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ABSTRACT Calmodulin-dependent protein phosphatase, previously called CaM-BP80 or cal- 
cineurin, is present in high concentrations in the central nervous system. The level of the 
phosphatase has been shown by radioimmunoassay to increase during development in the 
retinas of embryonic and hatchling chicks (Tallant, E. A., and W. Y. Cheung, 1983, Biochemistry, 
22:3630-3635). The aims of this study are to immunocytochemically localize the phosphatase 
in developing and mature retinas and to determine if the phosphatase is present in fractions 
of retinal synaptic membranes and synaptic junctions. Vibratome slices of fixed chick retina 
and Western blots of detergent-solubilized retinal fractions are both treated sequentially with 
rabbit primary antisera and goat anti-rabbit Fab fragments conjugated to peroxidase, and then 
reacted with hydrogen peroxide and diaminobenzidine. The tissue slices are further processed 
for electron microscopy. This paper demonstrates the presence of peroxidase reaction product 
in the retina just before synapse formation. In the outer plexiform layer the product is confined 
to photoreceptor synaptic terminals, whereas in the inner plexiform layer it is present in 
synaptic terminals of bipolar cells and in dendrites of ganglion cells. In this latter site the 
product is present postsynaptically at bipolar and amacrine synapses. The phosphatase is 
detected in Western blots of both synaptic plasma membrane and synaptic junction fractions. 

Calmodulin-dependent phosphorylation and dephosphoryla- 
tion of protein are likely to be important regulatory events in 
cellular activity (1, 2, 24). Calmodulin-dependent protein 
phosphatase has been shown to dephosphorylate a number of 
proteins (15, 25, 27, 30). The enzyme is a heterodimer with a 
subunit A (Mr 60,000), which harbors the catalytic site (34), 
and a subunit B (Mr 16,000), which contains four calcium 
binding sites (21). It is present in high concentrations in the 
brain (33) and is therefore of special interest in light of known 
calcium influences on neural activities. The phosphatase, 
identical to calcineurin (29, 38) and previously called CaM- 
BP80 (32), has been localized by immunocytochemistry to 
dendritic processes in the rat brain where it is primarily 
associated with postsynaptic densities (35-37). By radioim- 
munoassay, the level of protein phosphatase has been found 
to increase in the brain and retina during a period of embry- 
ogenesis (29) that may correlate with the period when large 
numbers of synapses are forming. 

Synaptogenesis in the outer plexiform layer of the chick 
retina consists of a sequence of events in which photoreceptors 
form two morphologically distinct types of junction with two 
major cell classes, the horizontal and the fiat bipolar. Photo- 
receptor junctions with horizontal cells are called ribbon 
junctions due to the presence of a lamellar-like presynaptic 
density. These ribbon junctions can be readily distinguished 
from photoreceptor basal junctions with fiat bipolar cells 
which are located more distally and which contain paramem- 
branous densities at photoreceptor presynaptic sites. The rib- 
bon junctions develop between embryonic days 15 and 18, 
before the formation of basal junctions, and presynaptic struc- 
tures develop before postsynaptic structures (26). 

The aims of this study are to use immunocytochemistry to 
determine if the appearance of the enzyme correlates with 
synaptogenesis in the chick embryo, to localize the enzyme 
in the hatched chick retina, and to determine if the enzyme 
is present in fractions of retinal synaptic membranes. 
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FIGURE 1 13-d unstained, embryonic retina. OPL, outer plexiform layer. N, photoreceptor nucleus. Photoreceptor pedicles 
before the formation of synapses contain reaction product which is found in patches along the plasmalemma (arrows) and within 

• the cytoplasm, x 22,750. 

Electron microscopy (EM) ~ is used to show that the enzyme 
is present in putative synaptic locations at embryonic times. 
Using this technique, we found the enzyme to be associated 
with the structural elements of synapses as they appear during 
development. Using a second technique, immunochemistry 
of Western blots, we found the enzyme is also associated with 
isolated retinal synaptic fractions. Together, the data implicate 
the phosphatase as a prominent and integral component of 
many retinal synapses. Preliminary reports of this work have 
appeared in abstract form (4, 6, 7). 

MATERIALS AND METHODS 

Fertile, White Leghorn eggs obtained from a local hatchery were incubated in 
a forced draft incubator at 37°C. The embryos were staged according to 
Hamburger and Hamilton (16). Embryos betwcen 6 and 21 d, and 2-wk-old 
hatchlings were used for the EM immunocytochemistry. Fractions of retinal 
synaptic plasma membranes (SPM) and synaptic junction complexes (SJC) 
were obtained from 2-10-wk-old, hatched chicks. 

