ

E

n o
is defined as

Ax ¼
1

NK

XN

n¼1

XK

k¼1

x½k� � x̂n½k�
Dx½k�

� �2

U
x½k� � x̂n½k�
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� �2

> y
2

" # !

Where K is the length of the total simulation time vector, N is the total number of Monte-

Carlo simulations (N = 100), x[k] is the true state at time k, x̂n½k� is the estimate of the state

x at time k in the nth Monte-Carlo run, and Δx[k] is a normalizing range factor.

Dx½k� ¼ maxðx½k�Þ � minðx½k�Þ

The filtering performances is evaluated using the above two measures (PI, LI) under an

additive white noise assumption as a baseline case and subsequently under the other noise sce-

narios for comparison.

Performance of the CD-CKF. The PI and LI measures of the CD-CKF filter for white

noise case are listed in Tables 4 and 5, respectively. The values are the percentage out of 100

Monte-Carlo runs of the time where the estimated states were 20% away from the true states.

From Tables 4 and 5, we note that the total fraction of time (PI) as well as the level of deviation

from being within 20% from the true states (LI) are both decreasing with increasing SNR. That

is, the states will wander off for shorter periods of time from the true value and the amount of

deviation (error) will be less as the SNR is increased. In terms of the sampling time dt, and for
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a given SNR, these measures are decreasing with dt, that is, the CD-CKF will produce more

accurate estimates more often (longer periods of time) with smaller sampling rates.

We also evaluated the CD-CKF performance when the whiteness assumption is violated.

Fig 9 summarizes the deterioration in performance using the error ratio PInoise/PIwhite com-

puted for different time steps and multiple SNRs. We note that this ratio was closest to unity

for additive DT colored noise while it was largest for additive low frequency noise.

Importantly, Poisson-type noise, a common approximation of background input in neuro-

nal networks, showed mild performance deviation from that of white noise. At small time

steps (dt = 0.1–1ms), the computed ratio is (very) high since the CD-CKF white noise perfor-

mance was significantly better than the CD-CKF performance under other noise types. This

distinction becomes less obvious for larger time steps (dt� 2ms), particularly with increasing

SNR. Hence the CD-CKF performance was most sensitive to whiteness assumption for small

time steps and is least sensitive to this assumption at large time steps and high SNR values.

Performance of the CKF. We here conducted an analysis of the CKF performance for

different additive noise cases and summarize the results in Tables 6 and 7, and Fig 10. In Fig

10, it is again seen that colored noise had the closest performance to white while low frequency

noise was the farthest from satisfying the whiteness assumption. Importantly, Fig 10 show that

quality of the CKF estimates mildly deteriorate from white noise to other noise types as the

SNR increase at low sampling rates (dt = 0.1ms), unlike the performance sensitivity shown for

Table 4. Probability rates of CD-CKF filter for white noise. Each number denotes the percentage out of 100 Monte-Carlo simulations of the time where

the estimated states were 20% away from the true states.

CD-CKF Probability measure PI: white noise case

dt in ms

0.1 0.5 1 2 4 8

SNR in dB 4 6.67 7.69 7.75 7.53 8.06 11.61

7 2.37 3.33 3.51 3.77 4.79 6.64

8 1.37 2.43 2.52 2.84 3.69 4.94

9 0.68 1.76 2.00 2.28 3.23 4.03

11 0.19 0.92 1.18 1.86 2.79 3.68

12 0.003 0.46 0.75 1.28 2.45 3.47

14 0 0.08 0.23 0.78 1.87 3.37

18 0 0 0 0.45 1.63 3.26

https://doi.org/10.1371/journal.pone.0181513.t004

Table 5. Area rates of CD-CKF filter for white noise. Each number denotes the percentage out of 100 Monte-Carlo simulations of the area under the curve

where the estimated states were 20% away from the true states.

CD-CKF Area measure LI: white noise case

dt in ms

0.1 0.5 1 2 4 8

SNR in dB 4 2.86 3.22 3.24 3.05 3.06 4.38

7 0.80 1.18 1.23 1.33 1.62 2.56

8 0.41 0.81 0.85 0.93 1.17 1.95

9 0.18 0.54 0.62 0.69 0.98 1.66

11 0.05 0.26 0.34 0.54 0.85 1.54

12 0.001 0.12 0.21 0.34 0.74 1.47

14 0 0.02 0.06 0.19 0.56 1.45

18 0 0 0 0.11 0.49 1.49

https://doi.org/10.1371/journal.pone.0181513.t005
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the CD-CKF at small time. Furthermore, the CKF performance becomes largely independent

of the noise structure at large sampling rates (dt = 8ms).
Comparison of CD-CKF and CKF. To arrive at a simple and concise comparative assess-

ment of the performance of CD-CKF and CKF for different noise types, we plot the probability

and area rates for each scenario (after being normalized by the worst probability PIo and

area performance LIo values respectively) of the CD-CKF with white noise case (which were

obtained for lowest SNR = 4 dB and largest time step dt = 8 ms).

Fig 9. Probability ratios PInoise/PIwhite for CD-CKF for different sampling intervals and noise

structures.

https://doi.org/10.1371/journal.pone.0181513.g009

Table 6. Probability rates of CKF filter for white noise. Each number denotes the percentage out of 100 Monte-Carlo simulations of the time where the

estimated states were 20% away from the true states.

CKF Probability measure PI: white noise case

dt in ms

0.1 0.5 1 2 4 8

SNR in dB 4 7.98 7.82 7.74 7.76 10.8 24.49

7 3.77 3.71 3.57 3.95 7.06 21.49

8 2.63 2.62 2.59 2.68 5.29 17.63

9 2.1 2.16 2.15 2.29 4.67 14.72

11 1.35 1.28 1.43 1.94 4.23 12.66

12 0.9 0.9 1.01 1.34 3.46 11.61

14 0.35 0.44 0.64 1.03 3.27 10.54

18 0.02 0.04 0.17 0.67 3.43 9.28

https://doi.org/10.1371/journal.pone.0181513.t006
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Figs 11 and 12 show the normalized probability rates for the CD-CKF and the CKF respec-

tively. Here again, we notice that while both filters improve their performance as the SNR

increase, the CD-CKF has a sharper SNR-related improvement (faster slop decline) for a given

time step and all noise types tested. Furthermore, the CD-CKF performance improved steadily

with smaller time steps while the CKF performance remains essentially unchanged as the sam-

pling time steps decrease below dt = 1 ms.

