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The changes in the brain signaling systems play an important role in etiology and 
pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being 
a possible cause of these diseases. Therefore, their restoration at the early stages of 
T2DM and MS can be regarded as a promising way to treat and prevent these diseases 
and their complications. The data on the functional state of the brain signaling 
systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins 
and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological 
approaches to restoration of these systems and improvement of insulin sensitivity, 
energy expenditure, lipid metabolism, and to prevent diabetic complications are 
discussed.

Currently, more than 30% of the populations worldwide are overweight and have 
metabolic dysfunctions that without the appropriate treatment would go over to 
severe Type 2 diabetes mellitus (T2DM). At the early stages of T2DM significant changes 
occur in the brain signaling systems, resulting in the impairment of metabolism 
and the functions of nervous, cardiovascular and the other systems. Restoration 
of the brain signaling is regarded as a promising way to treat and prevent diabetic 
pathology. In the review the changes in the brain signaling systems in T2DM and the 
pharmacological approaches to their restoration are discussed.
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Currently, more than 30% of the popula-
tions worldwide are overweight and have 
metabolic disorders. Without treatment and 
prevention of these disorders, they would 
go over to prediabetes that is characterized 
by decreased insulin sensitivity and then, 
in accordance with the adverse scenario, to 
overt Type 2 diabetes mellitus (T2DM) and 
metabolic syndrome (MS) commonly associ-
ated with cardiovascular, nervous, endocrine 
and other diseases. One of the most prom-
ising ways to prevent overt T2DM and MS 
and their complications is to begin treating 
patients with early stages of insulin resistance 
and dyslipidemia when metabolic disorders 
are still reversible.

The main factors responsible for the devel-
opment of T2DM and MS are insulin resis-
tance, dysfunctions of pancreatic β-cells, 
hyperglycemia, the formation of advanced 
glycation end products, oxidative stress, 
mitochondrial dysfunctions, dyslipidemia, 
lipotoxicity and alterations in the hormonal 
signaling systems both in the CNS and the 
periphery [1–6]. The hormonal dysfunctions 
are sometimes referred to either as primary, or 
secondary, the former being one of the causes 
of T2DM and MS, while the latter – the con-
sequence of cell and tissue damages induced 
by oxidative stress and lipotoxicity [7–10].

The brain signaling systems regulated by 
insulin, IGF-1, leptin, neuropeptides, mono-
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amines and neurotrophic factors are of great interest in 
the study of etiology and pathogenesis of T2DM and 
MS. Despite the role of the above systems in the devel-
opment of these diseases is not quite clear yet, there is 
enough evidence to suggest that changes occurring in 
them can be a trigger for T2DM and MS [11–15]. The 
most critical changes occur in the signaling systems of 
hypothalamus, an integrator of regulatory processes 
in the brain and in the periphery. The hypothalamic 
signaling systems are involved in regulation of insu-
lin sensitivity, glucose and lipid metabolism, feeding 
behavior, as well as in control of functions of the ner-
vous, endocrine and cardiovascular systems [9,16–21]. 
The weakening of the response of POMC/cocaine and 
amphetamine-regulated transcript neurons located in 
the arcuate nucleus (ARC) of hypothalamus to insulin, 
leptin, ghrelin and GLP-1 leads to decreased produc-
tion of melanocortins, to the impaired melanocortin 
signaling system in the paraventricular nucleus (PVN) 
of hypothalamus, which brings about the changes of 
neural circuits involving the lateral hypothalamic area 
and the ventral tegmental area responsible for food 
intake behavior and energy expenditure [22–25]. Simul-
taneously, the activity of AGRP/NPY neurons located 
in the ARC is also changed, which leads to the increased 
food intake. Since the mesolimbic dopaminergic sys-
tem is involved in the response to food rewards, the 
abnormalities in this system and in its regulation by 
leptin and ghrelin contribute significantly to eating 
disorders [26,27]. The important role in deregulation 
of the feeding behavior is ascribed to the changes in 
the circadian rhythm, which induced the disturbances 
in synchronization of the release of serotonin (5-HT), 
dopamine (DA) and other neurotransmitters and pro-
voked the dysfunctions of neural circuit responsible for 
food rewards [28–30].

The weakening of functions of the brain hormonal 
systems can be caused by reduction of the levels of sig-
nal molecules due to impairment of their synthesis, 
secretion and transport within neuronal cells, and by 
the alterations in expression and activity of proteins, 
the components of these systems. Initially, the changes 
can occur in a single signaling cascade in specific brain 
area and then extend to the other central signaling sys-
tems, which leads to deregulation of energy homeosta-
sis and to decrease of insulin sensitivity, and finally to 
prediabetes state [31–36]. Restoration of the brain signal-
ing systems at the stage of prediabetes can induce nor-
malization of the central regulation of the peripheral 
metabolism and prevent the transition of prediabetes 
into overt T2DM and MS [37]. To achieve this, it is 
necessary to detect the point violations in the brain sig-
naling systems at the early stages of diabetic pathology, 
to decipher their molecular mechanisms, and to reveal 

changes in the biochemical and physiological processes 
induced by the disturbances in these systems. In the 
case of overt T2DM and MS the changes occur in 
many signaling systems as a result of a comprehensive 
damage of different brain areas and neural circuits due 
to the inflammation, mitochondrial dysfunctions and 
endoplasmic reticulum stress [38]. To cope with these 
tasks, the systemic approach to restoration of the brain 
signaling must be developed based on the correction 
of metabolic dysfunctions and the improvement of 
 functions of the brain signaling network.

In this review the brain signaling systems regulated 
by insulin, IGF-1, leptin, DA, 5-HT, melanocortins 
and GLP-1 are analyzed. The role of these systems 
in etiology and pathogenesis of T2DM and MS has 
been established and now they are considered to be the 
most suitable targets in the therapy of these diseases. 
Meanwhile, in patients and experimental animals with 
T2DM and MS the functional activity of the brain sig-
naling systems regulated by ghrelin, NPY, acetylcho-
line, adrenergic agonists, γ-aminobutyric acid and glu-
tamate was also shown to be significantly changed, but 
there are, however, little data that the pharmacological 
restoration of these systems significantly affects the 
physiological and biochemical processes in the CNS 
and periphery impaired in metabolic disorders [39–49].

Brain insulin & IGF-1 signaling
Insulin/IGF-1 signaling system in the CNS
In the brain insulin and insulin receptor (IR) were 
discovered more than 30 years ago [50–52]. Since then, 
a lot of evidence to support the key role of the brain 
insulin signaling system in regulation of physiologi-
cal and biochemical processes in the CNS and in the 
periphery, and in control of feeding behavior and 
peripheral metabolism was obtained [53–56]. IGF-1 and 
its receptor (IGF-1R) were also found in the brain, and 
it was shown that IGF-1 signaling system is involved in 
control of neurogenesis and synaptogenesis and inter-
acts with other central signaling systems [57–59]. The 
insulin and IGF-1 signaling systems in the CNS and 
in the periphery have a considerable similarity in struc-
tural and functional organization, but their regulatory 
mechanisms may be different. This can be explained 
by the difference in the pattern of systems components, 
in their microenvironment and localization in cell, and 
concerning the insulin system, in the neuronal and 
non-neuronal types of IR [56].

Insulin and IGF-1 belonging to the insulin peptides 
family bind to α

2
β

2
-heterotetrameric IR and IGF-

1R [60]. The extracellular α-subunits of these receptors 
contain the ligand binding site, whereas the intracel-
lular portion of their β-subunits contains the highly 
conserved tyrosine kinase domain. The binding with 
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hormone induces the tyrosine kinase activity of recep-
tor, which leads to tyrosine phosphorylation of insulin 
receptor substrates-1 and -2 (IRS-1 and IRS-2) [61,62]. 
The IRS-1 mediates the regulatory effects of insulin 
and IGF-1 on the growth and metabolic processes 
mainly in the peripheral tissues, whereas IRS-2 is pref-
erably responsible for the effects of hormones in the 
CNS, including the control of neuronal growth and 
differentiation, the hypothalamic regulation of feeding 
behavior, body weight, glucose homeostasis and repro-
ductive functions [63]. Phosphorylated IRS-1 and IRS-2 
activate a large number of proteins that contain SH2-
domains specifically interacting with phosphotyrosines, 
such as the enzymes – PI3K, protein phosphotyrosine 
phosphatase SHP2, and nonreceptor tyrosine kinase 
Fyn, and the adapter proteins – suppressor of cytokine 
signaling, growth factor receptor-bound protein 2, 
Nck-protein and others [63,64]. This leads to activation 
of many downstream signaling cascades involved in the 
regulation of insulin/IGF-1-dependent transcription 
factors which control growth,  differentiation, apoptosis 
and the other cell processes.

The 3-phosphoinositide pathway includes heterodi-
meric p85/p110-PI3K catalyzing the synthesis of phos-
phatidylinositol-3,4,5-triphosphate, and two serine/
threonine protein kinases, PDK1 and protein kinase 
B (AKT-kinase) (Figure 1). The binding of pleckstrin 
homology domains of PDK1 and AKT-kinase with 
phosphatidylinositol-3,4,5-triphosphate leads to trans-
location of enzymes into the plasma membrane, where 
AKT-kinase is phosphorylated by PDK1 and mamma-
lian target of rapamycin (mTOR) Complex 2 on Thr308 
and Ser473 residues, respectively [65,66]. The activation 
of AKT-kinase leads to translocation of insulin-depen-
dent transporter GLUT4 into the plasma membrane 
and increases the glucose uptake. The other targets 
of AKT-kinase are mTOR Complex 1, GSK3, BAD, 
FKHRL1 and FBP-1. The phosphorylation of GSK3 
leads to its inhibition and blocks the negative influence 
of GSK3 phosphorylation on glycogen synthase, a key 
enzyme of glycogen production. Alongside, the inhibi-
tion of GSK3 changes the activity of many transcrip-
tional factors, such as NF-κB, forkhead transcriptional 
factors FOX3a and FOXO1a, Bcl-2 associated death 
promoter, regulating the gene expression, apoptosis 
and cell viability [67].