Calmodulin-dependent protein phosphatase was purified to homogeneity 
from bovine brain (30). Antisera against the enzyme was raised in a rabbit (32). 

Immunocytochemistry of Fixed Tissue Slices: Animals were 
anesthetized and perused through the heart for I0 min with a fixative solution 
containing 0.1% glutaraldehyde, 4% paraformaldehyde in 0.1 M sodium cac- 
odylate, buffered to pH 7.2 with hydrochloric acid. The anterior segment, lens, 
and vitreous were removed, and the posterior eyecup was continuously doused 
with the fixative for a further l0 min. The lower temporal quadrant of the 
retina was dissected out and placed in 4% paraformaldehyde in cacodylate 
buffer for 12-24 h, usually overnight, at 4°C. The tissue was washed briefly 
with a phosphate-buffered saline (PBS) pH 7.2, and immersed in a small pool 
of 5% agar on a piece of balsa wood. The agar was set at 4°C, and the tissue 
was placed in a vibratome, whereupon 40-/~m slices were cut. The slices were 
washed with several changes of PBS, and the agar removed from around the 
edges of the slices. The tissue slices were incubated for l h at room temperature 
in the primary antisera that had been diluted 1:200 with PBS. They were 
washed with several changes of PBS over a period of 2-3 h and then incubated 
in the peroxidase-conjugated Fab fragments of goat anti-rabbit IgG (Polysci- 
ences, Inc., Warrington, PA), diluted 1:600 with PBS. The slices were washed 
with PBS. postfixed with osmium tetroxide, dehydrated, and embedded in a 
mixture of Epon and Araldite. Some slices were stained en bloc after osmium 
fixation with 2% uranyl acetate in acetate buffer, pH 5.0. Thin sections of the 
slices were cut parallel to the surface of the tissue slice until a suitable balance 

Abbreviations used in this paper. EM, electron microscopy; SJC, 
synaptic junction complexes; SPM, synaptic plasma membranes. 

between good morphology and good localization of peroxidase reaction product 
was established. Sections of retina from embryos aged 6, I l, 13, and 17 d, and 
from 2-wk-old hatched chicks were analyzed for the presence or absence of 
product. Control slices were incubated either with the primary antisera con- 
taining an excess of antigen or without the primary antisera. Peroxidase reaction 
product was absent from both types of controls. 

PAGE Immunoblots of Isolated Retinal Synaptic Membrane 
Fractions: SPM and SJC were isolated from retinal homogenates (4, 5) 
using a procedure adapted from Cohen et al. (3). Portions of synaptic fractions 
were either fixed in glutaraldehyde and osmium tetroxide, and processed for 
EM, or solubilized in SDS. The SDS-solubilized fractions of SPM, SJC, and 
antigen were subjected to PAGE on 14 x 18 x 0.15 cm SDS gels that consisted 
of 3-27% gradients. The proteins, separated by PAGE using a 3% stacking gel 
and a discontinuous buffer system (23), were either stained with Coomassie 
Blue or electrophoretically transferred from the gels onto nitrocellulose sheets 
according to the method of Towbin et al. (31). These nitrocellulose blots were 
either stained with amido black or treated sequentially with the following 
solutions: 5 mg/ml bovine serum albumin (BSA) in PBS, two changes for a 
total time of 20 min; antisera diluted I: 1,000 in PBS containing BSA (fraction 
V, Sigma Chemical Co., St. Louis, MO) and 0.05% Tween 20 (Sigma Chemical 
Co.), for 30 rain; PBS, six changes for a total time of 30 rain; Fab-horseradish 
peroxidase (Polysciences, Inc.) diluted 1:600 with PBS containing BSA and 
Tween 20 for 30 min; PBS, six changes for a total time of 30 min; hydrogen 
peroxide and diaminobenzidine (14) prepared in PBS, for 5-30 min, until 
reaction product appeared. The blots were washed with distilled water and 
dried. The peroxide reaction was done at 4°C; all other manipulations were 
done at room temperature. Control immunoblots either contained excess 
antigen in the primary antisera incubation step or were not treated with the 
primary antisera. Peroxidase reaction product was absent from both types of 
controls. 