Figs 13 and 14 show the normalized area rates for the CD-CKF and the CKF respectively.

Table 7. Area rates of CKF filter for white noise. Each number denotes the percentage out of 100 Monte-Carlo simulations of the area under the curve

where the estimated states were 20% away from the true states.

CKF Area measure LI: white noise case

dt in ms

0.1 0.5 1 2 4 8

SNR in dB 4 3.24 3.21 3.26 3.22 3.99 9.72

7 1.33 1.31 1.25 1.42 2.4 8.42

8 0.87 0.88 0.86 0.88 1.67 6.77

9 0.65 0.67 0.66 0.7 1.42 5.63

11 0.4 0.37 0.41 0.59 1.26 4.7

12 0.25 0.25 0.29 0.38 1.01 4.33

14 0.09 0.11 0.17 0.27 0.93 3.94

18 0.005 0.01 0.04 0.17 0.97 3.48

https://doi.org/10.1371/journal.pone.0181513.t007

Fig 10. Probability ratios PInoise/PIwhite for the CKF estimation.

https://doi.org/10.1371/journal.pone.0181513.g010
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To examine the performance improvement of the CD-CKF over the CKF, we computed the

ratios of the values obtained for CKF over those of CD-CKF for both the probability measure

PI and the inaccuracy measure LI, that is

Ratioi;j;l ¼
PCKFi;j

PCD� CKFi;j

 !

l

Where l denotes the noise type, i for SNR value, and j denotes the sampling rate dt value. Fig

15 shows the ratio of the probability of the CKF values to that of the CD-CKF values. We can

see that the CD-CKF quality of estimates are better (ratio >1) for most cases tested.

First, for large sampling intervals (dt = 8ms), the CD-CKF is nearly twice more accurate for

Gaussian noise (white, colored) with the CKF performance improving as the SNR increases

(slope of ratio decreases). The CD-CKF is also significantly more accurate under other noise

types (Poisson, Exponential, low frequency) with the CKF performance lagging behind that of

the CKF as the SNR increases (slope of ratio increases).

Second, for small sampling intervals (dt = 0.1, 0.5 and 1ms), the CD-CKF performance

improves at a much higher rate compared to that of the CKF as the SNR increases, regardless

of the noise structure assumed.

Finally, for intermediate sampling step (dt = 2–4ms), the CD-CKF performance is compara-

ble to that of the CKF for a wide SNR range and is only significantly better for the largest SNR

tested (18 dB)

Fig 11. Normalized probability rates for the CD-CKF.

https://doi.org/10.1371/journal.pone.0181513.g011
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Hemodynamic model

We tested the performance of CKF and the hybrid CD-CKF in performing blind input decon-

volution under two scenarios of, first, unknown neural activity (NA) input and, second,

unknown NA inputs and model parameters (see Methods section). Fig 16A shows the simu-

lated BOLD signals (red trace) and estimated BOLD signal (overlapping blue trace) for both

filters under the first scenario (unknown NA input) for two time steps (dt = 0.2, 0.5 sec). The

corresponding estimated NA input, which was obtained after a smoothed backward pass of

both filters (Cubature smoother, see Methods section), is shown in Fig 16B (red trace: true

input, blue trace: estimated input). It is noted here that the CKF produced inaccurate estimates

of the input at larger time steps (Fig 16B1 and 16B3, bottom). More importantly, the CKF was

unable to accurately localize the time of occurrence of the NA input (input timing) for both

time steps (Fig 16B1 and enlarged plots in Fig 16B3). On the other hand, the CD-CKF pro-

duced more robust estimates of both the magnitude and input timing dynamics for the two

sampling times (dt = 0.2, 0.5 sec) (Fig 16B2 and enlarged plots in Fig 16B4). Finally, Fig 16C

shows the estimates of one hidden state, the vasodilatory signal (s), which exhibits similar per-

formance limitations of the CKF (in terms of signal shape and timing inaccuracy) when com-

pared to the CD-CKF.

The estimation accuracy for the second scenario (unknown NA input and unknown model

parameters) is shown in Fig 17. Again, and while the BOLD signal is fitted properly with both

CKF and CD-CKF, the timing accuracy of the input (Fig 17B) and hidden states (Fig 17C) con-

tinues to be better for the hybrid filter under the two time steps (dt = 0.2, 0.5 sec). The average

values of the two parameters estimates show performance of the two filters (Fig 17A3 and 17A4).

Fig 12. Normalized probability rates for the CKF.

https://doi.org/10.1371/journal.pone.0181513.g012
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To gain more understanding, the normalized MSE values obtained for both CD-CKF and CKF

are averaged over 100 Monte-Carlo runs of the two scenarios at different sampling rates are

given in Table 8. A clear superior performance of the CD-CKF is seen in all the cases for the

input, state and parameter estimates.

Joint neuronal-hemodynamic model

We simulated the neuronal-hemodynamic model for four seconds in which a 2-second train

of 200ms pulses (50% duty cycle) is delivered as excitation to the neuronal model. The hemo-

dynamic model is subsequently driven by the firing rate of the infra-granular layer activity and

both models were under the influence of additive white Gaussian noise. We assume a noisy

BOLD observation signal to be collected at different sampling rates (dt = 2, 4, 8, 10ms).
Despite the fact that real BOLD signals has much slower sampling rate (in seconds), we present

this proposed model solely to explore the benefits of the CD-CKF over the CKF when mea-

surements have a slower rate than required by the dynamics of the underlying system.

We consider the continuous time system as driven by a Wiener noise process for a given

SNR. For the purpose of simulation, we adopt a time step of 0.1ms in IT-1.5 discretization

method in order to generate the observation BOLD signal. We then artificially resample this sig-

nal at different sampling intervals (dt = 2, 4, 8, 10ms) and make it available as measurement

data for the two filters. Overall, we perform a total of 20 independent Monte-Carlo simulations

in which we assess the performance of both CD-CKF and CKF at different sampling rates. It is

worth mentioning that dt was chosen up to dt = 10ms since the CKF starts to diverge and fail

for larger values whereas the CD-CKF continues to converge up to sampling interval dt = 45ms

Fig 13. Normalized area rates for the CD-CKF.

https://doi.org/10.1371/journal.pone.0181513.g013
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(given that the CD-CKF sampling interval dt is divided intom steps of length δ, where δ = dt/m,

andm is taken to equal 10).