The dysfunctions of insulin/IGF-1 signaling in 
diabetes mellitus
In the Type 1 diabetes mellitus (T1DM) with a strong 
insulin deficiency, despite the increased hormone 
transport across the blood–brain barrier (BBB), the 
concentration of insulin in the brain is nevertheless 
very low. In T2DM and MS with normal or elevated 

insulin concentration in the blood the transport of 
insulin through the BBB is attenuated, resulting in 
the decrease of brain insulin level [68–74]. As a conse-
quence, functional activity of the brain insulin sig-
naling system is attenuated, which negatively affects 
the central control of peripheral metabolism and 
thus enhances the severity of metabolic disorders and 
 insulin  resistance.

According to some authors, the concentration of 
total IGF-1 in T2DM and MS in the bloodstream did 
not change significantly [75,76]. However, in long-term 
T2DM with poor glycemic control the concentration 
of bioavailable IGF-1 was reduced partially due to 
doubling of the level of IGFBP1 [75,77]. It should be 
noted that in obese patients with weak insulin resis-
tance the free IGF-1 level increased insignificantly due 
to the lowered IGFBP1 level, while total IGF-1 level 
was maintained. With increasing insulin resistance, 
in overt T2DM, the IGFBP1 level increased, which 
caused a significant decrease in free IGF-1 concen-
tration [78]. Appreciable contribution to reduction of 
free IGF-1 level was made due to increasing IGFBP3 
level [79]. One of the causes of increase in the IGFBP 
levels in the bloodstream is a nonenzymatic glycosyl-
ation of these proteins in hyperglycemic conditions, as 
the severity and duration of hyperglycemia and insulin 
resistance are positively correlated with the increase of 
IGFBP levels [80,81]. Additionally, the relationship was 
established between the increased IGFBP level and the 
decreased IGF-1/IGFBP ratio, on the one hand, and 
the development of Alzheimer’s disease (AD) desig-
nated sometimes also as the Type 3 diabetes, on the 
other [82]. The conclusion was made that the decrease 
of free IGF-1 level is one of the factors of the weaken-
ing of the brain IGF-1 signaling in prediabetes, early 
T2DM and AD.

Despite the fact that the decrease of insulin and 
IGF-1 levels in the brain makes a significant contribu-
tion to reduction of the activity of insulin/IGF-1 sig-
naling systems in T2DM and MS, the key role is given 
to abnormalities in these systems caused by oxidative 
stress, lipotoxicity and increased production of pro-
inflammatory and proapoptotic factors [16,83–86]. The 
deregulation of the brain insulin/IGF-1 signaling path-
ways influences energy metabolism and insulin resis-
tance, and results in triggering pathological changes in 
the nervous and neuroendocrine systems [87–89].

The role of insulin resistance in etiology and patho-
genesis of T2DM, MS and AD is currently not in 
doubt, but there arise many questions concerning the 
relationship between the insulin resistance in differ-
ent brain areas and in the peripheral tissues [15,56,90]. 
It is not clear whether or not they develop in parallel 
and for how long they exist independent of each other, 
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causing various forms of pathology [15,91–94]. If there 
is a functional relationship between them, is insulin 
resistance in the brain capable of inducing insulin 
resistance in the periphery and to cause T2DM?

Recently, the hypothesis of central genesis of T2DM 
has been developed intensively. According to it, one of 
the trigger mechanisms of T2DM is the central insulin 
resistance [11–15]. The identification of the relationship 
between the insulin resistances in the CNS and in the 
periphery offers great opportunities for the treatment 
of T2DM at the early stages. In humans, insulin resis-
tance takes a long time, usually 10–15 years, to develop 
before there appear signs of T2DM. The data from 
clinical trials show that a significant number of patients 
with the decreased insulin sensitivity (prediabetes) in 
the brain demonstrated the early stages of AD [95,96]. 
Later, due to prolonged central insulin resistance, some 
patients have the late stages of AD with dementia, but 
without transition of prediabetes into T2DM, while 
the other AD patients have the signs of overt T2DM. 
In the cortex and hippocampus of patients with AD 

the insulin and IGF-1 resistance caused by the weak-
ening of the signaling pathways IR/IRS-1/PI3K and 
IGF-1R/IRS-2/PI3K was detected [88].

Using the MS and T2DM models, the evidences 
were obtained that a decrease in activity of the brain 
insulin system led to an impairment of energy homeo-
stasis and peripheral insulin sensitivity. The neuron-
specific IR knockout mice (NIRKO) had hyperphagia, 
the increased body weight, hyperglycemia, moderate 
insulin resistance, and the increased levels of insulin, 
leptin and triglycerides [83,85]. The inactivation of IR 
in the ARC of the hypothalamus with antisense oli-
gonucleotides led to insulin resistance in the liver 
and, consequently, to a weakening of the ability of 
insulin to suppress the peripheral glucose production 
by hepatocytes, inducing the moderate hyperglyce-
mia and dyslipidemia [16,84]. In the brain of NIRKO-
mice insulin did not activate PI3K and AKT-kinase, 
which increased the phosphorylation of microtubule-
associated Tau-protein [85]. In obese mice, hyperphos-
phorylation of Tau-protein was associated with the 

Figure 1. Insulin and leptin signaling. 
AKT: Protein kinase B; GLUT4: Insulin-regulated glucose transporter of the type 4; GSK3: Glycogen synthase kinase 
3; IRS1/2: Insulin receptor substrates 1 and 2; JAK2: Janus kinase-2; mTOR: Mammalian target of rapamycin; p85-
PI3K and p110-PI3K: Regulatory (p85) and catalytic (p110) subunits of heterodimeric p85/p110 phosphatidylinositol 
3-kinase; PDE3B: Phosphodiesterase of the subtype 3B; PDK: Phosphoinositide-dependent kinase; PI-3,4,5-P(3): 
Phosphatidylinositol 3,4,5-triphosphate; PKC: Protein kinase C; STAT3: Signal transducer and activator of 
transcription of the type 3.
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resistance of neuronal cells to insulin and IGF-1 [97]. 
Site-specific hyperphosphorylation of Tau-protein is 
the main mechanism mediating the link between cen-
tral insulin/IGF-1 resistance and neurodegenerative 
changes [97,98]. The increased phosphorylation of Tau-
protein in T2DM and AD was independent of periph-
eral insulin resistance, hyperinsulinemia and hypergly-
cemia, indicating the key role of central mechanisms 
in the regulation of this process [99]. The expression of 
gene encoding the neuron-specific IR in the brain of 
mice lacking both IR and GLUT4 increased survival of 
animals and improved the energy metabolism, despite 
the GLUT4 deficiency [100].

In the cortex and hippocampus of hamsters with 
MS induced by fructose diet a decrease of activity of 
IR, IRS-1 and AKT-kinase was showed. The main 
cause for this was the increase of the expression of 
PTP1B that dephosphorylates IR and IRS-1, break-
ing the transduction of insulin/IGF-1 signals through 
the 3-phosphoinositide pathway [73]. Other authors 
revealed no changes in IR functions in the brain of rats 
with spontaneous T2DM, but detected the decreased 
expression and altered binding properties of IGF-1R, 
which, similarly to the case of the reduced IR activity, 
led to a decrease of AKT-kinase activity [101].

An important role in the disturbances of the brain 
insulin signaling system has a decrease in activity or 
shutdown of IRS-proteins and PI3K resulting in insu-
lin resistance, hyperphagia, carbohydrate and lipid 
metabolism abnormalities, which leads to T2DM 
and MS [102–104]. The deletion of the irs2 gene in the 
hypothalamic nuclei of mice induced the increase of 
appetite, fat and muscles weight, linear growth, and 
eventually led to insulin resistance. The signs of overt 
T2DM were identified in mice at the age of 6–10 
months [105]. The intracerebral administration of PI3K 
inhibitor reduced the phosphorylation of AKT-kinase 
in the hypothalamus and induced an increase in the 
insulin resistance [103]. The same result was obtained 
due to dysregulation of the 3-phosphoinositide path-
way by melatonin, which is responsible for generation 
of circadian rhythms and through the brain 3-phos-
phoinositide pathways inhibited gluconeogenesis in 
the liver [106]. The treatment of mice with antagonists 
of melatonin receptors also led to insulin resistance, 
whereas the treatment with melatonin, on the con-
trary, increased the phosphorylation of AKT-kinase 
and restored insulin sensitivity. It should be mentioned 
that the decline in brain melatonin level was observed 
in many patients with prediabetes and T2DM [107]. 
Moreover, removal of the epiphysis producing mela-
tonin increased gluconeogenesis and provoked insulin 
resistance in the liver [108]. These data indicate a close 
relationship between circadian rhythm disorders and 

insulin resistance, and demonstrate participation of 
the brain melatonin signaling in control of peripheral 
insulin sensitivity [109].

The approaches to improve the brain insulin/
IGF-1 signaling
The most promising approach to restore the activity 
of brain insulin signaling system in T2DM and MS is 
to increase insulin level in the CNS. Injectable insulin 
is not very reasonable in this case, since the transport 
of peripheral insulin into the brain in the conditions 
of insulin resistance is impaired. The intracerebroven-
tricular administration of insulin can be used only in 
experimental conditions. Therefore, the best way is 
intranasal route of insulin delivery, as it leads to an 
increase of intracerebral concentration of hormone [110–
112]. This method is easily reproducible and requires no 
special equipment. Of note, in the recent years, intra-
nasal route has been widely used for delivery of many 
hormones [112,113].