RESULTS 

EM Immunocytochemistry of Fixed Retinal Slices 

Detection of calmodulin-dependent protein phosphatase 
within the neural retina is not definitive before embryonic 
day 13. The peroxidase reaction product is consistently de- 
tectable, however, within photoreceptor synaptic pedicle re- 
gions at embryonic day 13 (Fig. 1), which is before the 
development of photoreceptor synaptic junctions (26). Reac- 
tion product is visible within the cytoplasm and is also seen 
as patches along the inner aspects of the undifferentiated 
plasma membrane of the forming synaptic pedicle. Ribbon 
synapses between the photoreceptor cells and horizontal cells 
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appear between embryonic days 15 and 18 (26). Reaction 
product at these forming synapses is also confined to the 
photoreceptor presynaptic terminal (Fig. 2), and is not seen 
at postsynaptic sites within the neuropil of the outer plexiform 
layer. Within the forming photoreceptor terminals the prod- 
uct is associated at this time with the inner surface of the 
plasma membrane, the synaptic ribbons, and synaptic vesicles 
(Fig. 2). Photoreceptor basal junctions are not formed at this 
developmental time. 

In the outer plexiform layer of both the embryonic day 21 
and hatched chick retinas, reaction product is again seen only 
within the presynaptic, photoreceptor terminals (Fig. 3). Glial 
(Miiller) cell processes between the photoreceptor cells and 
dendrites are devoid of reaction product (Fig. 3). At higher 
magnification (Fig. 3, inset), reaction product is now coinci- 
dent with the presynaptic, paramembranous densities of basal 
junctions. In contrast, the product is sparse or absent from 
the membrane intervening between the presynaptic densities 
of basal and ribbon junctions (Fig. 3, inset). The membranes 
and postsynaptic densities of dendrites are not stained with 
the reaction product and are barely visible within the un- 
stained sections (Fig. 3). 

Calmodulin-dependent protein phosphatase is also present 
within putative presynaptic terminals and postsynaptic sites 
of forming synapses in the inner plexiform layer of the em- 
bryonic chick retina (not shown). In the mature retina of the 
hatched chick, the peroxidase reaction product is observed in 
both presynaptic and postsynaptic locations within the inner 
plexiform layer. Bipolar cell presynaptic terminals, recognized 
by the presence of a synaptic ribbon (Fig. 4), contain the 

product that is associated with the synaptic ribbon and syn- 
aptic vesicles. Neuronal processes containing synaptic vesicles, 
typical of amacrine cell dendrites (22), in close juxtaposition 
to the bipolar cell terminal, do not contain product (Fig. 4). 
Product does label, however, the cytoplasmic side of bipolar 
synaptic membrane that is immediately adjacent to, and 
perhaps, postsynaptic to these amacrine dendritic terminals. 
Dendrites without vesicles, that are postsynaptic to bipolar 
terminals (Fig. 4) and also associated with more conventional 
type synapses (Fig. 5), contain reaction product. These vesicle- 
less dendrites are typical of ganglion cells, known to receive 
input from both bipolar cells and amacrine cells (22). The 
product in these dendrites is observed in association with the 
postsynaptic densities at both bipolar (Fig. 4) and amacrine 
synapses (Fig. 5) and also with microtubules (Figs. 4 and 5). 

PAGE and immunoblotting were used as a second approach 
to complement these EM immunocytochemical observations, 
and to see if calmodulin-dependent protein phosphatase was 
present in retinal subcellular fractions. 

EM and PAGE Immunoblots of Isolated SPM and 
SJC Fractions 

Electron micrographs of the isolated SPM fraction (Fig. 6) 
show that this fraction contains typical membrane-enclosed 
sacs, some of which bear synaptic junctions (Fig. 6, inset). 
This appears similar to SPM fractions, obtained by others, 
from various regions of the central nervous system. The 
isolated SJC fraction (Fig. 7) contains a mixture of bar-like 
postsynaptic densities and SJC, some of which contain rem- 

FIGURE 2 17-d unstained, embryonic retina. N, photoreceptor nucleus. Ribbon synapses between photoreceptors and dendrites 
are forming. The photoreceptor presynaptic ribbon (SR) appears before postsynaptic densities and ribbon junctions form before 
basal junctions. Synaptic vesicles are present at this time. The reaction product is present along the cytoplasmic surface of the 
photoreceptor plasmalemma (short arrows) and is also associated with synaptic vesicles (long arrows) and the presynaptic ribbons. 
x 27,500. 
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FIGURE 3 2-wk old, unstained, hatched-chick retina. OPL, outer plexiform layer. Mature ribbon and basal junctions are present. 
Product is still associated only with the presynaptic side of photoreceptor synapses and is not present in the intervening MOiler 
cells (M). Product stains synaptic ribbons (open arrows) and the presynaptic densities of basal junctions (arrowheads). x 10,540. 
(Inset) 2-wk-old, unstained hatched-chick retina. Higher magnification of photoreceptor synaptic terminal shows that the product, 
formerly associated with the presynaptic membrane of embryonic photoreceptor terminals (Figs. 1 and 2), is now present at both 
ribbon and basal junctions, and it is associated with the presynaptic ribbon (open arrow) and presynaptic paramembraneous 
density (arrowheads) of these two junctions. Postsynaptic densities (small arrow) where apparent do not have product associated 
with them. Most, but not all, synaptic vesicles together with coated vesicles are stained by reaction product, x 47,500. 