Fig 18A shows the simulated and estimated BOLD signal for increasing time steps (dt = 2, 4

and 10ms). For the observed output, we note that while CKF and CD-CKF are able to predict

the average signal (blue line) that is close to the simulated BOLD signal, the CKF exhibited

large variation in performance across the MC simulations (shaded blue area, wider 95% confi-

dence interval in subplot Fig 18A1 and enlarged Fig 18A3). The CD-CKF predicted output, on

the other hand, was fairly unaffected up to the largest interval reported.

Among the estimated hidden neuronal states, we present samples that are increasingly far-

ther removed away from the BOLD observation. In particular, we consider the membrane

potential in the infra-granular layer (V(3), cf. Fig 1, whose firing output feeds the hemodynamic

model) and the excitatory conductance in the granular layer (gð1ÞE which is one step further

removed from neuronal output). These are shown in Fig 18B and 18C. We first analyze the

CKF performance. We here note that the CKF-based estimate has lower variance at small

dt = 2ms (more consistent performance across MC simulations) for both membrane voltage

and granular conductance. The mean value, however, does not track the fast ripple dynamics

voltage for the membrane (Fig 18B3) and particularly for the conductance (Fig 18C3). With

increasing dt, this tracking performance becomes worse (dt = 4ms, middle plots) and the vari-

ance is noted to increase for the CKF. At the largest dt = 10ms, the CKF estimate has larger

variances with time. This indicates tendency to lose track of the actual states across trials, and

accordingly to perform worse particularly for the conductance (Fig 18C3, lower plot) where

the dynamics are nearly lost with very large errors across trials. In contrast, the CD-CKF per-

formance was fairly unaffected by the increase in time step and was largely able to recover the

Fig 14. Normalized area rates for the CKF.

https://doi.org/10.1371/journal.pone.0181513.g014
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fast ripple dynamics for dt = 2, 4ms, with slight decrease in performance for dt = 10ms (Fig

18B2, 18B4, 18C2 and 18C4). These estimates were furthermore consistent across the MC sim-

ulations as implied by the very tight confidence interval around the mean.

Table 9 lists the normalized MSE values averaged over 20 Monte-Carlo runs of CD-CKF

and CKF at different sampling rates. It is clear that the CD-CKF outperformed the CKF for all

sampling rates in terms of lower MSE values and lower variance. It is noted that for dt = 10ms
although the MSE value of the CKF is relatively acceptable compared to those of lower sam-

pling rates, the high variance makes the estimation unreliable as seen in Fig 18.

Finally, we present in Fig 19 preliminary simulations on using the CD-CKF to estimate the

fine-grained neural electrical activity (scale of ~20ms) from a noisy BOLD measured signal

(scale of ~1 sec) and known input to the neural population. Starting with a simulated BOLD

signal that is collected over 1 second intervals (repeat time = 1sec), we produced linear interpo-

lations spaced at 100ms intervals between successive samples. This resampled signal subse-

quently constitutes an effective discrete-time observation to be used by the CD-CKF. In the

filter time-update step between observations, we utilizedm = 50(δ = dt/m) subintervals (thus

producing an IT-1.5 approximation of the integral every 2ms). Finally, we assume a known

neural input signal, as a train of 100ms pulses repeating every 200ms for 2 seconds. Fig 19A

shows an example simulated noisy BOLD signal used as observation (green line), the noise-

free clean signal (red line), the estimated mean BOLD signal over 20 Monte Carlo simulations

(blue line), and the corresponding 95% confidence interval. The estimate is mostly very close

to the clean trace with the error largest during the transient period (where the filter is tracking

Fig 15. Ratios of the performance index PI of the CKF to that the CD-CKF values for different process

noise structures and observation noise levels.

https://doi.org/10.1371/journal.pone.0181513.g015
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Fig 16. Performance of the Cubature Kalman filters (with backward smoothers) for estimating

hemodynamic states from simulated BOLD signals under unknown NA inputs. A: BOLD signal and its

CKF (left) and CD-CKF (right) estimates for sample interval dt = 0.2, and 0.5 sec (top and lower rows,

respectively). In all figures, simulated signals are in red and estimates in blue. Shaded blue regions

correspond to 95% confidence intervals (100 simulations) which are extremely tight around the mean value.

B: NA input for CKF (B1) and CD-CKF (B2), which are enlarged in B3, B4 respectively. C: vasodilatory signal

for different time dt = 0.2, and 0.5 sec.

https://doi.org/10.1371/journal.pone.0181513.g016
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the state changes). Fig 19B1, 19B2, 19C1 and 19C2 again show the membrane potential and

the excitatory conductance, respectively. In the enlarged traces in Fig 19B2 and 19C2, we note

that the time update (which starts from interpolated discrete observations) is able to track the

salient neural dynamics despite the presence of noisy BOLD observations.

Fig 17. Performance of the Cubature Kalman filters (with backward smoothers) for estimating

hemodynamic states from simulated BOLD signals under unknown NA inputs and two unknown

parameters. A1-A2: BOLD signal and its CKF (left) and CD-CKF (right) estimates for sample interval dt = 0.2,

and 0.5 sec (top and lower rows, respectively). A3-A4: Estimated parameters (rate of signal decay κ and rate

of feedback regulation λ). B: NA input for CKF (B1) and CD-CKF (B2), which are enlarged in B3, B4

respectively. C: Estimated vasodilatory signal.

https://doi.org/10.1371/journal.pone.0181513.g017
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Conclusion and discussion

In this paper, we analyze the performance of two relatively novel nonlinear Bayesian estima-

tion techniques, namely the discrete Cubature Kalman filter and the hybrid Continuous–

Discrete Cubature Kalman filter, that carry significant promise in efficiently and recursively

estimating causal nonlinear models of hidden continuous random processes using a limited

set of indirect observations. Examples of such processes are dispersed throughout biological

phenomena, and are especially abundant and relevant in the field of Neuroscience. We here

focus on the two problems of (a) estimating neural firing and intracortical conductances from

direct real-time observations such as electric field potential (or EEG), and (b) estimating neural

activity drive and hemodynamic parameters from indirect time-sampled observations such as

BOLD signals (or fMRI).