In the recent years the intranasal insulin (I-I) has 
been widely used to correct AD, posttraumatic stress 
disorders and other cognitive dysfunctions [114–120]. 
Meanwhile, the efficiency of I-I therapy in the treat-
ment of T2DM and MS is not so obvious, which is 
largely due to some gaps in the knowledge concerning 
the mechanisms of I-I action on the brain signaling, 
insulin sensitivity and peripheral metabolism. Despite 
this, there are encouraging evidences that brain insu-
lin resistance can at least partially be overcome by I-I, 
as shown in the clinic and under experimental condi-
tions, which is important in the treatment of both AD 
and diabetic pathology that are characterized by the 
decreased insulin sensitivity in the CNS [121].

According to our data long-term I-I treatment of rats 
with the neonatal and the high-fat diet (HFD) models 
of T2DM improved glycemic control and restored the 
insulin sensitivity [122,123]. In our view this depends to a 
great extent on the ability of I-I to restore activity of the 
adenylyl cyclase (AC) signaling system regulated by 
monoamines and peptide hormones in the brain and 
peripheral tissues [122–124]. It was shown by the other 
authors that the treatment of rats with I-I increased 
insulin sensitivity in adipocytes and suppressed the 
lipolysis in the white adipose tissue, improving the lipid 
metabolism [125]. These data give basis for the conclu-
sion that I-I treatment can prevent or attenuate the 
complications of T2DM, including diabetic encepha-
lopathy and cardiomyopathy. Note that I-I treatment 
of rats with T1DM also restored the functions of the 
AC signaling system in the brain and in the periphery, 
and improved the cognitive functions [126,127].

The expected prospects in developing the drugs to 
increase the brain insulin levels are associated with 
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the use of inhibitors of the activity of insulin degrad-
ing enzyme (IDE), which destroys the hormone mol-
ecule [128,129]. However, no commercial drugs that are 
selective IDE inhibitors have been available yet. Nei-
ther the molecular mechanisms of their action have 
been studied in detail, because these inhibitors influ-
ence the signaling pathways regulated by different hor-
mones [129]. At the same time, in the experimental con-
ditions IDE inhibitors had a pronounced hypoglycemic 
effect. Recently, highly potent inhibitor 6bK based on 
the 20-membered macrocycle structure was developed, 
and it substantially improved glucose tolerance in lean 
and diet-induced obese (DIO) mice [129]. It may be 
expected that in the coming years selective IDE inhibi-
tors will be one of the most successful drugs to correct 
the brain insulin signaling in T2DM and MS.

The IGF-1 level in the brain can also be increased to 
improve the metabolic processes and restore the CNS 
functions in MS and T2DM, but the available data on 
application of this approach refer only to experimental 
models of T1DM [130,131]. The effective doses of intra-
cerebrally administered IGF-1, compared with insu-
lin, were significantly lower, and the effect of IGF-1 
increased when it was administered together with insu-
lin [131]. It can be assumed that the increase of the lev-
els of insulin and IGF-1 provides potentiation of their 
stimulating effect on the 3-phosphoinositide pathway 
in neuronal cells. This makes it necessary to use co-
administration of IGF-1 and insulin to improve central 
and peripheral insulin sensitivity in T2DM and MS.

In the last few years, the data on the therapeu-
tic effect of biguanide metformin on the CNS in 
T2DM and MS, as well as its positive influence on 
the brain insulin signaling were obtained [132]. Cur-
rently, metformin and its analogs are the main drugs 
used in the treatment of patients with T2DM and 
its complications, including cardiovascular disorders 
and cancer [133]. In the CNS, metformin exhibits the 
antioxidant and neuroprotective effects, prevents the 
neurodegenerative changes and restores the neuronal 
signaling network. In the rat models of T2DM the 
four-week metformin treatment led to a weakening of 
oxidative stress in the CNS [134]. This drug inhibited 
the apoptotic neurodegeneration induced by etoposide 
and ethanol in rat cortical neurons [135,136]. Metfor-
min stimulated the AMPK-dependent processing of 
β-amyloid peptide and activated phosphatase PP2A 
which dephosphorylates Tau-protein in neuronal 
cells, thereby reducing the accumulation of β-amyloid 
peptide and the phosphorylation of Tau-protein, and 
preventing the neurodegeneration [137–139]. Co-admin-
istration of metformin and insulin caused the poten-
tiation of their inhibitory effect on the formation of 
amyloid fibrils in neurons [140]. However, the efficacy 

of the inhibitory effect of metformin on the neuro-
degeneration was strongly dependent on the severity 
of metabolic disorders, the models of neuronal insu-
lin resistance and other factors, because in some cases 
its effect was significantly reduced [132,140]. All this 
should be taken into consideration in the treatment 
of T2DM-associated neurodegenerative diseases with 
metformin.

Another promising and rather new approach used 
for restoration of the brain insulin/IGF-1 signaling is 
inhibition of PTP1B, a negative regulator of the signal-
ing, that dephosphorylates and inactivates both recep-
tors and IRS-proteins [141]. The PTP1B has a signifi-
cant impact on the development of insulin resistance 
and metabolic disorders [21]. The administration of 
Trodusquemine and Claramine, the specific PTP1B 
inhibitors, into the brain suppressed PTP1B activity 
in hypothalamic neurons and activated insulin signal-
ing in them. This effect was observed in mice with 
HFD-induced T2DM and in mutant mice with the 
central and peripheral insulin resistance [142–144]. Tro-
dusquemine and Claramine penetrated the BBB quite 
easily. Therefore, injected intraperitoneally, they inhib-
ited the PTP1B activity in the CNS and in the periph-
ery, thereby restoring the activity of insulin signaling 
system in the brain, liver, skeletal muscles, and the 
other organs and tissues. In addition, these inhibitors 
prevented the negative influence of PTP1B on leptin 
signaling pathways involved in the central regulation 
of energy expenditure and insulin resistance [145].

Leptin signaling system
Leptin, product of the ob gene, is synthesized in adi-
pocytes and transported through the BBB into the 
brain, and specifically binds to leptin receptors belong-
ing to the family of cytokine receptors [146]. The high-
est density of leptin receptors is characteristic of the 
hypothalamus, but they were also detected in the cor-
tex, thalamus, cerebellum, olfactory bulb and choroid 
plexus [147–149]. The binding of leptin with function-
ally active long form of leptin receptor OBRb induces 
the activation of nonreceptor tyrosine kinase JAK2 
(Figure 1). The JAK2 kinase phosphorylates the resi-
dues Tyr985, Tyr1077 and Tyr1138 located in the intracel-
lular domain of leptin-activated receptor OBRb, and 
the phosphotyrosine residues provide the interaction 
between phosphorylated OBRb and the SH2-domain-
containing proteins. The phosphorylated residues 
Tyr1077 and Tyr1138 interact with the transcription fac-
tors STAT5 and STAT3, while the phosphorylated 
residue Tyr985 interact with SH2-containing protein 
tyrosine phosphatase-2 (SHP2), activating the kinases 
ERK1/2 [146,150,151]. The activation of the transcription 
factors STAT3 and STAT5 provokes transcription of 
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the STAT3/STAT5-dependent genes. The formation 
of the ternary complex consisting of leptin-activated 
receptor OBRb, phosphorylated JAK2 kinase and 
SH2-containing protein SH2B1 leads to tyrosine 
phosphorylation of IRS-proteins and further activation 
of PI3K and AKT-kinase [146,152,153].

The ability of leptin to activate the 3-phosphoinosit-
ide pathway that is involved in the regulation of the 
metabolic and growth processes in neuronal cells, and 
in the interaction of the leptin signaling system with 
the brain systems regulated by insulin, IGF-1, melano-
cortins, NPY and GLP-1, point to the key role of leptin 
in control of feeding behavior, energy expenditure, 
insulin resistance, neurogenesis, neuroprotection and 
synaptic plasticity [85,154–162]. The influence of leptin 
on the NPY and melanocortin systems of the hypo-
thalamus is realized due to the ability of this hormone 
regulating the synthesis and secretion of NPY, α-MSH 
and AGRP, endogenous antagonist of the melano-
cortin receptors, in hypothalamic neurons [154,156,158]. 
Leptin through the 3-phosphoinositide pathway inhib-
its the apoptotic processes in neuronal cells and pre-
vents the degradation of dopaminergic neurons caused 
by toxins [155,163]. Note that the dopaminergic neurons 
are involved in the effects of leptin on feeding behav-
ior and energetic balance [164]. As a consequence, the 
decrease of leptin level and of activity of leptin system 
in the hypothalamus and other brain areas result in 
imbalance of neuronal interactions, abnormalities in 
the central regulation of peripheral metabolism, and 
insulin resistance, which leads to the metabolic, neuro-
endocrine and neurological disorders, including severe 
obesity, MS and T2DM [165].

The relationship between the decrease in leptin sen-
sitivity in the brain and the development of insulin 
resistance was shown in patients with obesity, MS and 
T2DM having the Gln223Agr and Asp100Tyr mutations 
in gene encoding leptin receptor OBRb [35]. The muta-
tions reduced the activity of the receptor OBRb and 
inhibited the transduction of leptin signal, decreasing 
insulin sensitivity in neurons. In experimental MS it 
was shown that intracerebral administration of leptin 
significantly reduced the insulin doses required to con-
trol the blood glucose level, due to the weakening of 
insulin resistance and the decrease of production of 
glucagon, a functional antagonist of insulin [166,167]. 
Since glucose homeostasis is regulated through the 
3-phosphoinositide pathway, the latter being the tar-
get of insulin and leptin, the interaction between the 
leptin and insulin signaling systems is realized at the 
level of PI3K and AKT-kinase in the hypothalamus, 
and this molecular mechanism mediates the effects 
of leptin on insulin sensitivity and insulin-dependent 
 glucose uptake [85,157,165].