nants of synaptic membrane (Fig. 7, inset). 
In Coomassie Blue-stained gradient gels of these two SDS- 

solubilized fractions (Fig. 8, lanes 4 and 5), the major synaptic 
proteins appear as dense bands. The four major proteins of 
the SJC fraction (lane 5) have relative molecular weights (Mr) 
of 60,000, 53,000-58,000, 45,000-46,000, and 43,000. The 
protein band of Mf 53,000-58,000 is enriched in the SJC 
fraction (lane 5) relative to the SPM fraction (lane 4). The 
SPM fraction (lane 4) has additional major proteins with Mr 
of 30,000 and 36,000. 

PAGE immunoblots of the SPM and SJC (Fig. 8, lanes 6 
and 7) show that they contain immunoreactive bands that 
correlate in position with the subunits A and B seen in the 
Coomassie Blue-stained gel of the purified antigen (lane 1). 
Lane 3 is a fraction of SPM to which some of the purified 
antigen has been added. This lane shows that no additional 
bands can be detected and that the intensity of bands corre- 
sponding to the phosphatase subunits is increased reIative to 
the SPM (lane 4) and SJC (lane 5) fractions. This increased 
intensity helps to demonstrate that the lower molecular weight 
subunit (labeled b) of the phosphatase is the middle band of 
the last three bands seen in lanes 4 and 5 (SPM and SJC). 
The immunoreactive bands due to the subunits of the phos- 
phatase and faint immunoreactive bands seen interposed 
between the phosphatase subunits in lanes 6 and 7 of SPM 
and SJC are not present in control blots that were either 
incubated in PBS in place of the primary antisera (not shown) 
or incubated in the primary antisera containing an excess of 

the purified antigen (SPM, lane 8; SJC, lane 9). This suggests 
that the immunoreactive bands interposed between the sub- 
units are probably proteolytic fragments of the subunit A. 
Such fragments are sometimes observed in the purified anti- 
gen. It should be noted, however, that the preparative proce- 
dures for the purified antigen and the retinal fractions are 
different, and consequently minor differences are to be ex- 
pected. In some antigen preparations, a major band with Mf 
of 58,000 is detected (not shown) which may be a degraded 
or otherwise altered product of the subunit A as has been 
reported elsewhere (28, 31). 

DISCUSSION 

This study confirms the association of calmodulin-dependent 
protein phosphatase with postsynaptic densities (32, 36) and 
the existence of the enzyme in the retina (29, 35). In addition, 
the report extends these earlier observations, demonstrating 
at the EM level the association of the enzyme with presynaptic 
as well as postsynaptic elements in the chick retina. The 
presence of the enzyme in photoreceptor, bipolar, and gan- 
glion cells and its absence from the more radially disposed 
horizontal and amacrine ceils is demonstrated. In identified 
synapses the enzyme was seen either in presynaptic or post- 
synaptic, or in one case both pre- and postsynaptic sites. Also, 
the subcellular fractionation data presented here supports the 
EM findings of an association of this enzyme with SPM and 
SJC. 
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FIGURE 4 2-wk-old, stained hatched-chick retina. IPL, inner plexi- 
form layer. Synaptic ribbon (SR)-containing bipolar terminal con- 
tains reaction product. A dendrite (*) postsynaptic to the bipolar 
terminal that does not contain synaptic vesicles is stained with 
reaction product. Thin membrane densities (curved arrows) within 
the bipolar terminal stained with reaction product appear to be 
postsynaptic to vesicle-containing neuronal profiles (A) that synapse 
on the bipolar terminals, x 45,600. 

During development, the enzyme is shown to be present 
before the formation of recognizable synapses. The particular 
aspect of neurogenesis that signals the initiation of phospha- 
tase synthesis remains to be determined, but it is likely that 
this event occurs just before synaptogenesis. During develop- 
ment, the enzyme becomes associated with some of the syn- 
aptic structures. This together with the demonstrated presence 
of the enzyme in isolated synaptic membranes is in agreement 
with radioimmunoassay studies of developing rat cerebrum. 
These latter studies demonstrate that the level of antigen 
increases in both a soluble and particulate fraction during 
development, and the particulate fraction contains a higher 
level of the antigen on the basis of protein. 