Our results show that the explicit consideration of the continuous nature of the underlying

biological process can (1) provide a significant improvement in the accuracy of the estimates

and (2) allow for a wider range of noise processes that are commonly thought to adversely

affect the applicability of Gaussian-based techniques such as the Kalman filter.

First, we used simulated noisy electric potential recordings to assess the accuracy of discrete

and hybrid Kalman techniques in estimating the cortical neural firing rates. We estimated

these rates as hidden realizations of the continuous time process that is governed by nonlinear

dynamics and subjected to in vivo random noise. We here chose a popular model of the lami-

nar profile of cortical neural population activity among a multitude of candidate models avail-

able in the literature and that principally have similar nonlinearities (sigmoidal nature) and

continuous dynamics (neural membrane equations). We have addressed, using multiple

Monte-Carlo simulation runs, the accuracy of the hidden states obtained with the two tested

Kalman filtering techniques under different assumptions on (i) the data sampling rate at

which the observations are obtained, (ii) the signal-to-noise ratio in the observations, and (iii)

the structure of the modeled process noise that additively affect the hidden process dynamics.

We quantified the performance of a given filter in terms of the common mean square error

(MSE) in the estimate (averaged over 100 Monte-Carlo simulations) and two devised measures

of accuracy of the obtained estimates: the total fraction of time (PI) and the amount of devia-

tion (LI) that an estimate is farther away than a threshold percentage (20%) from the true

states.

Second, we simulated BOLD signal recordings to assess the ability of the two Kalman tech-

niques in (i) deconvolving the input neural activity and (ii) estimating model parameters. We

Table 8. Normalized MSE values averaged over 100 Monte-Carlo runs of the hemodynamic estimation for both CKF and CD-CKF filters.

dt in sec

0.5 0.2

First scenario CKF MSE of the states 14 e- 4 1.8 e- 4

MSE of the input 169 e- 4 31 e- 4

CD-CKF MSE of the states 0.62 e- 4 0.13 e- 4

MSE of the input 5.7 e- 4 2.8 e- 4

Second scenario CKF MSE of the states 13 e- 4 1.8 e- 4

MSE of the input 148 e- 4 29 e- 4

MSE of the parameters 109 e- 4 48 e- 4

CD-CKF MSE of the states 0.62 e- 4 0.14 e- 4

MSE of the input 6.04 e- 4 7.7 e- 4

MSE of the parameters 58 e- 4 14 e- 4

https://doi.org/10.1371/journal.pone.0181513.t008

Cubature Kalman filtering and neuronal dynamic models

PLOS ONE | https://doi.org/10.1371/journal.pone.0181513 July 20, 2017 34 / 49

https://doi.org/10.1371/journal.pone.0181513.t008
https://doi.org/10.1371/journal.pone.0181513


Fig 18. Comparison of the investigated Kalman filters for neural estimation from simulated fMRI

signals. A: BOLD signal and its CKF (left) and CD-CKF (right) estimates for sample interval dt = 2, 4, and 10

ms (top, middle and lower rows, respectively). In all figures, simulated signals are in red and estimates in blue.

Shaded blue regions correspond to 95% confidence interval (20 simulations). B: Infra-granular membrane

potential for CKF (B1) and CD-CKF (B2), which are enlarged in B3, B4 respectively. C: Granular excitatory

conductance for different time samples (dt = 2, 4, and 10 ms).

https://doi.org/10.1371/journal.pone.0181513.g018
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again chose a popular hemodynamic model particularly to benchmark the accuracy obtained

here against state-of-the art estimation results that are reported in the neuroimaging literature

and that used these models. We here focused on the superior ability of the hybrid filter (CD-

CKF) in estimating the amplitude and, critically, the timing of the neural input.

Finally, we simulated BOLD signal recordings as obtained from a joint neural-hemody-

namic model to study the ability of both techniques to estimate neural firings (under known

inputs) from these indirect observations. We presented a primary example on the unprece-

dented ability of a CD-CKF estimator to obtain fine-grained neural firing profiles (~ 20ms)
from noisy BOLD low time resolution (~ 1 sec) observations.

We summarize our key findings as follows:

Table 9. Normalized MSE values averaged over 20 Monte-Carlo runs of CKF and CD-CKF filters for white noise with the corresponding variance.

dt in ms

2 4 8 10

CKF MSE 0.009 0.012 0.013 0.035

variance 3.4e-7 3.75 e-7 1.05 e-6 0.006

CD-CKF MSE 0.003 0.003 0.006 0.02

variance 3.7 e-7 3.9 e-7 5.7 e-7 2.89 e-7

https://doi.org/10.1371/journal.pone.0181513.t009

Fig 19. Performance of the CD-CKF for estimating neural firing dynamics from simulated BOLD signals under

known neural inputs. A: One recorded sample (noisy), clean and estimates BOLD. Shaded blue regions correspond to

95% confidence interval (20 simulations). B1: Clean and estimated membrane potential (red and blue traces, respectively),

enlarged in B2.). C1: Clean and estimated excitatory conductance (red and blue traces, respectively), enlarged in C2.

https://doi.org/10.1371/journal.pone.0181513.g019
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Performance of the two filters under Gaussian process noise

For the two cases of white (independent) and colored (dependent) Gaussian noise structures

(Figs 4–7), state estimates that were obtained with either the CKF and CD-CKF techniques

expectedly improved as the sampling time step size dt is decreased and the observation quality

(SNR) is increased. In comparing the performance of both filters (in terms of MSE ratios

over 100 simulations), the estimation accuracy for the cases of intermediate time step sizes

(dt = 1–2ms) was (i) comparable under low SNR level but (ii) higher for the CD-CKF under

larger SNR levels. Importantly, the CD-CKF estimation accuracy was significantly higher in

the simulated cases of both very small and very large time steps (dt = 0.1–0.5ms, dt = 4–8ms,
respectively) regardless of noise levels. The obtained results were consistent regardless whether

the observations were obtained by simulating the system using the IT-1.5 or the LL discretiza-

tion methods.