Another mechanism of leptin action on insulin sen-
sitivity consists in regulatory influence of leptin on 
hypothalamic melanocortin system. This finds sup-
port in the results of investigation where the agonists 
of the types 3 and 4 melanocortin receptors (MC

3
R 

and MC
4
R) enhanced the ability of intracerebrally 

administered leptin to increase glucose utilization and 
to restore insulin sensitivity and lipid metabolism in 
mice with hyperglycemia, dyslipidemia and hyper-
insulinemia, while their antagonists, on the contrary, 
prevented these effects of leptin [168]. The intra cerebral 
administration of leptin into mice with T1DM 
restored the expression of POMC, the precursor of α- 
and γ-MSH, and the activity of the brain melanocortin 
system, and, thus, improved glycemic control [166,169].

There are many evidences to support the view that 
the weakening in activity of the brain leptin signal-
ing system both in diabetic and nondiabetic pathology 
leads to the neuronal damage, the impaired synaptic 
plasticity and hormonal sensitivity of hypothalamic 
neurons [170–174]. Such weakening can be provoked 
by the central leptin deficiency, the altered activity of 
leptin receptor and IRS-proteins, and the decreased 
response of hypothalamic neurons to insulin [175,176]. 
It was shown that the leptin deficiency and the leptin 
resistance in the CNS were involved in the impair-
ment of cognitive functions in T2DM, MS and also 
in experimental type 1 DM [171,174,177,178]. Since leptin 
stimulates the transcription of genes encoding IR and 
IRS-proteins, a decrease of its regulatory effects at the 
early stages of insulin resistance leads to weakening of 
function of the brain insulin system and exacerbates 
insulin resistance. This process, a kind of avalanche 
by nature, gives rise to the development of combined 
insulin and leptin resistance in neuronal cells, which 
leads to deterioration of the metabolic and neurode-
generative disorders. The restoration of the brain leptin 
system with intracerebrally injected leptin improved 
the neuronal plasticity and suppressed the neuro-
degenerative processes in the animals with MS and 
T2DM [166,169].

Despite great potential of the approach based on the 
restoration of the brain leptin signaling in metabolic 
disorders, currently leptin is used to a limited extent 
in clinic to treat and prevent MS and T2DM. This is 
due to the development of leptin resistance, a decrease 
of the level of endogenous leptin, and inefficiency of 
leptin therapy in the case of the central leptin signaling 
being impaired [171,179]. In some cases the replacement 
therapy with leptin is effective. The daily subcutane-
ous injections of recombinant leptin led to a reduction 
of hyperphagia and body weight in children with the 
severe obesity caused by inactivating mutations in the 
gene encoding leptin [180]. The leptin therapy gives 
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good results in diabetic and nondiabetic patients with 
lipodystrophy, who have significantly reduced produc-
tion of endogenous leptin due to a deficiency of fat 
mass [181–183]. This treatment prevents the develop-
ment of overt T2DM, as the restoration of leptin levels 
normalizes lipid metabolism in the liver and muscles. 
The combination of leptin therapy and caloric restric-
tion is the appropriate approach to reduce the body 
weight and fat mass in obese patients, since the caloric 
restriction alone leads to a significant decrease in the 
leptin level and suppresses the leptin signaling in the 
hypothalamus, preventing the weight loss [184]. At the 
same time, in the last few years many approaches to 
restore the leptin signaling were developed, and they 
were quite effective (see the review by Roujeau and 
 co-authors [185]).

A promising approach is the use of leptin admin-
istered together with amylin, cholecystokinin and 
GLP-1, which significantly increase the sensitivity of 
cells, hypothalamic neurons in particular, to leptin and 
enhance leptin effect on insulin sensitivity and metab-
olism [186–188]. The treatment of obese DIO-rats with 
a combination of leptin and amylin led to a significant 
decrease in appetite and body weight, while the mono-
therapy was not enough effective [189,190]. It should be 
noted that DIO-rats had leptin resistance and this was 
the main cause of low efficiency of leptin monotherapy. 
Co-administration of leptin and amylin significantly 
increased the sensitivity of hypothalamic neurons to 
leptin, which caused a decrease in appetite and was the 
mechanism that contributed to the synergistic effect of 
these hormones [191]. The addition of cholecystokinin 
to the combination of leptin and amylin considerably 
increased their therapeutic effect [186]. Co-administra-
tion of leptin and the agonists of GLP-1 receptor, exen-
din-4 in particular, into obese rodents restored leptin 
sensitivity, normalized feeding behavior and improved 
the lipid and carbohydrate metabolism [187,188,192,193]. 
The combination of leptin with clusterin, a ligand for 
LDL receptor-related protein-2, was also effective and 
led to the increase of anorectic effect of leptin and its 
ability to activate the transcription factor STAT3 in 
hypothalamic neurons [194]. It should be noted that the 
knockout of the Stat3 gene or the mutation of STAT3-
interacting residues Tyr1138 in leptin receptor led to the 
obesity and hyperphagia [195–197].

Another approach is to apply the peptide frag-
ments corresponding to the C-terminal region 116–
122 of leptin, the most effective of which is peptide 
[D-Leu-4]-OB-3. In C57BL/6J ob/ob mice this pep-
tide improved the glucose control and insulin sensitiv-
ity [198]. On the basis of peptide [D-Leu-4]-OB-3, the 
drugs effective in intranasal and oral administration 
were developed whose activity significantly surpassed 

that of the same peptide when administered parenter-
ally [199,200]. The peptide analogs of leptin easily pen-
etrated the BBB and specifically interacted with leptin 
receptors in the CNS, activating leptin signaling in the 
hypothalamus [185].

The increase of leptin sensitivity can be achieved 
with inhibitors of the phosphatase PTP1B and the 
suppressor of cytokine signaling 3, the negative reg-
ulators of leptin signaling [201–203]. The treatment of 
DIO-mice with Trodusquemine, an allosteric PTP1B 
regulator, decreased appetite, body weight and adipose 
tissue mass, and increased the sensitivity of neurons 
to leptin and insulin [142]. This effect was due to its 
ability to prevent the inhibition of JAK2- and STAT3-
dependent pathways responsible for anorectic influence 
of leptin. The compound JTT-551, a highly selective 
PTP1B inhibitor, also increased leptin signaling in 
DIO-mice [204]. A single co-administration of leptin 
and JTT-551 led to the activation of STAT3-depen-
dent pathways in the hypothalamus and suppressed the 
appetite. The long term, 6-week, co-administration 
of leptin and JTT-551 into obese animals had a pro-
nounced antidiabetic effect and improved glucose and 
lipid homeostasis [204]. It was also suggested to use, in 
addition to PTP1B inhibitors, the regulators of leptin 
receptor processing, including the inhibitors of endo-
spanin-1 preventing leptin receptor translocation to 
the plasma membrane [205] and leptin derivatives with 
increased ability to penetrate the BBB [206,207]. A wide 
range of pharmacological agents capable of activating 
the brain leptin system, and a significant importance of 
this system in control of insulin sensitivity and energy 
balance allow considering the leptin signaling in the 
brain as one of the main targets in the treatment of 
MS and T2DM, including the early stages of these 
 diseases.

Dopamine signaling system
The neurotransmitter DA controls many physiologi-
cal functions, including locomotor activity, cogni-
tion, emotions, feeding behavior. It also regulates the 
endocrine, cardiovascular and digestive systems. The 
cellular effects of DA are realized through five types 
of DAR, all coupled to the enzyme AC (Figure 2). By 
binding to the types 1 and 5 DAR, the DA stimulates 
AC activity, and by binding to the types 2, 3 and 4 
DAR inhibits it [208].

With a decrease of the brain DA level and the activ-
ity of DA

2
R, the activity of brain dopaminergic system 

in patients and in experimental animals with MS and 
T2DM weakened significantly [209,210]. The restoration 
of activity of the dopaminergic signaling system can be 
achieved using the selective DA

2
R-agonists that nor-

malize the CNS functions impaired in diabetic pathol-
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ogy, improve the glycemic control and prevent the car-
diovascular diseases. The most effective among them is 
alkaloid bromocryptine (BC), a selective DA

2
R-agonist 

that activates G
i
 protein-coupled DA

2
R and decreases 

the intracellular cAMP levels in neuronal cells. The 
BC inhibits the activity of hypothalamic neurons con-
trolling glucose production and lipid synthesis in the 
liver and, in addition, activates dopaminergic neurons 
regulating the insulin sensitivity [210–214]. Historically 
and up to now, BC had widely used to treat Parkinson’s 
disease and hyperprolactinemia.

The first publication devoted to the hypoglyce-
mic effect of BC (Cycloset) appeared in 1999 [215]. 
Now there is evidence for high efficiency of BC and 
its analogs in the treatment of patients with MS and 
T2DM [210,212,216–223]. The long-term BC therapy of 
diabetic patients reduced the insulin resistance index 
and the levels of glycated hemoglobin, triglycerides and 
LDL-cholesterol, which indicates normalization of the 
carbohydrate and lipid metabolism [212,216,217,219,222]. 
The data are available showing the positive effect of 
BC on the metabolic status in experimental animals 

with MS and alloxan-induced T1DM [224–226]. The 
BC treatment of rats with MS normalized the levels 
of postprandial glucose, insulin and triglycerides [224]. 
The BC lowered the blood glucose level but had no 
significant influence on insulin level, neither did cause 
hypoglycemic episodes adversely affecting the CNS.