While the precise localization ofcalmodulin within synaptic 
terminals has not been demonstrated, its presence is indicated 
by other types of studies and is also indirectly supported by 
the present study. DeLorenzo (9) has suggested that calmod- 
ulin-dependent phosphorylation of synaptic vesicle proteins 
may be a mechanism that aids in the fusion of vesicles with 
the presynaptic membrane during exocytosis of transmitter. 
The study here has shown an association of the calmodulin- 
dependent protein phosphatase with synaptic vesicles at the 
EM level. It remains to be established if this is a functional 
association because the phosphatase is likely to be present in 
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FIGURE 5 2-wk-old, stained, hatched chick retina. Inner plexiform 
layer. D, dendrite. Reaction product in dendrites is associated 
mostly with postsynaptic densities (open arrow) and also with 
neurotubules (long arrow). The presynaptic elements of those more 
conventional type synapses ('A-) do not contain product, x 28,500. 

both cytoplasmic, soluble forms and membrane-bound, in- 
soluble forms (29). Thus, the possibility exists that the asso- 
ciation of enzyme with vesicles and microtubules seen here is 
due to precipitation of the cytoplasmic enzyme onto these 
components during fixation. Nevertheless, it is clear that the 
phosphatase is a presynaptic component of some synapses 
and its presence presynaptically raises the possibility that it is 
involved in the electrochemically mediated transfer of infor- 
mation between neurons. While synapsin-1, the substrate for 
cyclic nucleotide-dependent and calmodulin-dependent pro- 
tein kinase, is associated with synaptic vesicles (8, 19), it is 
not known if this is also the endogenous substrate for the 
calmodulin-dependent protein phosphatase shown here. The 
phosphatase can dephosphorylate synapsin-1, however, under 
in vitro conditions (20). 

Kennedy et al. (18) and Grab et at. (11-13) have shown 
that a calmodulin-dependent protein kinase constitutes a 
major component of the postsynaptic densities, and more 
recent studies (10) suggest that the major protein of the 
postsynaptic densities of the brain is homologous with the 
major calmodulin-binding subunit of a calmodulin-depend- 
ent protein kinase. 

The present study suggests that the calmodulin-dependent 
protein phosphatase is a prominent component of the retinal 
neuropil because it is present in many retinal synapses as 
either a presynaptic or postsynaptic component and because 
the immunoreactive band of subunit A coincides with a 



FIGURE 8 Coomassie Blue (cb)-stained polyacrylamide gels and 
antisera (as)-treated PAGE immunoblots of retinal SPM and SJC 
fractions. Lane 1, cb-stained gel of standards with molecular weights 
in kilodaltons indicated to the left of the lane. Lane 2, cb-stained 
gel of purified antigen (2/~g protein). Lane 3, cb-stained gel of SPM 
(80 #g protein) to which 2 #.g purified antigen was added before 
electrophoresis. Lane 4, cb-stained blot of SPM (80 ~g protein). 
Lane 5, cb-stained gel of SJC (80 #g protein). Lane 6, as-treated blot 
of SPM (80 #g protein). Lane 7, as-treated blot of SJC (80 #g protein). 
The arrows to the right of this lane (a and b) indicate the positions 
of the subunits A and B of the phosphatase. Lane 8, as-treated blot 
of SPM (80 ~.g protein) incubated with primary antisera containing 
an excess of the purified antigen. Lane 9, as-treated blot of SJC (80 
#g protein) incubated in the primary antisera containing an excess 
of the purified antigen. 

FIGURES 6 and 7 (Fig. 6) Retinal synaptic plasma membrane (SPM) 
fraction showing typical membranous sacs. Section taken from 
middle of the pellet. Smaller and larger sacs are present at higher 
and lower positions in the pellet, respectively, x 41,800. (Inset) This 
fraction also contains SJC (arrows). x 64,600. (Fig. 7) Retinal synaptic 
junction complex fraction. This fraction contains a mixture of post- 
synaptic densities (open arrows) and SJC (closed arrows). Membrane 
remnants are associated with some junctions, whereas others ap- 
pear completely demembranated, x 38,000. (Inset) Higher magni- 
fication of typical synaptic junction. × 108,300. 

prominent protein band in gels stained with Coomassie Blue. 
While the phosphatase is associated at the EM level with some 
postsynaptic densities and microtubules, it remains to be seen 
which of these are functional associations. Although tubulin 
has been associated with postsynaptic densities and synaptic 
vesicles in other studies (17), it is not known if this would 
serve as a substrate for the phosphatase. The endogenous 
substrate for calmodulin-dependent protein phosphatase in 
both presynaptic and postsynaptic sites remains to be deter- 
mined. 
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