Effect of observation noise level

An improvement in the signal quality (higher SNR) expectedly resulted in an increase in the

accuracy of the estimates for both filtering techniques. Still, the rate of increase was signifi-

cantly larger when using the CD-CKF, particularly for lower SNR values. This result was con-

sistent regardless of the noise structure and the sampling interval tested.

Effect of sampling time step

For all the noise structures tested, the state estimation accuracy (MSE) obtained when using

the CKF and CD-CKF was generally comparable for intermediate step sizes (dt = 2 – 4ms)
particularly under low SNR levels (Figs 9–15). At the largest sampling interval, the estimates

obtained with CD-CKF were significantly better than those obtained with the CKF, regardless

of the observation noise levels and structure. Importantly, collecting even more frequent sam-

ples, or reducing the sampling interval below dt = 1ms, resulted in a continuous improvement

in the performance of the CD-CKF but no improvement in that of the CKF performance

which exhibited a “plateau” in its accuracy.

Effect of process noise structure

The CD-CKF was more robust than the CKF against a wide range of additive noise structures

that violated the Gaussianity assumption inherent to Kalman filtering techniques. The

CD-CKF outperformed the CKF in all the cases of non-Gaussian additive noise considered.

Furthermore, the CD-CKF performance at high SNR levels was less dependent on the actual

noise structure and approached that of Gaussian noise. In other words, the CD-CKF was able

to utilize the decrease in observation uncertainty (noise power) to adaptively correct the state

estimates. Among all the tested discrete random noise structures, low frequency noise consti-

tuted the most challenging structure for both filters, possibly since the power of this specific

signal is more concentrated within the frequency range of the system output (leading to effec-

tive lower SNR levels). In the case of neural systems, this is a less likely scenario since the elec-

tric potential recordings (i.e. observations or output), are often noted to have lower frequency

range compared to in-vivo fluctuations in the firing rate or synaptic conductances (i.e. hidden

process noise).

To summarize, the apparent gains made by using a CD-CKF over using a CKF in the esti-

mation step are focused mainly in the following situations

1. The sampling interval is large. Here, the multiple prediction steps that the CD-CKF under-

takes within the process model are able to better account of the uncertainty in the hidden
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states even when the noise structures violate Gaussianity assumptions. This was seen in

both the detailed field potential study and briefly in the hypothetical hemodynamic model-

ing problem.

2. The sampling interval can be made increasingly small. Here, the approximation accuracy of

the multiple prediction steps is able to better simulate the effect of the additive continuous

process noise, particularly if the SNR values are large and regardless of the noise structure.

3. The effect of process noise on signal quality is minimized. In the context of neural systems,

the process noise implicated in a Kalman setup is mainly background synaptic activity

arriving onto a given neural population. Process noise attenuation, therefore, can be

obtained by averaging across multiple trials of a given experiment, such as when recording

cognition-related evoked potentials (e.g. somatosensory or visual).

Another important result is the ability of non-linear Kalman filtering techniques to over-

come the limiting Gaussianity assumption on process noise structure in neural modeling. For

the latter class of models, it is commonly assumed that the background noise impinging on

local neural populations is the resultant of neuronal firing that is well approximated by a Pois-

son process. Current simulations demonstrated that the performance of both Kalman filters

under Poisson process noise showed mild deterioration compared with that under Gaussian

(white or colored) noise. In particular, the CD-CKF estimates under Poisson noise were very

close to their counterparts under Gaussian noise. Furthermore, the quality of such CD-CKF

estimates can be significantly improved by employing faster output sampling, a property that

did not seem to hold for the CKF estimates.

Hemodynamic model estimation

Estimating the neural activity underlying a recorded BOLD signal is a blind deconvolution

problem that is confounded by the presence of nonlinearities in the hemodynamic process and

time variation of the underlying neural activity. The results reported herein build on recent

work that employed the CKF in estimating effective neural connectivity from fMRI data [32].

In the latter reference, the authors compared the performance of Cubature Kalman filtering to

Dynamic Expectation Maximization (DEM) [49], and included a thorough discussion on the

utility and advantages of using recursive nonlinear cubature Kalman filters.

In the current work, both the CKF and CD-CKF were able to estimate the overall profile of

a low-frequency neural activity driving the hemodynamic model. However, only the CD-CKF

provided an accurate profile at increased time steps. Critically, the CD-CKF with backward

smoothing was able to provide an accurate time localization of the neural input. This occurred

particularly since it explicitly accounts for the continuous dynamics over increasingly smaller

interpolation steps of the low frequency observations. The ability to obtain accurate timing is

of obvious importance to the whole series of studies that provide model-based estimates of the

causal functional connectivity (directed information transfer) among brain areas using fMRI

experiments [39, 58].

Finally, the joint neural-hemodynamic model attempts to go one step further by estimating

all the states across the cascade of dynamic models with disparate temporal scales (neural firing

dynamics at few milliseconds and BOLD signals at 0.5 to 1 second). It is seen that a CD-CKF

smoother can still produce accurate estimates well beyond those obtained from discrete CKF

estimators. The affirmative results obtained here are based on the assumption that the input to

the neural population model is available and hence no input-deconvolution is needed. In fact,

the latter is an ill posed problem particularly since the low-pass nature of BOLD measurements
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makes it theoretically impossible to reconstruct high frequency input traces in the absence of

additional constraints on the nature of these inputs.

Modeling accuracy

It is important to note here that the reported results are those of estimation and not modeling

accuracy. In other words, the work implicitly assumes that the model structure chosen is inclu-

sive of the dynamics of the underlying phenomenon. The modeling uncertainties are also

assumed to satisfy the process and/or observation noise structures and levels discussed. The

problem of model selection continues to be a central question whereby a series of candidate

models are tested against available data. Notwithstanding the importance of the prior selection

of a model structure, validating (or falsifying) a model depends critically on the estimation

accuracy of its various parameters, inputs and states. Here, the selection is commonly assessed

using variants of the estimation (mean square) error in the posterior estimate, possibly coupled

with complexity criteria (Bayesian and Akaike information measures). The presented results

were obtained for neural and hemodynamic models that are commonly used in the literature

to illustrate the accuracy of the estimation as an integral part of an overall model design and

selection experiment.