The effectiveness of BC influence on glycometa-
bolic parameters was comparable to that of metformin, 
widely used antidiabetic drug. When co-administered, 
BC caused the increase of hypoglycemic effect of low-
dose insulin and enhanced the glucose-lowering effect 
of metformin, glipizide and pioglitazone, as demon-
strated in clinical trials [211,222,227,228] and in animal 
models of MS [224,225]. The treatment of patients with 
T2DM with a combination of metformin (1000 mg/
day) and BC (0.8–1.6 mg/day) induced a more pro-
nounced decrease of the levels of fasting and post-
prandial glucose and glycated hemoglobin than in the 
monotherapy [228]. Co-administration of BC and met-
formin to patients with T2DM enhanced the glucose-
lowering effect of these drugs, reduced their effective 
doses and allowed avoiding the side effects [227]. The 

Figure 2. The hormone-sensitive adenylyl cyclase signaling system. 
5-HT1,4,6,7R: 5-hydroxytryptamine receptors of the types 1, 4, 6 and 7; cAMP: 3’,5’-cyclic adenosine monophosphate; 
CREB: cAMP response element-binding; D1,2DAR: Dopamine receptors of the types 1 and 2; EPAC: cAMP-responsive 
Rap1 guanine nucleotide exchange factor; GLP-1: Glucagon-like peptide-1; MC4R: Melanocortin receptor of the 
type 4; αsβγ and αiβγ: Heterotrimeric Gs- and Gi-proteins; PKA: Protein kinase A; Rap1: Ras-related protein 1.
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potentiation of glucose-lowering effect of co-adminis-
tered BC and glipizide was shown in rats with alloxan 
T1DM [225].

Proceeding from the clinical and experimental 
results the assumption was made that BC-induced 
restoration of insulin resistance and glucose produc-
tion in the liver were the result of the improvement 
of the dopaminergic system in hypothalamic neurons 
involved in control of the central and peripheral insu-
lin sensitivity [212]. It should be mentioned at this point 
that the brain dopaminergic system, primarily DA

2
R, 

is involved in control of feeding behavior and energy 
expenditure, and, therefore, is an important regula-
tor of glucose homeostasis [229]. The ability of BC to 
restore insulin sensitivity in T2DM can be explained 
in terms of the hypothesis of central genesis of insulin 
resistance, which, as said above, is based on the con-
cept of impairments in the dopaminergic and other 
neurotransmitter systems, regarded as the prime causes 
of MS and T2DM [11–15].

The abnormalities in the integrative signaling 
network of the hypothalamus, which include the 
decreased activity of the dopaminergic signaling sys-
tem in hypothalamic neurons, the increased noradren-
ergic and serotonergic signaling in the ventromedial 
hypothalamus, and the increase of the levels of NPY 
and corticoliberin in the hypothalamic PVN all led to 
hyperactivation of the hypothalamic–pituitary–adre-
nal axis and to release of cortisol, and to the increase 
of activity of the sympathetic nervous system and its 
influence on the liver, adipose tissue and the cardio-
vascular system [230–232]. Further increase of activity of 
the sympathetic nervous system in the adipose tissue 
provoked the changes in lipid metabolism, enhanced 
the secretion of proinflammatory factors and, hence, 
provoked insulin resistance [233]. The increase of corti-
sol level and the increased activity of the sympathetic 
nervous system in the liver enhanced the glucose 
release and reduced its uptake by hepatocytes, which 
caused the postprandial hyperglycemia and insulin 
resistance [234,235]. Therefore, it is not to be excluded 
that restoration of the brain dopaminergic systems due 
to BC treatment prevents the weakening of the hypo-
thalamus, and interrupts the chain of pathological 
changes in the CNS and in the periphery.

The ability of BC to control the levels of biogenic 
amines in the suprachiasmatic nucleus of hypothala-
mus and the circadian rhythm of secretion of 5-HT 
and other neurotransmitters is also of great importance 
in the regulation of metabolic processes in diabetic 
pathology. The treatment of diabetic hamsters with 
BC provoked the 12 h shift of the maximum daily 
concentrations of 5-HT and its metabolite, 5-hydroxy-
indole acetic acid, which, therefore, were observed in 

the dark period. The increase of hypothalamic content 
of 5-HT and its metabolites at the nighttime to values 
typical of healthy animals led to restoration of func-
tions of the brain signaling network [236]. As a result, 
functional state of diabetic animals improved, insulin 
sensitivity increased and the elevated levels of glucose 
and free fatty acids decreased.

It has been accepted for a long time that functions of 
the cardiovascular system are dependent on the brain 
signaling systems, the dopaminergic in particular. The 
decrease in the activity of the dopaminergic system in 
the CNS led to hyperactivation of the myocardial sym-
pathetic nervous system and contributed significantly 
to the development of cardiovascular diseases [222]. 
Other causes of dysfunctions of the cardiovascular 
system in T2DM are the disturbances of carbohydrate 
and lipid metabolism, lipotoxicity, oxidative stress, 
insulin resistance and the elevated levels of proinflam-
matory factors, all causing damage of vascular endo-
thelial cells, triggering inflammatory processes in them 
and inducing the atherosclerotic plaque formation [237]. 
The treatment of diabetic patients with BC is one of the 
most perspective approaches to prevent vascular pathol-
ogy [232,238]. As shown by the results of clinical trials 
and experiments with hypertensive rats, dysfunctions 
in the cardiovascular system can be a good reason to 
use BC in the treatment of T2DM and MS [212,232]. In 
addition, BC prevents the abnormalities in the excre-
tory system of diabetic patients and in the case of 
chronic kidney diseases slows down their progress [239].

We demonstrated that the 2-month BC treatment of 
rats with HFD-induced T2DM resulted in the restora-
tion of glycometabolic parameters and improved insu-
lin sensitivity [226,240]. Along with this, it was found 
that BC partially restored the AC inhibitory effects of 
5-nonyloxytryptamine and somatostatin in the brain 
of diabetic rats [226], which may be expected due to the 
relationship between DA

2
R and the somatostatin and 

serotonin signaling systems in the CNS. The BC treat-
ment normalized the adrenergic signaling and regula-
tory effects of relaxin and somatostatin in the myocar-
dium, and restored the AC sensitivity to gonadotropin 
in the Leydig cells, indicating a broad therapeutic 
potential of BC in T2DM therapy [241].

As far as changes in G
s
 protein-coupled DA

1
R are 

concerned, this problem was studied by the other 
authors and the data they obtained are available 
now [242]. Co-administration of DA

1
R and DA

2
R ago-

nists into ob/ob mice and rats with T1DM suppressed 
appetite and hyperphagia more effectively than the 
treatment with DA

2
R agonist alone [243,244]. The ano-

rectic effect of DAR agonists is due to their ability to 
inhibit the expression of NPY and its receptors, ele-
vated in DM. As a result, agonists of DAR normalized 
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the NPY signaling pathways in hypothalamic neu-
rons and restored the feeding behavior dependent on 
them. The suppression of appetite by DAR agonists in 
DM, as compared with healthy animals, required their 
higher doses and was less effective, which may have 
been due to the weakening of the brain dopaminergic 
system and the increased activity of hypothalamic neu-
rons mediating the NPY effects. Nevertheless, there 
are grounds to expect that in future the DA

1
R agonists 

in combination with DA
2
R will find application in the 

treatment of T2DM and MS.

Serotonin signaling system
The 5-HT, an important neurotransmitter, acting 
through the brain serotoninergic signaling system 
regulates feeding behavior, motor activity, pain, sleep, 
mood, sexual activity, depression, anxiety, aggression 
and learning. Brain 5-HT is involved in the control 
of the cardiovascular, reproductive and endocrine sys-
tems, and regulates the synthesis and secretion of insu-
lin and other hormones by the pancreas [245,246]. The 
regulatory effects of 5-HT are implemented through 
15 subtypes of metabotropic 5-HTR and three sub-
types of ionotropic 5-HT

3
R. The metabotropiс 

5-HTR, depending on the type of G-protein interact-
ing with them, are subdivided into four groups: the 
G

i/o
-coupled 5-HT

1A
R, 5-HT

1B
R, 5-HT

1D
R, 5-HT

1E
R 

and 5-HT
1F

R; the G
q/11

-coupled 5-HT
2A

R, 5-HT
2B

R 
and 5-HT

2C
R; the G

s
-coupled 5-HT

4
R, 5-HT

6
R and 

5-HT
7
R and the 5-HT

5A
R and 5-HT

5B
R interacted 

with both G
q/11

- and G
i/o

-proteins [247,248].
In the brain, 5-HT is responsible for the develop-

ment, differentiation and regeneration of neuronal cells, 
whereby the abnormalities in 5-HT signaling leads to 
the impaired synaptic plasticity, imbalance of neuronal 
network, neurodegenerative changes and eventually to 
psychiatric diseases [249,250]. The disturbances in the 
brain 5-HT signaling also result in eating disorders, 
metabolic dysfunctions and the decrease of insulin 
sensitivity, and can be a trigger for obesity, MS and 
T2DM [251].