Significance and implications

Other forms of Kalman filtering techniques have been applied in the area of neural modeling

and connectivity estimation [28, 59, 60]. Specifically, the Unscented Kalman filter (UKF) is a

nonlinear estimator that was employed in data assimilation is seizures [24, 61–64] and sleep

dynamics [27]. Since its introduction, the cubature Kalman filter CKF has been noted to out-

perform the UKF both in terms of accuracy and numerical stability [2]. The current work

suggests further refinements of the Kalman filtering theory in the area of neural modeling to

include hybrid treatment of the continuous process equation and the discrete observations.

The presented work demonstrates a major improvement in estimation performance of a

Kalman technique when the hidden dynamical process, such as neural activity, is explicitly

treated as a continuous process within the time update of the filter. The power of this method

becomes even more apparent when model inversion is attempted using observations that are

obtained over disparate time scales. In particular, our simulations illustrate that as the sam-

pling step size of a given recording is increased relative to the transient dynamics of the

process, the ability to obtain estimates of parameters punctuating these specific dynamics

becomes limited. First, in the case of electric potential recordings, the impact of fast dynamics,

such the fast activity of AMPA or GABA-A synapses, cannot be clearly deciphered as the sam-

pling interval increases beyond a few milliseconds. This situation is seen as particularly limit-

ing for the CKF which, unlike the CD-CKF, does not incorporate an explicit treatment of the

discrete observations. On the other hand, and because the CD-CKF integrates the impact of

noise within the continuous dynamics during the time-update (prediction) step, the filter per-

formance deteriorates marginally in estimating the hidden dynamics for sampling intervals

that are quite large (dt = 4–8ms) in relation to the speed of such dynamics (membrane time

constant ~20ms).
In the case of recordings obtained from other inherently slower modalities (e.g. fMRI,

SPECT), the effect of the sampling step size becomes even more pressing when assessing the

accuracy attainable under a CKF (or similar traditional discretization techniques). Indeed,

CKF performance deteriorates when fitting neural population models (operating on the milli-

second scale) based on a set of observations that (a) are obtained at much slower rates, and

(b) are obtained from an aggregated measure of the neural activity that evolve with slower
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dynamics (such as oxygen metabolism). Here, the hybrid filter (CD-CKF) provides accurate

estimates of the neural activity input profile as well as significant improvement in estimating

the timing of the input activity. The latter is particularly useful in assessing the activation

sequence of brain areas from fMRI data, a cornerstone tool in brain functional connectivity

estimation.

We believe that these performance improvements gained by employing the hybrid

CD-CKF are principally due to a major difference between the time update steps of the CKF

and CD-CKF (that is, the prediction of the hidden states based on previous measurements and

predictions). Specifically, the time update of the CD-CKF is divided into sub-intervals that

propagates the predicted states through the process function at a higher sampling rate than

that of the collected observations, whereas the time update of the CKF propagates the pre-

dicted states at the same sampling rate of collected observations. The frequent time-updates of

the CD-CKF also allow for closer approximation of non-Gaussian process noise, further boost-

ing the accuracy of the prediction for a wider class of environmental noise. Therefore, at a

given sampling rate, the CD-CKF will always have more accurate predictions propagated from

the time update to the measurement update when compared to the CKF, and hence will pro-

vide more accurate estimates. Critically, in applications where the time scale of the available

measurements is limited by the modality (e.g. fMRI), the CD-CKF outperforms CKF since it

explicitly accounts for the significant under-sampling of the faster dynamics of the underlying

process (e.g. neural activity).

Finally, the time-recursive nature of Kalman filtering (particularly its ability to adaptively

adjust tracking various model parameters) emphasizes the relevance of the reported results to

modeling extensions in cases where the internal model parameters could vary with time, such

as during synaptic plasticity and activity modulation across vigilance states, and with externally

manipulations (e.g. transcranial stimulation).

Appendix

Cubature Kalman filter

Cubature Kalman filter is a nonlinear filter designed for hidden state estimation from nonlin-

ear dynamic system with additive noise. The nonlinear dynamic system is described by a state-

space model comprising a process and measurement equation. The process equation describes

the continuous dynamics of the system and it is expressed by a continuous stochastic differen-

tial equation. The behavior of the dynamic system is observed through noisy measurements

acquired at discrete time points and it is described by a discrete difference equation.

The state-space model is formulated as:

Process Equation : dxðtÞ ¼ f ðxðtÞ; tÞdt þ
ffiffiffiffi
Q
p
dbðtÞ

Measurement Equation : zk ¼ hðxk; kÞ þ w
ð1Þ

Where xðtÞ 2 Rn is the state of the dynamic system at time t, zk 2 R
d is the measurement at

time tk, f : Rn � R! Rn is the drift coefficient, h : Rn � R! Rd is the measurement func-

tion, bðtÞ 2 Rn is a standard Wiener process assumed to be independent of states and mea-

surement noise,. Q 2 Rn�n is the diffusion coefficient, wk 2 R
d is a vector of random

Gaussian measurement noise with zero mean and covariance Rk.
Two methodologies are proposed to deal with the continuous process equation:

1. Discretize the SDE using Local Linearization (LL) method [65, 66], this will transform the

state-space model to a pair of difference equations, and then apply the regular CKF.
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2. Use the CD-CKF which discretizes the SDE using Itô-Taylor expansion of order 1.5 (IT 1.5).

1. CKF

Local Linearization method consists of transforming a nonlinear SDE to a linear SDE by

applying the truncated Itô-Taylor expansion to the drift coefficient f(x(t), t), then evaluate the

analytical solution of the resulting linear SDE and finally approximate the Itô’s integral in the

obtained solution by means of the composite Trapezoidal rule [65]. The resultant discrete dif-

ference equation will be as follows:

xk ¼ fdðxk� 1; k � 1Þ þ vk� 1

Where vk� 1 2 R
n is a vector of random Gaussian noise with zero mean and covariance Vk−1,

and

fdðxk� 1; k � 1Þ � xk� 1 þ J � 1

k� 1
½expðJ k� 1DtÞ � I�f ðxk� 1; k � 1Þ

J k is the Jacobian of f and Δt is the time interval between samples.

The state-space model (1) becomes:

Process Equation : xk ¼ fdðxk� 1; k � 1Þ þ vk� 1 ð2Þ

Measurement Equation : zk ¼ hðxk; kÞ þ wk ð3Þ

Both CKF and CD-CKF are based on Bayesian filtering paradigm under Gaussian domain,

in which the posterior density of the state provides a complete statistical description of the

state at that time [8].

The CKF includes two steps:

1. Time update: compute the predicted density pðxk jz1:k� 1Þ � N ðx̂kjk� 1;Pkjk� 1Þ.Where:

x̂kjk� 1 ¼ E½xkjz1:k� 1� ¼ E½fdðxk� 1; k � 1Þjz1:k� 1�

¼

Z

fdðxk� 1; k � 1Þpðxk� 1jz1:k� 1Þdxk� 1

¼

Z

fdðxk� 1; k � 1Þ �N ðxk� 1; x̂k� 1jk� 1; Pk� 1jk� 1Þdxk� 1

ð4Þ

Pkjk� 1 ¼ E½ðxk � x̂kjk� 1Þðxk � x̂kjk� 1Þ
T
jz1:k� 1�

¼

Z

fdðxk� 1; k � 1Þfdðxk� 1; k � 1Þ
T
�N ðxk� 1; x̂k� 1jk� 1; Pk� 1jk� 1Þdxk� 1

� x̂kjk� 1x̂Tkjk� 1
þ Vk� 1

ð5Þ

2. Measurement update: compute the posterior density pðxk jz1:kÞ � N ðx̂kjk ;PkjkÞ.
The filter likelihood density is assumed to be Gaussian:

pðzkjz1:k� 1Þ � N ðzk; ẑ kjk� 1; Pzz;kjk� 1Þ

where the predicted measurement:

ẑ kjk� 1 ¼

Z

hðxk; kÞ �N ðxk; x̂kjk� 1; Pkjk� 1Þdxk ð6Þ
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and the associated covariance

Pzz;kjk� 1 ¼

Z

hðxk; kÞhðxk; kÞ
T
�N ðxk; x̂kjk� 1; Pkjk� 1Þdxk

� ẑ kjk� 1ẑTkjk� 1
þ Rk

ð7Þ

The cross-covariance between the state and the measurement is given by:

Pxz;kjk� 1 ¼

Z

xhðxk; kÞ
T
�N ðxk; x̂kjk� 1; Pkjk� 1Þdxk � x̂kjk� 1ẑ

T
kjk� 1

ð8Þ

Thus, the conditional Gaussian density of the joint state and the measurement can be writ-

ten as:

pð½ xTk zTk �
T
jz1:k� 1Þ � N

x̂kjk� 1

ẑ kjk� 1

" #

;
Pkjk� 1 Pxz;kjk� 1

PTxz;kjk� 1
Pzz;kjk� 1

" # !

From which the posterior density pðxkjz1:kÞ � N ðx̂kjk; PkjkÞ is computed on the receipt of a

new measurement zk, where:

x̂kjk ¼ x̂kjk� 1 þ Kkðzk � ẑ kjk� 1Þ

Pkjk ¼ Pkjk� 1 � KkPzz;kjk� 1KTk

Kk ¼ Pxz;kjk� 1P
� 1

zz;kjk� 1

2. CD-CKF

Applying the Itô-Taylor expansion of order 1.5 to the process equation in state-space model

(1) over the time interval (t, t + δ) yields [2]:

xðt þ dÞ ¼ fdðxðtÞ; tÞ þ
ffiffiffiffi
Q

p
w þ ðLf ðxðtÞ; tÞÞy ð9Þ

Where:

fdðxðtÞ; tÞ ¼ xðtÞ þ df ðxðtÞ; tÞ þ
1

2
d

2
ðL0f ðxðtÞ; tÞÞ

L0 and L are two differential operators:

L0 ¼
@

@t
þ
Xn

i¼1

fi
@

@xi
þ

1

2

Xn

j¼1

Xn

p¼1

Xn

q¼1

ffiffiffiffi
Q

p

pj

ffiffiffiffi
Q

p

qj

@2

@xp@xq

Lf is a square matrix having elements Ljfi ði; j ¼ 1; . . . ; nÞ

Ljfi ¼
Xn

k¼1

ffiffiffiffi
Q

p

kj

@fi
@xk

(w, y) is a pair of correlated n-dimensional Gaussian random variables, which can be generated

from a pair of independent n-dimensional standard Gaussian random variables (u1, u2) as
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follows:

w ¼
ffiffiffi
d
p
u1

y ¼
1

2
d

3
2 u1 þ

u2ffiffiffi
3
p

� �

E½wwT � ¼ dtIn

E½wyT � ¼
1

2
d

2In

E½yyT � ¼
1

3
d

3In

1. Time update: compute the predicted density pðxkþ1jz1:kÞ � N ðx̂kþ1jk ;Pkþ1jkÞ.

x̂ðt þ dÞ ¼ E½fdðxðtÞÞjz1:k�

¼

Z

fdðxk; kÞ �N ðxk; x̂kjk; PkjkÞdxk
ð10Þ

Pðt þ dÞ ¼ E½fdðxðtÞÞf Td ðxðtÞÞjz1:k� þ
1

3
d

3E½Lf ðxðtÞ; tÞðLf ðxðtÞ; tÞÞT �

þ
1

2
d

2
ffiffiffiffi
Q

p
E ðLf ðxðtÞ; tÞÞT
� �

þ
1

2
d

2E½Lf ðxðtÞ; tÞ�
ffiffiffiffi
Q

p T

� x̂ðt þ dÞðx̂ðt þ dÞÞ
T
þ dQ

ð11Þ

To compute the predicted state and its error covariance more accurately at time tk+1, the

sampling interval T is divided intom steps of length δ, where δ = (tk+1 − tk)/m = T/m.