It was shown that in the CNS of patients with 
DM2 and MS the free level of tryptophan, a precursor 
of 5-HT, and the ratio of free/total tryptophan were 
decreased [252–255]. The decrease of 5-HT concentra-
tion and the changes of 5-HT metabolism due to alter-
ation of the activity of tryptophan-5-hydroxylase-2, 
the rate-limiting enzyme of 5-HT biosynthesis, led to 
abnormalities in the brain 5-HT signaling, to altera-
tions of the number and affinity of 5-HTR, and to 
impairment of 5-HT-mediated regulation of peripheral 
metabolism and insulin sensitivity [254–257].

The data on 5-HT deficiency in the brain of dia-
betic patients allow the assumption that the increase of 

serotonin level in the CNS is an appropriate method to 
improve feeding behavior, energy expenditure, glyce-
mic control and insulin sensitivity impaired in diabetic 
pathology. This is confirmed by the results of treatment 
of patients with depression using selective serotonin 
reuptake inhibitors (SSRIs). Treatment with fluoxetine 
decreased body weight, normalized the glucose level, 
reduced the blood level of glycosylated hemoglobin, 
improved the insulin sensitivity, as well as prevented 
neurological disorders [34,40,258–262]. We showed that 
the long-term treatment of female rats with neona-
tal model of T2DM using intranasally administered 
5-HT improved metabolic parameters and cognitive 
functions, and restored the insulin sensitivity [34]. 
According to the other authors, the treatment of obese 
glucose-intolerant mice with selective 5-HT

2C
R-ago-

nist BVT.X significantly improved glucose tolerance 
and reduced the plasma insulin level; these effects were 
observed at the BVT.X concentration ineffective in 
respect of feeding behavior, energy expenditure, body 
weight and locomotor activity [40]. The pronounced 
effect of the 5-HT

2C
R agonist on insulin resistance 

was due to the restoration of hypothalamic 5-HT
2C

R 
signaling decreased in MS and DM2. There is a lot of 
evidences that attenuation of 5-HT

2C
R signaling leads 

to hyperphagia, disturbed energy expenditure, obesity, 
reduced insulin sensitivity, and the hypothalamic mel-
anocortin system closely linked to 5-HT

2C
R is involved 

in these metabolic and behavioral changes [40,42,263]. 
The MC

4
R and 5-HT

2C
R are co-localized in neurons 

of the ARC of the hypothalamus and both are directly 
involved in the effects of 5-HT

2C
R-agonists on insulin 

sensitivity [40]. The 5-HT
1
R also participate in the reg-

ulation of feeding behavior and insulin sensitivity. The 
activation of 5-HT

1B
R by m-chlorophenylpiperazine, 

a mixed agonist of 5-HT
1B

R and 5-HT
2C

R induced 
a decrease of appetite and partially restored insulin 
sensitivity in mice lacking 5-HT

2C
R. The injection of 

the 5-HT
1A

R-agonist 8-hydroxy-2-(di-n-propylamino)
tetralin (8-OH-DPAT) into the PVN and the anterior 
medial nucleus accumbens, and of the 5-HT

1B
R-ago-

nist CP-93,129 into the parabrachial nucleus of the 
pons caused a significant decrease of food intake and 
changed the dietary preferences [264–267]. This indicates 
that the interaction between the 5-HT

1
R-, 5-HT

2C
R- 

and MC
4
R-dependent pathways in the hypothalamic 

and the other brain areas contributes greatly to the 
control of the food intake, glucose tolerance and insu-
lin sensitivity [42].

All this gave grounds to say that the elevation of 
brain serotonin level and the restoration of serotonin-
ergic neurotransmission may provide optimization 
of the metabolic control in T2DM. On the other 
hand, there are clinical data showing that chronic 
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administration of SSRI into nondiabetic patients can 
lead to insulin resistance and lipid metabolism dis-
orders [268,269]. These data may be explained by the 
fact that a long-term increase of brain serotonin level 
above norm induces hyperactivation of serotonin 
signaling, resulting in the abnormalities of feeding 
behavior, energy expenditure and insulin sensitivity, 
and, in addition, leads to the changes in the circadian 
rhythm. The latter directly changes the functions of 
the hypothalamic-pituitary-adrenal axis and leads to 
disturbances in synchronization of the release of sero-
tonin and other neurotransmitters, DA in particu-
lar [28,29]. Besides, the role of different types of 5-HTR 
in the control of energy homeostasis differs signifi-
cantly [267,270,271]. It was shown that the bilateral infu-
sions of the 5-HT

6
R-agonist EMD 386088 into the 

nucleus accumbens caused the increase of food intake 
in both food-restricted rats and animals on fat/sucrose 
diet, while 5-HT

1A
R-agonist 8-OH-DPAT suppressed 

the feeding behavior in the same brain area [267,272]. 
These results indicate that 5-HT

1
R and 5-HT

6
R in the 

nucleus accumbens regulate the appetitive components 
of food-directed motivation in different ways and play 
a different role in modulating the food consumption.

Since the changes in the brain 5-HT signal-
ing in T2DM and MS are receptor-and brain area-
specific [273,274], this specificity should be taken into 
account in developing the approaches for their correc-
tion. In future, it will be possible to improve the brain 
5-HT signaling in T2DM and MS by using selective 
agonists of the 5-HT

1A/1B
R and 5-HT

2C
R, by optimiz-

ing SSRI therapy, and by developing the approaches 
based on the co-administration of 5-HTR agonists 
and other regulators of CNS.

Melanocortin signaling system
The brain melanocortin signaling system plays an 
important role in regulation of blood glucose, insulin 
sensitivity, feeding behavior and lipid metabolism [275]. 
The sensor components of this system are MC

3
R and 

MC
4
R activated by α-MSH and other peptides of the 

melanocortin family that are generated as a result of 
proteolytic cleavage of POMC. The α-MSH (fragment 
138–150) binds to all types of MCR, while β-MSH 
(217–234) and γ-MSH (77–87) specifically bind to 
MC

4
R and MC

3
R, respectively. Both types of MR are 

widely present in the hypothalamus, thalamus, brain 
stem and cortex, indicating their involvement in regu-
lation of many autonomic and neuroendocrine func-
tions. The activation of MC

3
R, autoreceptors located 

in the presynaptic membrane, leads to reduction of 
the activity of POMC neurons and to a decrease of the 
MC

3
R and MC

4
R signaling pathways, thereby MC

3
R 

agonists function as negative regulators of the melano-

cortin signaling. On the other hand, the binding of G
s
 

protein-coupled MC
3
R and MC

4
R with their agonists 

leads to activation of melanocortin-sensitive AC sig-
naling system, and so the regulatory effects of MC

4
R 

and MC
3
R can be potentiated [276,277]. The MC

4
R 

and MC
3
R agonists through the 3-phosphoinosit-

ide pathway increase the intracellular calcium con-
centration and activate the protein kinases PI3K and 
ERK1/2 [278,279]. Along with melanocortin peptides, 
AGRP/NPY-neurons of the ARC of the hypothalamus 
produce AGRP with MC

3
R/MC

4
R antagonistic activ-

ity [280]. The AGRP inhibits regulatory effects of mela-
nocortins, and through MC

4
R activates G protein-

independent arrestin signaling cascades [281].
As the hypothalamic melanocortin signaling has 

an important role in regulation of glucose metabolism 
and insulin sensitivity, the decrease of its activity leads 
to hyperphagia, metabolic disorders, insulin resistance, 
and eventually to severe obesity, MS and T2DM [282–
284]. Mice lacking MC

4
R had the elevated insulin level 

and the decreased insulin sensitivity even before mani-
festation of hyperphagia and obesity [282,285]. These 
mice had obesity and metabolic dysfunctions similar 
to those in mice with agouti (yellow obese) syndrome 
characterized by increased AGRP expression [286,287]. 
The administration of high doses of AGRP and syn-
thetic MC

4
R antagonists into healthy mice enhanced 

appetite and led to insulin resistance [33]. The MC
4
R 

agonists (α-MSH, melanotan-II), on the contrary, 
reduced food intake, normalized the glucose and insu-
lin levels and energy metabolism [33,282–284]. In patients 
with MS and T2DM the changes in MC

4
R signaling 

cascades and the mutations in gene encoding MC
4
R 

were identified [288–292]. The patients with the muta-
tions had severe obesity, hyperphagia and hyperinsu-
linemia, and in homozygotes these symptoms were 
more pronounced than in heterozygotes [288].

The melanocortin signaling system modulated the 
regulatory effect of insulin on glucose homeostasis 
through two mechanisms, suppression of glucose pro-
duction and enhanced glucose disposal in the liver. 
This is the basis of melanocortins-mediated control of 
insulin resistance. It has been established that central 
effects of melanocortin peptides on insulin sensitivity 
are tissue specific. The blocking of MC

4
R in the hypo-

thalamus, on the one hand, increased insulin sensitiv-
ity in the white adipose tissue and enhanced glucose 
uptake in adipocytes, and on the other hand, reduced 
insulin sensitivity in the skeletal muscles, causing an 
increase of insulin level in this tissue [284]. The influ-
ence of α-MSH on insulin sensitivity also depended 
on the target tissue. The activation of MC

4
R in the 

CNS led to the increase of insulin sensitivity in many 
tissues, while the activation of the melanocortin sys-
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tem in the periphery, on the contrary, usually induced 
the decrease in insulin sensitivity [293], which is very 
important in the light of etiology and pathogenesis of 
metabolic disorders.

The hypothalamic melanocortin system regulates 
the lipid metabolism and body weight more quickly 
and more efficiently than the other brain signal-
ing systems [284]. An important role in this belongs 
to leptin that controls the production of POMC and 
AGRP [294]. The increase of brain leptin level led to the 
increase of expression of POMC and MC

4
R genes, and 

reduced expression of AGRP gene [295]. As has been 
said above, the brain melanocortin system mediated 
many of the antidiabetic effects of leptin [296]. Mean-
while, the effect due to activation of this system did 
not coincide with those of leptin, which prompts par-
ticipation of the other brain signaling systems in the 
central effects of this hormone [297].

The decrease of activity of hypothalamic melano-
cortin system can induce dysfunctions in the brain 
integrative network and provoke the neurodegenera-
tive changes, which leads to AD and other neurological 
disorders [298–300]. The restoration of MC

4
R signaling 

had, in turn, neuroprotective and neurotrophic effects, 
improved adaptive neuronal plasticity, stimulated the 
regeneration of neuronal and glial cells and inhibited 
production and activity of proapoptotic and proinflam-
matory factors [298,300,301–303]. The treatment of gerbil 
with ischemic stroke with the MC

4
R agonist Nle4,D-

Phe7-α-MSH decreased the activity of inflammatory and 
apoptotic cascades in the hippocampus, preventing the 
severe DNA damage and delayed neuronal death, and 
reduced hippocampus injuries even when delayed up to 
9 h after ischemia [298]. Due to the MC

4
R-mediated pro-

tection of hippocampal neurons, the 12-day treatment 
of animals with Nle4,D-Phe7-α-MSH prevented the 
decrease of the spatial memory and the learning caused 
by ischemic stroke. These data indicate the participation 
of MC

4
R in the neurotrophic action of melanocortin 

peptides, resulting in the stimulation of axon growth 
and regeneration of damaged neurons [298]. The MC

4
R 

agonists also exerted potent anti-inflammatory effects 
by antagonizing the effect of interleukin 1β and other 
proinflammatory cytokines, inducing the impairment 
of memory consolidation, whose activity in the CNS 
increases substantially the diabetic pathology [302,303].

It was shown the administration of melanocor-
tins induced the neuroprotection in transgenic mice 
Tg2576 having the cognitive deficit and neurodegen-
erative changes associated with a low level of the syn-
aptic activity-dependent gene Zif268, the experimental 
model of AD [304]. The treatment of transgenic ani-
mals with Nle4,D-Phe7-α-MSH decreased neuronal 
loss, reduced the level of β-amyloid peptide deposit 

in the cerebral cortex and hippocampus, improved 
cognitive functions and restored the expression of 
the gene Zif268 in the hippocampus. Therefore, the 
MC

4
R stimulation by melanocortins is capable of 

counteracting the cognitive decline in AD and other 
neurodegenerative diseases through the induction 
of neuroprotection and the improvement of synaptic 
transmission [300,304]. There are grounds to suggest 
that the changes in the brain melanocortin system are 
one of the main causes of neurodegenerative processes 
contributing to the impairment of hippocampal plas-
ticity, cognitive deficit and metabolic dysfunctions in 
T2DM and MS.

To define the role of the brain melanocortin system 
in etiology and pathogenesis of MS and T2DM, of 
great importance is the study of experimental models 
of autoimmune diseases induced by immunization of 
animals with peptides corresponding to the extracel-
lular loops of MCR. In 2008, Hofbauer and colleagues 
showed that immunization of rats with peptide cor-
responding to the N-terminal extracellular portion of 
MC

4
R led to the increase of body weight and the levels 

of triglyceride and insulin [305]. Antibodies to peptides 
acted as the partial agonists and by their pharmacologi-
cal properties were similar to AGRP and MC

4
R antag-

onists. The treatment of rats with peptide correspond-
ing to the third extracellular loop of MC

3
R caused the 

increase in body weight and blood pressure, the ele-
vated levels of insulin, glucose and leptin, all typical of 
MS and T2DM. In the in vitro experiments antibody 
directed against MC

3
R-peptide acted as noncompeti-

tive antagonists and reduced the AC stimulatory effect 
of α-MSH [306]. We studied long-term MC

4
R defi-

ciency on rats using the autoimmune model; the ani-
mals were immunized with BSA-conjugate of peptide 
K-[TSLHLWNRSSHGLHG11–25]-A corresponding to 
the region 11–25 of the N-terminal portion of MC

4
R. 

Nine–thirteen months after the first immunization 
the animals had weight gain, impaired glucose toler-
ance, insulin resistance and dyslipidemia. The MC

4
R 

activity in the hypothalamus was decreased, which was 
illustrated by weakening of the stimulating effects of 
MC

4
R-agonists on AC activity [307,308]. To create the 

model of MC
3
R deficiency, rats were immunized with 

BSA-conjugate of peptide A-[PTNPYCICTTAH269–

280]-A corresponding to the third extracellular loop of 
MC

3
R, and 13 months later the immunized animals 

had dyslipidemia, decreased body weight, but increased 
mass of abdominal fat, which indicated changes in the 
fat/muscle weight ratio and abnormalities in the lipid 
metabolism [240]. Thus, long-term antibody-induced 
shutdown of MC

4
R and MC

3
R may be interpreted 

as indicating the possible role of the melanocortin 
 signaling system in the development of MS and T2DM.
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Nowadays, the use of MC
4
R-agonists in the treat-

ment of metabolic disorders is confined to experimen-
tal models of obesity and MS [33,283,284,309–312]. This is 
due to the lack of available and selective MC

4
R-ago-

nists, and the pleiotropy of their action, which leads 
to a large number of side effects [313]. The preference is 
generally given to nonselective agonist melanotan-II, 

which reduces body weight and appetite and improves 
the carbohydrate and lipid metabolism [309–311]. But 
the use of melanotan-II for a long time led to severe 
side effects, so this drug is not to be recommended 
for correction of metabolic disorders. Currently, new 
MC

4
R-agonists continue to come on scene, but they 

have not been used in clinic yet.

Table 1. The approach to the improvement of brain signaling systems regulated by hormones and neuromediators in 
Type 2 diabetes mellitus and metabolic syndrome.

Approach/strategy Current state Future prospects

The increase of brain levels of 
hormones and neuromediators 
due to their intranasal 
administration, the use of the 
reuptake inhibitors and the 
BBB-penetrating analogs of 
hormonal agents

The use of intranasal insulin to correct 
the neurodegenerative disorders and in 
experimental T2DM [117,119,120,122,124]; the 
use of BBB-penetrating analogs of leptin in 
experimental obesity and T2DM [185,206,207]; 
the use of SSRI and intranasal 5-HT to 
treat diabetic patients and in experimental 
conditions [34,258–262]

The development of effective approaches 
to intranasal and inhalation routes of 
administration of leptin, melanocortins 
and other regulators of the brain signaling; 
the development of nanoparticles for 
nasal delivery of hormonal agents; the 
development of the BBB-penetrating 
conjugates of hormonal agents with chitosan, 
PEG and other macromolecular carriers

The use of highly selective 
agonists/antagonists of 
hormonal receptors, which 
selectively regulate specific 
signaling pathways and 
influence a certain type of 
neuronal cells

The use of DA2R-agonist bromocriptine 
to improve glucose tolerance and 
cardiovascular functions in diabetic 
patients [210,212,215–223]; the use of leptin-
derived peptide ([D-Leu-4]-OB-3) in 
experimental models of T2DM [198–200]; 
the use of the 5-HT2CR-agonists to improve 
glucose tolerance in experimental model 
of T2DM [40]; the use of the MC4R agonists 
(Nle4,D-Phe7-α-MSH, BIM-22493, AZD2820, 
etc.) to improve feeding behavior, 
insulin sensitivity and cognitive functions 
in experimental models of metabolic 
disorders [298,300,304,310,312–317]

The development of new classes of 
highly selective agonists of the leptin, 
melanocortin and GLP-1 receptors, including 
the low-molecular-weight compounds, and 
the development of biased (functionally 
selective) agonists of 5-HTR and DAR

The application of hormones/
neuromediators analogs 
resistant to the degradation

The use of proteolysis-resistant GLP-1 
analogs (exendin-4, liraglutide, etc.) to 
improve feeding behavior, glycemic control 
and insulin sensitivity, and to prevent 
neurodegenerative changes in patients 
with T2DM and in experimental models of 
metabolic disorders [333–335,342,343,345,346]

The use of proteolysis-resistant GLP-1 
analogs to treat patients with T2DM and 
MS; the development of the proteolysis-
resistant leptin and melanocortin analogs by 
the chemical modification, the amino acid 
substitutions and the synthesis of truncated 
analogs

The use of agents that enhance 
synthesis and secretion of 
hormones and neuromediators 
and prevent their degradation in 
the CNS

The use of dipeptidyl peptidase-4 inhibitors 
to restore the insulin sensitivity and the 
metabolic processes in patients with MS and 
T2DM [333–338]; the use of IDE inhibitors to 
improve glucose tolerance in experimental 
metabolic disorders [128,129]

The development of therapeutic approaches 
to effective clinical use of dipeptidyl 
peptidase-4 inhibitors alone and in the 
combination with other CNS regulators 
and antidiabetic drugs; the search of IDE 
inhibitors suitable for clinic application; the 
search of pharmacological regulators of the 
enzymes responsible for brain synthesis of 
DA, 5-HT and other neuromediators

The application of regulators 
that act at the postreceptor 
stages of neuronal signal 
transduction

The use of PTP1B inhibitors (Trodusquemine, 
Claramine) to improve insulin and leptin 
sensitivity in experimental metabolic 
disorders [142–144,204]

The search of new highly selective 
regulators of phosphatases, protein kinases, 
cAMP-phosphodiesterases, and other 
proteins controlling the postreceptor stages 
of insulin, IGF-1 and leptin signaling, and 
their use in clinical endocrinology
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The most effective among them are α-MSH ana-
logs modified by fatty acid radical at the N-terminus 
and containing the d-Phe-Arg-Trp motif responsible 
for pharmacological activity of α-MSH and the N-ter-
minal segment Ser-Tyr-Ser responsible for selectivity 
of interaction with the receptor [314]. The lipidated 
α-MSH analog MC4-NN1–0182 had a prolonged 
effect and interacted with MC

4
R with a high selectiv-

ity and affinity. The 3-week treatment of DIO-rats 
Sprague–Dawley and 8-week treatment of minipigs 
with MC4-NN1–0182 led to the weight loss, and a 
single treatment of rats induced the increase of insulin 
sensitivity and glucose utilization [312]. Highly-selec-
tive MC

4
R agonists BIM-22493 (RM-493) that cross 

the BBB when administered peripherally improved 
obesity, hyperinsulinemia and fatty liver diseases in 
DIO-mice [315,316]. The 8-week treatment of obese rhe-
sus macaques with this drug resulted in the decrease 
of food intake, body weight and fat mass, and in the 
improved glucose tolerance [316]. Unexpected was the 
fact that the increased sensitivity to insulin in BIM-
22493-treated animals was maintained for at least 
4 weeks after the end of treatment. Note that even 
a prolonged treatment of mice and monkeys with 
BIM-22493 had no effect on the cardiovascular sys-
tem and blood pressure, the adverse effects typical of 
nonselective MCR agonists [315,316]. Another selective 
MC

4
R agonist AZD2820, a cyclic analog of α-MSH, 

prevented the increase in body weight in mice which 
received HFD after fasting [317].