Let xjk denotes x(t) at time t = KT + jδ, (1� j�m), the statistics of xk+1 are given by:

x̂ jþ1

kjk ¼

Z

fdðx
j
k;KT þ jdÞ �N ðxjk; x̂

j
kjk; P

j
kjkÞdx

j
k ð12Þ

Pjþ1

kjk �

Z

fd x
j
k;KT þ jd

� �
f Td x

j
k;KT þ jd

� �
�N xjk; x̂

j
kjk; P

j
kjk

� �
dxjk

þ
1

3
d

3Lf x̂ jkjk;KT þ jd
� �

Lf x̂ jkjk;KT þ jd
� �� �T

þ
1

2
d

2
ffiffiffiffi
Q

p
Lf x̂ jkjk;KT þ jd
� �� �T

þ
1

2
d

2Lf x̂ jkjk;KT þ jd
� � ffiffiffiffi

Q
p T

� x̂ jkjk x̂
j
kjk

� �T
þ dQ

ð13Þ

The predicted density is computed at tk+1 for j =m, pðxkþ1jz1:kÞ � N ðx̂mkjk; P
m
kjkÞ (i.e.

pðxkþ1jz1:kÞ � N ðx̂kþ1jk; Pkþ1jkÞ).

2. Measurement update: perform normal discrete-time CKF update to compute the posterior

density pðxkþ1jz1:kþ1Þ � N ðx̂kþ1jkþ1;Pkþ1jkþ1Þ.
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3. Third-Degree Cubature Rule

The Bayesian filter in the Gaussian domain reduces to the problem of how to compute inte-

grals of the following form (Arasaratnam et al. 2010):

Iðf Þ ¼
Z

f ðxÞ �N ðx; :; :Þdx

Where f(.) is some nonlinear function.

The heart of cubature Kalman Filter is to numerically approximate this type of integrals by

third-degree spherical-radial rule using an even set of 2n equally weighted symmetric cubature

points fxi;oig
2n
i¼1

(where n is the dimension of the state vector) [2]:

Iðf Þ ¼
Z

f ðxÞ �N ðx; m;SÞdx �
X2n

i¼1

oif ðmþ
ffiffiffiffi
S
p

xiÞ ð14Þ

Where:

S ¼
ffiffiffiffi
S
p ffiffiffiffi

S
p T

oi ¼
1

2n

xi ¼

ffiffiffi
n
p
ei i ¼ 1; . . . ; n

�
ffiffiffi
n
p
ei i ¼ nþ 1; . . . ; 2n

(

Using this numerical approximation of integrals,

1. the time update of the CKF becomes:

x̂kjk� 1 ¼

Z

fdðxk� 1; k � 1Þ �N ðxk� 1; x̂k� 1jk� 1; Pk� 1jk� 1Þdxk� 1

¼
1

2n

X2n

i¼1

X �i;kjk� 1

Where

X �i;kjk� 1
¼ fd x̂k� 1jk� 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk� 1jk� 1

q
xi; k � 1

� �

Pkjk� 1 ¼

Z

fdðxk� 1; k � 1Þfdðxk� 1; k � 1Þ
T
�N ðxk� 1; x̂k� 1jk� 1; Pk� 1jk� 1Þdxk� 1

� x̂kjk� 1x̂Tkjk� 1
þ Vk� 1

¼
1

2n

X2n

i¼1

X �i;kjk� 1
X �Ti;kjk� 1

� x̂kjk� 1x̂
T
kjk� 1
þ Vk� 1

And the measurement update

ẑ kjk� 1 ¼

Z

hðxk; kÞ �N ðxk; x̂kjk� 1; Pkjk� 1Þdxk ¼
1

2n

X2n

i¼1

Z i;kjk� 1
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Where

Z i;kjk� 1 ¼ h x̂kjk� 1 þ
ffiffiffiffiffiffiffiffiffiffiffi
Pkjk� 1

q
xi; k

� �

and the associated covariance

Pzz;kjk� 1 ¼

Z

hðxk; kÞhðxk; kÞ
T
�N xk; x̂kjk� 1; Pkjk� 1

� �
dxk

� ẑ kjk� 1ẑTkjk� 1
þ Rk

¼
1

2n

X2n

i¼1

Z i;kjk� 1Z
T
i;kjk� 1

� ẑ kjk� 1ẑ
T
kjk� 1
þ Rk

The cross-covariance between the state and the measurement is given by:

Pxz;kjk� 1 ¼

Z

xhðxk; kÞ
T
�N ðxk; x̂kjk� 1; Pkjk� 1Þdxk � x̂kjk� 1ẑ

T
kjk� 1

¼
1

2n

X2n

i¼1

X i;kjk� 1Z
T
i;kjk� 1

� x̂kjk� 1ẑ
T
kjk� 1

Where

X i;kjk� 1 ¼ x̂kjk� 1 þ
ffiffiffiffiffiffiffiffiffiffiffi
Pkjk� 1

q
xi

2. the time update of the CD-CKF becomes:

x̂ jþ1

kjk ¼

Z

fdðx
j
k;KT þ jdÞ �N xjk; x̂

j
kjk; P

j
kjk

� �
dxjk

¼
1

2n

X2n

i¼1

X �ðjþ1Þ

i;kjk

Where

X �ðjþ1Þ

i;kjk ¼ fd x̂
j
kjk þ

ffiffiffiffiffiffiffi

Pjkjk
q

xi; kT þ jd
� �

Pjþ1

kjk �
R
fdðx

j
k;KT þ jdÞf Td ðx

j
k;KT þ jdÞ �N xjk; x̂

j
kjk; P

j
kjk

� �
dxjk

þ
1

3
d

3Lf x̂ jkjk;KT þ jd
� �

Lf x̂ jkjk;KT þ jd
� �� �T

þ
1

2
d

2
ffiffiffiffi
Q

p
Lf x̂ jkjk;KT þ jd
� �� �T

þ
1

2
d

2Lf x̂ jkjk;KT þ jd
� � ffiffiffiffi

Q
p T

� x̂ jkjk x̂
j
kjk

� �T
þ dQ
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�
1

2n

X2n

i¼1

X �ðjþ1Þ

i;kjk X �ðjþ1Þ

i;kjk
T þ

1

3
d

3Lf x̂ jkjk;KT þ jd
� �

Lf x̂ jkjk;KT þ jd
� �� �T

þ
1

2
d

2
ffiffiffiffi
Q

p
Lf x̂ jkjk;KT þ jd
� �� �T

þ
1

2
d

2Lf x̂ jkjk;KT þ jd
� � ffiffiffiffi

Q
p T

� x̂ jkjk x̂
j
kjk

� �T
þ dQ

And the measurement update for CD-CKF is exactly the same as discrete-time CKF update.
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