The effectiveness of MC
4
R agonists can be greatly 

enhanced when they are combined with the agonists 
of GLP-1 receptor, which is now widely used in the 
treatment of MS and T2DM [318]. The co-adminis-
tration of BIM-22493 and liraglutide, a stable GLP-1 
receptor agonist, into DIO-mice increased insulin 

sensitivity, decreased body and fat mass and improved 
energy expenditure much more effectively than mono-
therapy [319]. Unlike monotherapy, in the case of co-
administration of BIM-22493 and liraglutide the 
expression of Mc4r and Glp-1r genes in hypothalamic 
neurons increased, indicating the absence of MC

4
R 

and GLP-1 receptor desensitization. As there are many 
activators of GLP-1 receptor, which include not only 
stable GLP-1 receptor agonists, but also inhibitors of 
the enzyme dipeptidyl peptidase-4 destroying endog-
enous GLP-1, there are many opportunities to fur-
ther optimize the therapy directed to simultaneous 
 activation of MC

4
R and GLP-1 receptor.

Glucagon-like peptide-1 & its signaling
The GLP-1 belonging to the incretin family activates 
the proliferation of pancreatic β-cells and increases the 
secretion of insulin, regulating the glucose and insu-
lin levels and insulin resistance. The GLP-1 is secreted 
primarily by enteroendocrine L cells of the small intes-
tine, but a small amount of hormone is produced in 
the CNS [320]. In patients with MS and T2DM, GLP-1 
restored insulin sensitivity, improved glycemic control, 
reduced the oxidative stress and prevented the dis-
turbances in the cardiovascular system, which makes 
GLP-1 and its analogs the promising drugs to treat 
these diseases [321–324]. The effects of GLP-1 were real-
ized by the peripheral mechanisms based on its influ-
ence on pancreatic β-cells, and through the central 
pathways where GLP-1 acts as a neurotransmitter and 
growth factor [325]. This was confirmed by the evidence 
that GLP-1 had neuroprotective and neurotrophic 
effects on neuronal cells and influenced the synaptic 
plasticity [320,326–328].

The effects of GLP-1 on neuronal activity are due 
to its binding with GLP-1 receptors widely distributed 

Approach/strategy Current state Future prospects

The coordinated regulation of 
two or more brain signaling 
systems

Administration of leptin with insulin, 
amylin, cholecystokinin and GLP-1 analog 
to enhance their effects on the animals 
with experimental metabolic disorders and 
in clinical trials [186–193]; administration of 
bromocryptine with insulin, metformin, 
glipizide and pioglitazone to synergize 
their effects in patients with T2DM and 
in experimental diabetes [219,222,225,228]; 
co-administration of MC4R agonists and 
GLP-1 analogs to improve insulin sensitivity 
and energy expenditure in experimental 
animals much more effectively than 
monotherapy [319]

The search of the most effective approaches 
to co-administration of hormonal regulators 
of the brain signaling systems in diabetic 
pathology; the optimization of the schemes 
for clinical application of synergistically 
acting hormones, including the decrease 
of their effective doses and the duration of 
treatment

Table 1. The approach to the improvement of brain signaling systems regulated by hormones and neuromediators in 
Type 2 diabetes mellitus and metabolic syndrome (cont.).
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in the brain. The binding of GLP-1 receptor with hor-
mone provokes the activation of AC and cascade of 
MAPKs, and also modulates the activity of Ca2+ chan-
nels [329]. In MS and T2DM, the level of GLP-1, its 
secretion in response to food intake and the activity 
of GLP-1 signaling system are reduced, leading to the 
disturbances of insulin sensitivity, energy metabolism 
and neurogenesis [324,330,331].

The data are available suggesting that functional 
impairments in neuronal cells due to weakening of the 
GLP-1 system are likely to alter the activity of other 
neurotransmitter systems, primarily dopaminergic, 
which causes disintegration of the brain signaling net-
work and enhances insulin resistance, dyslipidemia 
and oxidative stress, and exacerbates the metabolic dis-
orders. Consequently, restoration of the brain GLP-1 
signaling system can be used to correct the metabolic 
and functional abnormalities MS and T2DM [332]. The 
high potential of this approach is based on a large num-
ber of pharmacological agents, regulators of this sys-
tem, including the proteolysis-resistant GLP-1 analogs 
(exendin-4, liraglutide and others) and the inhibitors 
of DPP-4 hydrolyzing GLP-1 [333,334]. Now the DDP-4 
inhibitors are widely used to treat T2DM, due to their 
ability to restore the lipid metabolism and to improve 
the insulin sensitivity and glycemic control [335–338]. 
Additionally, these inhibitors exert the neurotrophic 
and neuroprotective effects on neuronal cells and pre-
vent the DM-associated cognitive  dysfunction and 
neurological disorders [339–341].

Most frequently in the treatment of patients with 
T2DM were used exendin-4 and liraglutide; they 
improved glycemic control, reduced insulin resistance, 
decreased excessive body weight and prevented neurode-
generative changes [327,333,334,342,343]. These drugs easily 
penetrate the BBB, which made them effective both in 
peripheral and central administration. The 4–10-week 
treatment of ob/ob and db/db mice and DIO-mice with 
exendin-4 and liraglutide increased by 100–150% the 
rate of neuronal cells proliferation and stimulated their 
differentiation, while exendin (9–36), antagonist of 
GLP-1 receptor, inhibited these processes [325]. Exen-
din-4, liraglutide and other GLP-1 receptor agonists 
reduced the amyloid plaque formation in patients with 
T2DM, MS and AD, the same refers to mice with insu-
lin resistance and T1DM. Preventing the neurodegen-
erative processes, they also improved central control 
of peripheral metabolism [344–346]. Another target of 
GLP-1 in the brain is the dopaminergic system. The 
GLP-1 and its analogs upregulated the expression of 
tyrosine hydroxylase catalyzing the conversion of tyro-
sine into L-DOPA, DA precursor, in addition, they sup-
pressed the inhibitory effect of proinflammatory and 
neurotoxic agents on dopaminergic neurons [347–349]. 

It was found that exendin-4 suppressed the inflamma-
tory processes in neurons of diabetic mice with experi-
mental cerebral ischemia by inhibiting the expression 
of proinflammatory cytokines [327]. These data indi-
cate that GLP-1 and its analogs are good candidates to 
improve insulin sensitivity and glycemic control and to 
prevent the  neurodegenerative processes in the brain in 
MS and T2DM.

Conclusions & future perspectives
In prediabetes, MS and T2DM the functional state 
and the interaction between the brain signaling sys-
tems undergo significant changes. The degree of these 
changes depends on the severity of insulin resistance, 
dysfunctions of pancreatic β-cells, oxidative stress and 
lipotoxicity, and augments during transition from pre-
diabetes to overt T2DM. At each stage of development 
of diabetic pathology the alterations in hormonal and 
neurotransmitter systems grow in number, which even-
tually leads to malfunctions of the integrative signaling 
system of the brain. The identification of molecular 
disturbances in the brain signaling systems regulated 
by insulin, IGF-1, leptin, DA, 5-HT, melanocortins, 
GLP-1 and other hormones and neurotransmitters is a 
reliable way to make the early diagnostics concerning 
the “weakness and flaws in the CNS” contributing to 
the development of MS and T2DM, and to develop 
the new approaches to their treatment and prevention 
based on restoration of these systems (Table 1). Due to 
a close link between the brain signaling systems, nor-
malization of the functions of one system can lead to 
restoration of the others. This points to prospects for 
comprehensive approach to be used in the treatment 
of MS and T2DM based on coordinated regulation 
of some signaling systems. The strategy of correction 
of the brain signaling systems must be developed tak-
ing into account the hormonal and functional distur-
bances in the certain brain areas, and also etiology, 
pathogenesis and severity of metabolic disorders. In 
prediabetes and the early T2DM, hormonal alterations 
in the brain are still reversible and can involve one or 
more signaling systems, while furthermore, they were 
identified in many of the systems, which requires the 
use of various treatment strategies. It is important to 
use combination of approaches restoring signal trans-
duction in the CNS and those focusing on reduction 
of hyperglycemia, oxidative stress and lipotoxicity, the 
most important factors causing abnormalities in the 
brain signaling systems in MS and T2DM.
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